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® TT-deformation and Generalised 7'T-deformation

® Semiclassical Bethe systems: classical free particles deformed by generalised T T-deformation
® Thermodynamics of the semiclassical Bethe systems

® Hydrodynamics of the semiclassical Bethe systems



TT-deformation: definition

T T-deformation is a deformation of relativistic systems
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T T-deformations can be obtained by the bilinear operator
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In the limit, the T7T-deformation reduces to the g J-deformation

SH'" = 61 de(qg% - 0)j’(0) —j = e)g (), Qy=N
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[Cardy and Doyon, 2020;

gj-deformation as a hard-rod deformation Jiang, 2020;

Medenjak, Policastro, TY, 2020]

Consider a pair of classical free particles that are in space (reflective potential)

2 2
pPi T D; 00 X| = X
H — zm | V(Xsz), V(Xl,xz) — {

0 x <x
The bilinear generator is given by X = — p,, which deforms the phase-space coordinates as

A A A A
p=p. P =py xV=x, 2P =x-1

When A > 0, the particles have less space to explore

0 A>x,—x
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When instead 4 < (), the particles have an extra space

o0 /ISXI_X2

VP, x @) =
o737 0 A>x —x

In the case of N-particles, the effective space is L — AN

We can also interpret that these particles are jumping forward (4 > 0) or backward (1 < () as tracer
particles (go-through picture)

The gj-deformation thus induces the nontrivial phase shift ¢ = — A

-




Generalized 77-deformation

The solvability of T T-deformations is kept even after including other conserved charges (). in the
system

[S dZ lodchikov, 2016;
5H(’D — 5/11 J'dx(q(’l)(x — 6)](/1)()6) ](i)(x — e)q(/l)(x)) Herna?clirgs\gi?ﬁletamgg?oCSi‘o(r?élrlnl 2020:

Pozsgay, Jiang, Takacs, 2020]

In integrable systems, one can also include all the labeled by quasi-momenta &

Q@ — J'dx qe(x), qe(x) — Z 5(@ — 91)5()6 — xl.), atQQ(x) + axjé’(x) — () [llievski, Quinn, Caux, 2017]

Generalized 1/ -deformation is then given by [Doyon, During, Yoshimura, 2022]

SHW = 5&Id8dadxdx w(x —x', 0 — a)(q(’l)(x)](ﬂ)(xf) (ﬂ)(x)q(’l)(x’))

L X—€ 5Q(/1)
X0 = dx|  dygPg), —— =ilX}), 01+ 09(0) - ;500
o 0 0 ¢ 629, ¢

where the generalized current j, ,(x) satisfies 1{Qy, g ,(x)] + 9, jg,(x) = 0


https://arxiv.org/search/hep-th?searchtype=author&query=Tak%C3%A1cs,+G

Scatterings in generalized TT-deformation

As In the standard one, generalized T T-deformations induce a phase shift
SW) = P OSOQ), PO = 2/1de wy(x, 0) [Doyon, Durning, Yoshimura, 2022]

® Conservation laws remain intact in quantum systems
® Thermodynamics is given by TBA (flow equations admit a unigue solution that gives TBA)
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An explicit construction of the Hamiltonian is rather challenging in quantum systems

In the classical case, we have a full control over the microscopic details of the deformed theory!



Semiclassical Bethe systems [Doyon, Hiibner TY, 2023]

For a given function v, consider the phase space trajectories given by the equations

Vi =X T Z Og(X; — X;, 0, — 0))
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| x|y (x,0) = 0,|x| - o
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The Hamiltonian of the generalized TT-deformed H™ is given by

H? = HV y(x,0) = /1[ dx’sgn(x — x)w(x’, 0)



These equations can be thought of as a (y,0) — (x,p)
induced by the generating function

1
OVc,0) = ¥ 56+ 2 Y vl 5.6, )
i %]
Vi = aé’iq)(xﬁp)a Pi = axiq)(xap)

® The Hamiltonian H'Y! generates trajectories in the phase space ¢ — (x(t), p(?))

® In terms of the (y, @) coordinates, the time-evolution is trivial: y(f) =y + 10, 0(t) = @
® The generating function is similar to the phase appearing in the semiclassical Bethe wave function

in the Lieb-Liniger model ¥ = e'? [Doyon and Hiibner, 2023]
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The semiclassical Bethe systems are Liouville integrable and finite-range interacting with the
scattering shift

@p(0) = Iim (dyy(x, 0) — dyw(—x, 0))

X—O0

The conserved charges (J.(x, p) can be constructed as

1
Q,(x,p) = Z 0'x.p), H==0yx.p)



Trajectories In the semiclassical Bethe systems

When @(6) > 0, there is a unique trajectory. This is not necessarily the case if p(6) < 0

“Hard-core” picture

At large scales all of these trajectories give rise to the same dynamics

“Go-through” picture

Particle-antiparticle creation

Time-symmetric

Corresponding Hamiltonian?



Thermodynamics of the semiclassical Bethe systems

We are interested in computing the free energy density of the system ina GGE e~ 2o Palalxp)
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We first rewrite the finite-volume partition function Z; as

(©9)

| N "
_ r - X, A6 _ a
Z =Y R ”:! dxdo, |T(x,0)| e I C) z' Bo

N=0

I';; = 0,; + L;;is the Gaudin matrix where L;; is a Laplace matrix

)
Lij — 5zj Z WX O) — (1 — 5zj)er(xi " Hz'j)
k#i
Matrix tree theorem allows the Gaudin determinant |I"| to be written as a sum of spanning forests
made of /N vertices [Chiken and Kleitman, 1978]
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The partition function can be expressed graphically as

Zi= 1 +Ye +5.57%
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Upon the integration over the phase space, we get

M=0 Tl L ' ' Jj=1
2 =M

dxd@
= exp Y, (x, 0)
[—L/2,L/2]xR 2r

where Y; (x, 0) is the generating function of the spanning tree rooted at (x, 0)

(x, )



The generating function Y; (x, ) satisfies the Schwinger-Dyson equation

. ¢S A
= + + — + — + -

(x, 0) (x,0) (x, 0) 2! (x,0) 31 (&, 0)

This amounts to the integral equation for the pseudo-energy defined by Y; (x, ) = e ~ELx0)

' ,(1.0) = fO) J AXd0 o — 2,0 — @D |
i 2 [—L/2,L121XR ;

~ A = _

dxd@ e ~€L%0)

The finite-volume free energy density is given by f; = — (27TL)_1 J (—L/2.L/2]xR

In the infinite volume limit L — o0, the integral equation reduces to the TBA equation for

e(x,0) = lim &, (x, 0)

=00

_ 1 / an,—e(0)
(@) = p(0) o Jdé’ @@ — 0)e

® \Works also in the presence of a trap



Hydrodynamics of the semiclassical Bethe systems

Generalized hydrodynamics (GHD) emerges at large space-time in the semiclassical Bethe systems

To see it, we take macroscopic space and time x = Lx, t = Lt with the rescaled coordinates
x(t) = x(1)/L,y(t) = y.(tr)/L. The “empirical density”

p0.%,1) = L1 6(% — £1)8(0 — ) == p,(6,x,1)

satisfies

0-p.(0,%,T) + OX(L‘l Y %50 - %)5(0 - @)) —

Using the equation for trajectories it follows that X — v[epff(. 5.7y a8 L — o0. The GHD equation
o( X,

therefore emerges in the limit of L — o0:

[Castro-Alvaredo, Doyon, TY, 2016;
tpp(e )C t) T a ( [,0 ](9 )C t)pp(e X t)) Bertini, Collura, De Nardis, Fagotti, 2016]



We also numerically verified the agreement with GHD
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® Hydrodynamics of the semiclassical Bethe systems is expected reproduce all the
in the classical integrable system with the same phase shift

® The trajectories of the semiclassical Bethe systems can capture the locations of solitons in the
soliton gas



Conclusion

® A novel class of classical integrable systems can be obtained from generalized T T-deformations
® The explicit Hamiltonian and trajectories can be obtained
® The trajectories with the negative phase shift admits an interpretation in terms of

® Thermo/hydrodynamics are described by TBA and GHD as in standard integrable systems
Outlook

® External potential
® Rigorous proof of the emergence of GHD



