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-deformation: definition 

-deformation is a deformation of relativistic systems


-deformations can be obtained by the bilinear operator


TT̄

TT̄

TT̄

H(λ+δλ) = H(λ) + δH(λ)

δH(λ) = δλ∫ dx(q(λ)
1 (x − ϵ)j(λ)

2 (x) − j(λ)
1 (x − ϵ)q(λ)

2 (x)), Q1 = P, Q2 = H

λ

TT̄

X(λ) = ∫
L

0
dx∫

x−ε

0
dyq(λ)

1 (x)q(λ)
2 (y),

δQ(λ)
2

δλ
= i[X(λ), Q(λ)

2 ] + Q(λ)
1 j(λ)

2 (0) − j(λ)
1 (0)Q(λ)

2

[Zamolodchikov, 2004; Smirnov and Zamolodchikov, 2016;

Cavaglià, Negro, Szécsényi, Tateo, 2016]



-deformation: definition 

-deformation is a deformation of relativistic systems


-deformations can be obtained by the bilinear operator


In the nonrelativistic limit, the -deformation reduces to the -deformation


TT̄

TT̄

TT̄

TT̄ qj

H(λ+δλ) = H(λ) + δH(λ)

δH(λ) = δλ∫ dx(q(λ)
1 (x − ϵ)j(λ)

2 (x) − j(λ)
1 (x − ϵ)q(λ)

2 (x)), Q1 = P, Q2 = H

λ

TT̄

δH(λ) = δλ∫ dx(q(λ)
0 (x − ϵ)j(λ)

1 (x) − j(λ)
0 (x − ϵ)q(λ)

1 (x)), Q0 = N

X(λ) = ∫
L

0
dx∫

x−ε

0
dyq(λ)

0 (x)q(λ)
1 (y),

δQ(λ)
2

δλ
= i[X(λ), Q(λ)

2 ] + Q(λ)
0 j(λ)

1 (0) − j(λ)
0 (0)Q(λ)

1

X(λ) = ∫
L

0
dx∫

x−ε

0
dyq(λ)

1 (x)q(λ)
2 (y),

δQ(λ)
2

δλ
= i[X(λ), Q(λ)

2 ] + Q(λ)
1 j(λ)

2 (0) − j(λ)
1 (0)Q(λ)

2

[Zamolodchikov, 2004; Smirnov and Zamolodchikov, 2016;

Cavaglià, Negro, Szécsényi, Tateo, 2016]



-deformation as a hard-rod deformation 

Consider a pair of classical free particles that are not allowed to cross in space (reflective potential)


The bilinear generator is given by , which deforms the phase-space coordinates as 


When , the particles have less space to explore

qj

X = − p2

λ > 0

H =
p2

1 + p2
2

2m
+ V(x1, x2), V(x1, x2) = {∞ x1 ≥ x2

0 x1 < x2

p(λ)
1 = p1, p(λ)

2 = p2, x(λ)
1 = x1, x(λ)

2 = x2 − λ,

λ

V(x1, x2) V(x(λ)
1 , x(λ)

2 ) = {∞ λ ≥ x2 − x1

0 λ < x2 − x1

[Cardy and Doyon, 2020;

Jiang, 2020;


Medenjak, Policastro, TY, 2020]



When instead , the particles have an extra space  


In the case of -particles, the effective space is 


We can also interpret that these particles are jumping forward ( ) or backward ( ) as tracer 
particles (go-through picture)


The -deformation thus induces the nontrivial phase shift 


λ < 0

N L − λN

λ > 0 λ < 0

qj φ = − λ

λ

V(x(λ)
1 , x(λ)

2 ) = {∞ λ ≤ x1 − x2

0 λ > x1 − x2

λ



Generalized -deformation 

The solvability of -deformations is kept even after including other conserved charges  in the 
system


In integrable systems, one can also include all the quasi-local charges labeled by quasi-momenta 


Generalized -deformation is then given by


where the generalized current  satisfies 

TT̄

TT̄ Qi

θ

TT̄

jθϕ(x) i[Qθ, qϕ(x)] + ∂x jθϕ(x) = 0

δH(λ) = δλij ∫ dx(q(λ)
i (x − ϵ)j(λ)

j (x) − j(λ)
i (x − ϵ)q(λ)

j (x))

Qθ = ∫ dx qθ(x), qθ(x) = ∑
i

δ(θ − θi)δ(x − xi), ∂tqθ(x) + ∂x jθ(x) = 0

δH(λ) = δλ∫ dθdαdxdx′￼w(x − x′￼, θ − α)(q(λ)
θ (x)j(λ)

α (x′￼) − j(λ)
θ (x)q(λ)

α (x′￼))

X(λ)
θϕ = ∫

L

0
dx∫

x−ε

0
dyq(λ)

θ (x)q(λ)
ϕ (y),

δQ(λ)
γ

δλθϕ
= i[X(λ)

θϕ , Q(λ)
n ] + Q(λ)

θ j(λ)
γϕ (0) − j(λ)

γθ (0)Q(λ)
ϕ

[Ilievski, Quinn, Caux, 2017]

[Smirnov and Zamolodchikov, 2016;

Hernández-Chifflet, Negro, Sfondrini, 2020;


Pozsgay, Jiang, Takács, 2020]

[Doyon, During, Yoshimura, 2022]

https://arxiv.org/search/hep-th?searchtype=author&query=Tak%C3%A1cs,+G


Scatterings in generalized -deformation 

As in the standard one, generalized -deformations induce a phase shift


•Conservation laws remain intact in quantum systems
• Thermodynamics is given by TBA (flow equations admit a unique solution that gives TBA)


An explicit construction of the Hamiltonian is rather challenging in quantum systems


In the classical case, we have a full control over the microscopic details of the deformed theory!

TT̄
TT̄

S(λ)(θ) = eiϕ(θ)S(0)(θ), ϕ(θ) = 2λ∫ dx wθ(x, θ)

⟨qθ⟩ =
δf

δβθ
⟨jθϕ⟩ =

δgθ

δβϕ

δf
δλθϕ

= gθ
δf

δβϕ
− gϕ

δf
δβθ

,
δgγ

δλθϕ
= gθ

δgγ

δβϕ
− gϕ

δgγ

δβθ

[Doyon, Durning, Yoshimura, 2022]



Semiclassical Bethe systems 
For a given function , consider the phase space trajectories given by the equations


and define the associated Hamiltonian


ψ

H[ψ] = ∑
i

1
2

θ2
i (x, p) =

N

∑
i=1

p2
i

2
+ V[ψ](x, p)

yi = xi + ∑
j≠i

∂θψ(xi − xj, θi − θj)

pi = θi + ∑
j≠i

∂xψ(xi − xj, θi − θj) .

(x1 = y1 + s−
1 , θ1) (x2 = y2 + s−

2 , θ2)

(x1 = y1 + θ1t + s+
1 , θ1)(x2 = y2 + θ2t + s+

2 , θ2)

{ψ(−x, − θ) = ψ(x, θ)
|x |ψx(x, θ) → 0, |x | → ∞

[Doyon, Hübner TY, 2023]



Semiclassical Bethe systems 
For a given function , consider the phase space trajectories given by the equations


and define the associated Hamiltonian


The Hamiltonian of the generalized -deformed  is given by


ψ

TT̄ H(λ)

H[ψ] = ∑
i

1
2

θ2
i (x, p) =

N

∑
i=1

p2
i

2
+ V[ψ](x, p)

yi = xi + ∑
j≠i

∂θψ(xi − xj, θi − θj)

pi = θi + ∑
j≠i

∂xψ(xi − xj, θi − θj) .

(x1 = y1 + s−
1 , θ1) (x2 = y2 + s−

2 , θ2)

(x1 = y1 + θ1t + s+
1 , θ1)(x2 = y2 + θ2t + s+

2 , θ2)

H(λ) = H[ψ λ], ψλ(x, θ) = λ∫
∞

−∞
dx′￼sgn(x − x′￼)w(x′￼, θ)

{ψ(−x, − θ) = ψ(x, θ)
|x |ψx(x, θ) → 0, |x | → ∞

[Doyon, Hübner TY, 2023]



These equations can be thought of as a canonical coordinate transformation  
induced by the generating function


• The Hamiltonian  generates trajectories in the phase space 

• In terms of the  coordinates, the time-evolution is trivial: 
• The generating function is similar to the phase appearing in the semiclassical Bethe wave function 

in the Lieb-Liniger model 


(y, θ) ↦ (x, p)

H[ψ] t ↦ (x(t), p(t))
(y, θ) y(t) = y + tθ, θ(t) = θ

Ψ = eiΦ

Φ[ψ](x, θ) = ∑
i

xiθi +
1
2 ∑

i≠j

ψ(xi − xj, θi − θj)

yi = ∂θi
Φ(x, p), pi = ∂xi

Φ(x, p)

[Doyon and Hübner, 2023]



These equations can be thought of as a canonical coordinate transformation  
induced by the generating function


• The Hamiltonian  generates trajectories in the phase space 

• In terms of the  coordinates, the time-evolution is trivial: 
• The generating function is similar to the phase appearing in the semiclassical Bethe wave function 

in the Lieb-Liniger model 


The semiclassical Bethe systems are Liouville integrable and finite-range interacting with the 
scattering shift


The conserved charges  can be constructed as

(y, θ) ↦ (x, p)

H[ψ] t ↦ (x(t), p(t))
(y, θ) y(t) = y + tθ, θ(t) = θ

Ψ = eiΦ

Qi(x, p)

Φ[ψ](x, θ) = ∑
i

xiθi +
1
2 ∑

i≠j

ψ(xi − xj, θi − θj)

yi = ∂θi
Φ(x, p), pi = ∂xi

Φ(x, p)

Qn(x, p) = ∑
i

θn
i (x, p), H =

1
2

Q2(x, p)

φ(θ) = lim
x→∞

(∂θψ(x, θ) − ∂θψ(−x, θ))

[Doyon and Hübner, 2023]



Trajectories in the semiclassical Bethe systems 
When , there is a unique trajectory. This is not necessarily the case if 


At large scales all of these trajectories give rise to the same dynamics

φ(θ) > 0 φ(θ) < 0

“Go-through” picture

Particle-antiparticle creation“Hard-core” picture

Time-symmetric

Corresponding Hamiltonian?



Thermodynamics of the semiclassical Bethe systems 
We are interested in computing the free energy density of the system in a GGE 
e−∑a βaQa(x,p)

fL = −
1
L

log ZL, ZL =
∞

∑
N=0

∫
dNxdNp

(2π)N)N!
e−∑b

a=0 βaQa(x,p), b ∈ ℤ≥0



Thermodynamics of the semiclassical Bethe systems 
We are interested in computing the free energy density of the system in a GGE 


We first rewrite the finite-volume partition function  as


 is the Gaudin matrix where  is a Laplace matrix


Matrix tree theorem allows the Gaudin determinant  to be written as a sum of spanning forests 
made of  vertices


e−∑a βaQa(x,p)

ZL

Γij = δij + Lij Lij

|Γ |
N

fL = −
1
L

log ZL, ZL =
∞

∑
N=0

∫
dNxdNp

(2π)N)N!
e−∑b

a=0 βaQa(x,p), b ∈ ℤ≥0

ZL =
∞

∑
N=0

1
(2π)NN! ∫

N

∏
j=1

dxjdθj |Γ(x, θ) |e−∑N
i=1 β(θi), β(θ) = ∑

a

βaθa

Lij = δij ∑
k≠i

ψxθ(xik, θik) − (1 − δij)ψxθ(xij, θij)

|Γ | = ∑
α⊂{1,⋯,N}

∑
F∈ℱα

∏
⟨ jk⟩∈F

ψxθ(xjk, θjk)

[Chiken and Kleitman, 1978]



The partition function can be expressed graphically as
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2

1

3

1 2

+

+ZL = ∑
(θ1,x1)

1 +
1
2! ∑

(θ1,x1)
∑

(θ2,x2) [
1
3! ∑

(θ1,x1)
∑

(θ2,x2)
∑

(θ3,x3)

[

[ [=
1

2π

=
1

2π
e−β(θi)

i

i

i

j

= ψxθ(xi − xj, θi − θj)

+⋯



Upon the integration over the phase space, we get


where  is the generating function of the spanning tree rooted at 
YL(x, θ) (x, θ)

1+ +
1
2!

+ +
1
3!

+ + +
1
2!

+⋯ZL =

=
∞

∑
M=0

∑n1, n2, ⋯
∑m nm = M

1
n1!

Vn1
1

1
n2!

Vn2
2 ⋯

1
nM!

VnM
M = exp

∞

∑
j=1

Vj

= exp [∫[−L/2,L/2]×ℝ

dxdθ
2π

YL(x, θ)]

YL(x, θ)

(x, θ)

= =(x, θ)



The generating function  satisfies the Schwinger-Dyson equation


This amounts to the integral equation for the pseudo-energy defined by 


The finite-volume free energy density is given by 


In the infinite volume limit , the integral equation reduces to the TBA equation for 



•Works also in the presence of a trap

YL(x, θ)

YL(x, θ) = e−εL(x,θ)

fL = − (2πL)−1 ∫
[−L/2,L/2]×ℝ

dxdθ e−εL(x,θ)

L → ∞
ε(x, θ) = lim

L→∞
εL(x, θ)

(x, θ)
=

(x, θ)
+

(x, θ)
+

(x, θ)
1
2!

+
(x, θ)

1
3!

+⋯

εL(x, θ) = β(θ) −
1

2π ∫[−L/2,L/2]×ℝ
dx′￼dθ′￼ψxθ(x − x′￼, θ − θ′￼)e−εL(x′￼,θ′￼)

ε(θ) = β(θ) −
1

2π ∫ dθ′￼φ(θ − θ′￼)e−ε(θ′￼)



Hydrodynamics of the semiclassical Bethe systems 

Generalized hydrodynamics (GHD) emerges at large space-time in the semiclassical Bethe systems


To see it, we take macroscopic space and time  with the rescaled coordinates 
. The “empirical density”


satisfies


Using the equation for trajectories it follows that  as . The GHD equation 
therefore emerges in the limit of :

x = Lx̄, t = Lt̄
x̄i(t) = xi(t)/L, ȳi(t) = yi(t)/L

·̄x → veff
[ρp(⋅,x̄,t̄)] L → ∞

L → ∞

ρe(θ, x̄, t̄ ) = L−1 ∑
i

δ(x̄ − x̄i(t̄ ))δ(θ − θi)
L→∞ ρp(θ, x, t)

∂t̄ ρe(θ, x̄, t̄ ) + ∂x̄(L−1 ∑
i

·̄xiδ(x̄ − x̄i)δ(θ − θi)) = 0

∂t̄ ρp(θ, x̄, t̄ ) + ∂x̄(veff
[ρp](θ, x̄, t̄ )ρp(θ, x̄, t̄ )) = 0. [Castro-Alvaredo, Doyon, TY, 2016;


Bertini, Collura, De Nardis, Fagotti, 2016]



We also numerically verified the agreement with GHD


•Hydrodynamics of the semiclassical Bethe systems is expected reproduce all the higher derivative 
contributions in the classical integrable system with the same phase shift


• The trajectories of the semiclassical Bethe systems can capture the locations of solitons in the 
soliton gas

ρp(θ, x,0) =
25
2π

e−x2/2 (e−25(θ−1)2/2 + e−25(θ+1)2/2)

ψ(x, θ) = x

2 x2 + α2
ϕ(θ), ϕ(θ) = 2 arctan θ

c

L = 300, N ≈ 3000



Conclusion 

• A novel class of classical integrable systems can be obtained from generalized -deformations


• The explicit Hamiltonian and trajectories can be obtained


• The trajectories with the negative phase shift admits an interpretation in terms of particle-
antiparticle pair creations


• Thermo/hydrodynamics are described by TBA and GHD as in standard integrable systems


Outlook 

• External potential
• Rigorous proof of the emergence of GHD

TT̄


