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Introduction

AdS/CFT corespondence plays an important role in the study of
theoretical physics in the last 25 years. [Maldacena, 97][Gubser,
Klebanov, Polyakov, 98][Witten, 98]

In may cases, this correspondence is a strong-weak duality.
So we can use weakly coupled gravity/string theory to compute
quantities in strongly coupled gauge theory in the large N limit.
The quantities includes amplitudes, correlation functions of local
operators, vacuum expectation values of loop operators,
entanglement entropy...
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Introduction

However, this also makes it hard to confirm this correspondences,
since we need to compute quantities in the gauge theory side
non-perturbatively.

The non-perturbative tools in the field theory side of gauge/gravity
correspondence include integrability, supersymmetric localization,
bootstrap...
Integrability makes people be able to compute many quantities in
the large N limit, even beyond the BPS sectors.
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Integrability in AdS5/CFT4

Minahan and Zarembo (02) found that the planar one-loop
anomalous dimension matrix in the SU(2) sector of N = 4 SYM is
essentially the Hamiltonian of Heisenberg XXX spin chain. This
Hamiltonian is integrable!

Then the eigenvalues of this anomalous dimension matrix can be
computed using intergrability.
They also arrived at the same conclusion in the SO(6) sector.
This was later generalized to the full sector at planar all-loop level.
Benna, Polchinski and Roiban(03) found that the worldsheet
theory of IIB superstring on AdS5 × S5 in the free limit is a
two-dimensional integrable field theory.
Integrability is an important non-pertubative tool in AdS5/CFT4
correspondence.
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Integrability in AdS4/CFT3

Three dimensional U(N)k × U(N)−k N = 6 super-Chern-Simons
theory is dual to IIA string theory on AdS4 ×CP3.

The integrable structure was also found in this AdS4/CFT3
correspondence. [Minahan, Zarembo, 08][Bak, Rey, 08][Gromov,
Vieira, 08]
Almost every aspect of integrability in this case is more
complicated and difficult.
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Integrable boundary state (IBS)

Integrable boundary states play important role in both quantum
quench dynamics and AdS/CFT correspondence. [Piroli, Pozsgay,
Vernier, 17]

IBS appears in the one-point functions of a single-trace operator
when there is a domain wall [de Leeuw, Kristjansen, Zarembo,
15]/Wilson loop [Jiang, Komatsu, Vescovi, to appear]/’t Hooft loop
[Kristjansen, Zarembo, 23], and three point functions involving two
BPS determinant operators and one non-BPS single-trace
operator in N = 4 SYM theory [Jiang, Komatsu, Vescovi, 19].
In ABJM theory, IBS also appears in similar three-point functions
[Yang, Jiang, Komatsu, JW, 21] and domain wall one-point
functions [Kristjansen, Vu, Zarembo, 21].
One aim of this talk is to show that IBS also appears in some BPS
Wilson-loop one-point functions in ABJM theory.
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Heisenberg XXX spin chain

The Hilbert space of a closed XXX spin chain,

H = ⊗L
i=1Hi, Hi

∼= C2 . (1)

We consider the Hamiltonian

H = J

L∑
j=1

(
Sx
j S

x
j+1 + Sy

j S
y
j+1 + Sz

jS
z
j+1

)
, (2)

with periodic boundary condition,

Sα
L+1 = Sα

1 , α = x, y, z. (3)
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Conserved charges of Heisenberg XXX spin chain

This Hamiltonian is integrable.

It has infinity many conserved charges, Qj , j = 1, 2, · · ·
The generating function of this Q’s is

T (u) = U exp

( ∞∑
n=1

un

n!
Qn+1

)
, (4)

Here U = T (0) = Q1 is a shift operator.
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IBS for XXX chain

The definition of IBS [Piroli, Pozsgay, Vernier, 17] for XXX chain is
that the state |B⟩ satisfying

Q2l−1|B⟩ = 0, l = 1, 2, · · · (5)

This is equivalent to

T (u)|B⟩ = T (−u)|B⟩ . (6)
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Properties of IBS

Eigenstates of integrable Hamiltonian can be labelled by Bethe
roots, solutions to certain Bethe ansatz equations (BAEs).

A selection rule for the overlap of an integrable boundary state
and a Bethe state: the overlap is nonzero only when the Bethe
roots satisfy certain pairing conditions.
When this selection rule is satisfied, the overlap can often be
expressed as a product of super-Gaudin-determinant and a
prefactor. Great simplification!
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ABJM theory

Aharony-Bergman-Jafferis-Maldacena (ABJM) theory is a 3d
N = 6 Chern-Simons-matter theory.

The gauge group is U(N)× U(N) with CS levels (k,−k).
The gauge fields are denoted by Aµ and Âµ, respectively.
The matter fields include complex scalars Y A and spinors ψA

(A = 1, · · · , 4) in the bi-fundamental representation of the gauge
group.
The global symmetry is OSp(6|4)× U(1)b. The bosonic part of
OSp(6|4) is Sp(4)× SOR(6) ∼ SO(3, 2)× SUR(4).
This theory should be low energy effective theory of N M2-branes
putting at the tip of C4/Zk.
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Properties of ABJM theory

1/k is the coupling constant.

Two limits:
’t Hooft limit (planar limit): N, k → ∞, λ ≡ N

k fixed;
M-theory limit: N → ∞, k fixed.
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Holographic dual

When N ≫ k5, this theory is dual to M-theory on AdS4 × S7/Zk.

When k ≪ N ≪ k5, a better description is in terms of IIA
superstring theory on AdS4 ×CP3.
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Bosonic 1/6-BPS circular WLs

We consider the Wilson loops (WLs) along
xµ = (R cos τ,R sin τ, 0), τ ∈ [0, 2π].

The construction is the following,

WB
1/6 = TrP exp

(
−i
∮
dτAB

1/6(τ)

)
, (7)

ŴB
1/6 = TrP exp

(
−i
∮
dτÂB

1/6(τ)

)
, (8)

AB
1/6 = Aµẋ

µ +
2π

k
R J

I Y IY †
J |ẋ| , (9)

ÂB
1/6 = Âµẋ

µ +
2π

k
RJ

IY
†
J Y

I |ẋ| , (10)

with RI
J = diag(i, i,−i,−i). [Drukker, Plefka, Young, 08][Chen,

JW, 08][Rey, Suyama, Yamaguchi, 08]
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J |ẋ| , (9)

ÂB
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Half-BPS WLs

These 1/6-BPS WLs are dual to F-strings with worldsheet AdS2 in
AdS4 ×CP3, smearing over a CP1 inside CP3. [Drukker, Plefka,
Young, 08][Rey, Suyama, Yamaguchi, 08]

In another word, the worldsheet theory has Neumann boundary
condition for the direction along this CP1 subspace. [Lewkowycz,
Maldacena, 2013]
Similar string solutions with Dirichlet boundary conditions along all
directions of CP3 should correspond to half-BPS Wilson loops
invariant under SU(3)× U(1) inside SU(4)R.
But no such half-BPS WLs were found among the above 1/6-BPS
WLs. The susy enhancement (from N = 3 to N = 6 at generic k)
in the ABJM theory does not apply to the constructions of WLs!
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Maldacena, 2013]
Similar string solutions with Dirichlet boundary conditions along all
directions of CP3 should correspond to half-BPS Wilson loops
invariant under SU(3)× U(1) inside SU(4)R.
But no such half-BPS WLs were found among the above 1/6-BPS
WLs. The susy enhancement (from N = 3 to N = 6 at generic k)
in the ABJM theory does not apply to the constructions of WLs!
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Half-BPS WLs

This puzzle was resolved by Drukker and Trancanelli in 2009.

They found the half-BPS WLs by including the fermions in the
construction.

W1/2 = TrP exp

(
−i
∮
dτL1/2(τ)

)
, L1/2 =

(
A f̄1
f2 Â

)
,

A = Aµẋ
µ +

2π

k
U J
I Y IY †

J |ẋ| , f̄1 =

√
2π

k
ᾱζ̄ψ1|ẋ| , (11)

Â = Âµẋ
µ +

2π

k
U J
I Y †

J Y
I |ẋ| , f2 =

√
2π

k
ψ†1ηβ|ẋ| , (12)

with ᾱβ = i, and U J
I = diag(i,−i,−i,−i).
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Fermionic BPS WL

We found fermionic 1/6-BPS WLs along a circle [Ouyang, JW,
Zhang, 15]

We focus a class of fermionic 1/6-BPS WL:
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)
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ᾱζ̄ψ1|ẋ| , (13)
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Fermionic WLs

These WLs are dual to F-string with complicated mixed boundary
conditions. [Correa, Giraldo-Rivera, Silva, 19]

When ᾱ1 = β1 = 0, these fermionic 1/6-BPS WLs become the
bosonic 1/6-BPS WLs.
When ᾱ1β1 = i, these fermionic 1/6-BPS WLs become half-BPS
WLs.
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When ᾱ1β1 = i, these fermionic 1/6-BPS WLs become half-BPS
WLs.

Jun-Bao Wu CJQS-TJU



Local operators

We are interested in the tree-level correlation function of W (C)B1/6
and the local operator OC at the origin.

The definition of OC is OC = CJ1···JL
I1···IL tr(Y I1Y †

J1
· · ·Y ILY †

JL
).

When C is symmetric and traceless, OC is a chiral primary
operator.
Here we take OC to be a generic local operator which is
eigen-operator of the planar two-loop anomalous dimension
matrix.
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Wick contraction

At tree-level, the correlator ⟨W (C)B1/6OC(0)⟩ only gets
contributions from

∮
· · ·
∮
dτ1>2>···>L

(
2π

k

)L

⟨tr(RJ̃1
Ĩ1
Y Ĩ1(x1)Y

†
J̃1
(x1) · · ·

RJ̃L
ĨL
Y ĨL(xL)Y

†
J̃L
(xL))C

J1···JL
I1···IL tr(Y I1(0)Y †

J1
(0) · · ·

Y IL(0)Y †
JL
(0))⟩ , (15)

where xi = (R cos τi, R sin τi, 0), i = 1, · · · , L, and∮
· · ·
∮
dτ1>2>···>L =

∫ 2π

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τL−1

0
dτL . (16)
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In the large N limit, we only take into account planar Wick
contractions.

Planar Wick
contractions between the local operator and the Wilson loop.
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Wick contraction

One can easily obtain

⟨W (C)B1/6OC(0)⟩ =
λ2LkL

(L− 1)!(2R)2L
CJ1···JL
I1···IL R

IL
JL

· · ·RI1
J1
, (17)

where λ ≡ N
k is the ’t Hooft coupling of ABJM theory and the

tree-level propagators of the scalar fields

⟨Y Iα
β̄(x)Y

† γ̄
J ρ(y)⟩ =

δIJδ
α
ρ δ

γ̄

β̄

4π|x− y|
, (18)

have been used.
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Boundary state

In the spin chain language, we can introduce the following
boundary state

|BB
1/6⟩ = |BR⟩ , (19)

where, for a four-dimensional matrix R, we define the boundary
state |BR⟩ through

⟨BR| ≡ RI1
J1
RI2

J2
· · ·RIL

JL
⟨I1, J1, · · · , IL, JL| =

(
RI

J⟨I, J |
)⊗L

,
(20)

which is a two-site state.
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Overlap

Then the above correlation function can be expressed as

⟨W (C)B1/6OC(0)⟩ =
λ2LkL

(L− 1)!(2R)2L
⟨BB

1/6|OC⟩ , (21)

where |OC⟩ is the spin chain state corresponding to the operator
OC .

Our convention for the Hermitian conjugation and the overlap of
the spin chain states is(

⟨I1J̄1 · · · ILJ̄L|
)†

= |I1J̄1 · · · ILJ̄L⟩ , (22)

⟨I1J̄1 · · · ILJ̄L|M1N̄1 · · ·MLN̄L⟩ = δI1M1δ
J1N1 · · ·

δILML
δJLNL

(23)
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Norm

Let us define the normalization factor NO using the two-point
function of O and O† as

⟨O(x)O†(y)⟩ = NO
|x− y|2∆O

, (24)

where ∆O is the conformal dimension of O.

At tree level and the planar limit, we have

NO =

(
N

4π

)2L

L⟨O|O⟩ . (25)
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WL one-point function

We define the Wilson-loop one-point function as

⟨⟨O⟩⟩W (C) ≡
⟨W (C)O⟩√

NO
. (26)

Then for WB
1/6 we have

⟨⟨O⟩⟩W (C)B
1/6

=
πLλL

R2L(L− 1)!
√
L

⟨BB
1/6|O⟩√
⟨O|O⟩

. (27)

The computation of the Wilson loop one-point function thus
amounts to the calculation of

⟨BB
1/6|O⟩√
⟨O|O⟩

, (28)

which will be performed by integrability in some cases.
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Other boundary states from WLs

For Ŵ (C)B1/6, the boundary state is

⟨B̂B
1/6| = RI1

JL
RI2

J1
· · ·RIL

JL−1
⟨I1, J1, · · · , IL, JL| . (29)

We can rewrite |B̂B
1/6⟩ as

|B̂B
1/6⟩ = Ueven|BB

1/6⟩ (30)

where Ueven is the shift operator which shifts all even site to the left
by two units and leave the odd sites untouched.
In another word, the action of Ueven on the state
|I1, J1, I2, J2, · · · , IL−1, JL−1, IL, JL⟩ gives
|I1, J2, I2, J3, · · · , IL−1, JL, IL, J1⟩.
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Other boundary states from WLs

The boundary state from WF
1/6 is

|BF
1/6⟩ = (1 + Ueven)|BU ⟩ , (31)

with U = diag(i, i− 2ᾱ1β1,−i,−i).

The boundary state from W1/2 is

|B1/2⟩ = |BF
1/6⟩|ᾱ1β1=i (32)
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ABJM spin chain

The operator OC = CJ1···JL
I1···IL Tr(Y I1Y †

J1
· · ·Y ILY †

JL
) can be mapped

to a state |C⟩ := CJ1···JL
I1···IL |I1J̄1 · · · ILJ̄L⟩ on an alternating closed

SU(4) spin chain with length 2L.

The Hilbert space of this chain is C8L = ⊗2L
i=1C

4.
The odd site of the chain is in the 4 representation of SU(4), while
the even site is in the 4̄ representation.
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Hamiltonian

The planar two-loop anomalous dimensional matrix can be map to
the following Hamiltonian on the above chain ([Minahan, Zarembo,
08][Bak, Rey, 08]),

H =
λ2

2

2L∑
l=1

(2− 2Pl,l+2 + Pl,l+2Kl,l+1 +Kl,l+1Pl,l+2) , (33)

where Pab and Kab are permutation and trace operators acting on
the a-th and b-th sites. We denote the set of orthonormal basis of
the Hilbert space at each site by |i⟩, i = 1, · · · , 4. The two
operators act as

P|i⟩ ⊗ |j⟩ = |j⟩ ⊗ |i⟩, K|i⟩ ⊗ |j⟩ = δij

4∑
k=1

|k⟩ ⊗ |k⟩ . (34)
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Integrability

In the algebraic Bethe ansatz (ABA) approach, we introduce the
following R-matrices

R••
12(u) = R◦◦

12(u) = u+ P12 ≡ R12(u) ,
R•◦

12(u) = R◦•
12(u) = −u− 2 +K12 ≡ R̄12(u) ,

(35)

where • denotes the states in the 4 representation of SU(4)R,
while ◦ denotes the states in the 4̄ representation.
These R-matrices satisfy a set of Yang-Baxter equations and the
following crossing symmetry relation,

R12(u)
t1 = R̄12(−u− 2), R̄12(u)

t1 = R12(−u− 2) . (36)
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Integrability

Using these R-matrices one can constructed two transfer matrices
τ(u) and τ̄(u), satisfying

[τ(u), τ(v)] = [τ(u), τ̄(v)] = [τ̄(u), τ̄(v)] = 0 . (37)

They are generating functions of commuting conserved charges,
among whom there is the Hamiltonian.
This proves the integrability of two-loop ABJM spin chain.
[Minahan, Zarembo, 08][Bak, Rey, 08]
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Bethe roots

Eigenstates of H can be constructed using R-matrices and the
states are parameterized by three set of Bethe roots,

u1, · · · , uKu , (38)

v1, · · · , vKv , (39)

w1, · · · , wKw . (40)

One selection rule for ⟨BR|u,v,w⟩ being nonzero is that
Ku = Kv = Kw = L.
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Bethe ansatz equations

These Bethe roots should satisfy the following Bethe ansatz
equations,

1 =

(
uj +

i
2

uj − i
2

)L Ku∏
k=1
k ̸=j

S (uj , uk)

Kw∏
k=1

S̃ (uj , wk) , (41)

1 =

Kw∏
k=1
k ̸=j

S (wj , wk)

Ku∏
k=1

S̃ (wj , uk)

Kv∏
k=1

S̃ (wj , vk) , (42)

1 =

(
vj +

i
2

vj − i
2

)L Kv∏
k=1
k ̸=j

S (vj , vk)

Kw∏
k=1

S̃ (vj , wk) , (43)
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Bethe ansatz equations

In the previous page, the S-matrices S(u, v) and S̃(u, v) are given
by

S(u, v) ≡ u− v − i

u− v + i
, S̃(u, v) ≡

u− v + i
2

u− v − i
2

. (44)

The cyclicity property of the single trace operator is equivalent to
the zero momentum condition

1 =

Ku∏
j=1

uj +
i
2

uj − i
2

Kv∏
j=1

vj +
i
2

vj − i
2

. (45)

The eigenvalues of τ(u), τ̄(u),H on the Bethe state |u,v,w⟩ can
be expressed in terms of the Bethe roots, u,v,w.
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Numerical solution

The BAEs and zero momentum condition can be solved using
rational Q-system. [Marboe, Volin, 16][Gu, Jiang, Sperling, 22].

The Bethe states can be constructed using the algorithm in [Yang,
Jiang, JW, Komatsu, 21] based on coordinate Bethe ansatz.
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IBS from WLs

Partly based on [Piroli, Pozsgay, Vernier, 17], we proved the
following theorem,

Theorem
If a four-dimensional matrix K(u) satisfies the following boundary
Yang-Baxter equation,

R12(u− v)K1(u)R12(u+ v)K2(v) = K2(v)R12(u+ v)

K1(u)R12(u− v) , (46)

the boundary state

|BM ⟩ ≡M I1
J1
M I2

J2
· · ·M IL

JL
|I1, J1, · · · , IL, JL⟩ =

(
M I

J |I, J⟩
)⊗L

, (47)

with M = K(−1)∗ is integrable in the sense explained in the next page.
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A key selection rule

When the condition of the theorem is satisfied, we have that |BM ⟩
satisfying the following untwisted integrable condition,

τ(−u− 2)|BM ⟩ = τ(u)|BM ⟩. (48)

This leads to the pairing condition which states that ⟨BM |u,v,w⟩
is non-zero only when the selection rule

u = −v , w = −w (49)

is satisfied.
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IBS from WLs

Using this theorem, we can prove that the boundary state from
bosonic 1/6-BPS Wilson loop, |BR⟩ is integrable.
We just take K(u) = R. (Notice this R is the one appearing in the
definition of |BR⟩, it is not the R-matrices in the ABA approach. )
Similarly we proved that the half-BPS WLs give integrable
boundary state.
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Non-integrable boundary states

For the boundary state from a generic(∗) fermionic 1/6-BPS WL,
we perform the following SO(4) ⊂ SU(4)R transformation
[Gombor, Bajnok, 20]

Mg(θ) = g(θ)Mg(θ)−1 , (50)

with

g(θ) =


cos2 θ sin θ 0 sin θ cos θ

− sin θ cos2 θ cos2 θ sin θ − sin2 θ cos θ
sin2 θ cos θ − sin θ cos θ cos θ sin3 θ
− sin θ 0 0 cos θ

 ,

(51)

where θ satisfies 0 < θ < π
2 .
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Non-integrable boundary states

Since all R-matrices are SU(4)R invariant, (1 + Ueven)|BM ⟩ is
integrable if and only if (1 + Ueven)|BMg(θ)

is.

We found the following set of Bethe roots with
L = 3,Ku = Kw = 1,Kv = 2,

u1 = 0.866025, w1 = 0.866025,

v1 = −0.198072, v2 = 0.631084 . (52)

Notice that this set of Bethe roots does not satisfy the selection
rule: u = −v,w = −w.
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Non-integrable boundary states

We found that for these Bethe roots, the Bethe states |u,w,v⟩ has
nonzero overlap with (1 + Ueven)|BMg(θ)

⟩ when ᾱ1β1 ̸= 0, i.

So for generic ᾱ1 and β1 satisfying ᾱ1β1 ̸= 0, i, the boundary state
from the fermonic 1/6-BPS WL is not integrable.
Notice that when ᾱ1β1 = i, the WL is the half-BPS one.
And when ᾱ1β1 = 0, the WL is essential the bosonic 1/6-BPS one.
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Overlaps

We obtained the following formula for the normalized overlap
between |BR⟩ and a Bethe state,

|⟨BR|u,v,w⟩|2

⟨u,v,w|u,v,w⟩
=

Kw/2∏
i=1

w2
i

w2
i + 1/4

× detG+

detG− . (53)

Here the Bethe roots satisfy the pairing condition, G± are Gaudin
determinants depending on u,v,w.
This result was obtained using [Gombor, Bajnok, 20][Gombor,
Kristjansen, 22] and passed non-trivial checks based on
numerical computations.
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Overlaps

For another bosonic 1/6-BPS WL, we have

⟨B̂R|u,v,w⟩√
⟨u,v,w|u,v,w⟩

=

Ku∏
j=1

uj + i/2

uj − i/2

⟨BR|u,v,w⟩√
⟨u,v,w|u,v,w⟩

. (54)

Hence there is a relative phase between these two boundary
state.
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Overlaps

For half-BPS WLs, we have

|⟨B1/2|u,−u,w⟩|2

⟨u,−u,w|u,−u,w⟩
=

∣∣∣∣∣1 +
Ku∏
j=1

(
uj + i/2

uj − i/2

)2
∣∣∣∣∣
2

|⟨BU |u,−u,w⟩|2

⟨u,−u,w|u,−u,w⟩
.

(55)

|⟨BU |u,−u,w⟩|2

⟨u,−u,w|u,−u,w⟩
= (−1)L

Ku∏
i=1

(
u2i +

1

4

) [Kw/2]∏
j=1

1

w2
i (w

2
i + 1/4)

detG+

detG−
.

(56)
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Summary

By studying WL one-point function at tree level, we found that
bosonic 1/6-BPS, half-BPS and 1/3-BPS WLs lead to integrable
boundary states.

For generic fermionic 1/6-BPS WLs, the corresponding boundary
states are not integrable.
We computed the norm of the overlap of the integrable boundary
states from WLs and the Bethe states.
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Outlook

Generalization of the results to full sector and to all loop level?

Finite size effects from TBA?
Integrable boundary states from WLs in higher dimensional
representations of a suitable (super-)group? More complicated
WLs?
Correlators of BPS WLs and CPOs from localization and/or
holography.
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Thanks for Your Attention !
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