New classical integrable systems from generalized TT-deformation

Takato Yoshimura (University of Oxford)

Joint Hep-th seminar, 17th January, 2024

Based on arXiv:2311.06369 and 2312.14855 with **B. Doyon** and **F. Hübner** (Kings College London)

- $T\bar{T}$ -deformation and Generalised $T\bar{T}$ -deformation
- Thermodynamics of the semiclassical Bethe systems
- Hydrodynamics of the semiclassical Bethe systems

• Semiclassical Bethe systems: classical free particles deformed by generalised $T\overline{T}$ -deformation

$T\bar{T}$ -deformation: definition

$T\bar{T}$ -deformation is a deformation of relativistic systems

$$H^{(\lambda+\delta\lambda)} = H^{(\lambda)} + \delta H^{(\lambda)} \qquad [Zamolodchikov, 2004; Smirnov and Zamolodchikov, 2016] \\ \delta H^{(\lambda)} = \delta\lambda \int dx (q_1^{(\lambda)}(x-\epsilon)j_2^{(\lambda)}(x) - j_1^{(\lambda)}(x-\epsilon)q_2^{(\lambda)}(x)), \quad Q_1 = P, Q_2 = H$$

 $T\bar{T}$ -deformations can be obtained by the bilinear operator

$$X^{(\lambda)} = \int_0^L dx \int_0^{x-\varepsilon} dy q_1^{(\lambda)}(x) q_2^{(\lambda)}(y), \quad \frac{\delta Q_2^{(\lambda)}}{\delta \lambda} = i[X^{(\lambda)}, Q_2^{(\lambda)}] + Q_1^{(\lambda)} j_2^{(\lambda)}(0) - j_1^{(\lambda)}(0) Q_2^{(\lambda)}$$

16;

$T\bar{T}$ -deformation: definition

$T\overline{T}$ -deformation is a deformation of relativistic systems

$$H^{(\lambda+\delta\lambda)} = H^{(\lambda)} + \delta H^{(\lambda)}$$
[Zamolodchikov, 2004; Smirnov and Zamolodchikov, 2014]
Cavaglià, Negro, Szécsényi, Tateo, 2016]

$$\delta H^{(\lambda)} = \delta\lambda \int dx (q_1^{(\lambda)}(x-\epsilon)j_2^{(\lambda)}(x) - j_1^{(\lambda)}(x-\epsilon)q_2^{(\lambda)}(x)), \quad Q_1 = P, Q_2 = H$$

TT-deformations can be obtained by the bilinear operator

$$X^{(\lambda)} = \int_0^L dx \int_0^{x-\varepsilon} dy q_1^{(\lambda)}(x) q_2^{(\lambda)}(y), \quad \frac{\delta Q_2^{(\lambda)}}{\delta \lambda} = i[X^{(\lambda)}, Q_2^{(\lambda)}] + Q_1^{(\lambda)} j_2^{(\lambda)}(0) - j_1^{(\lambda)}(0) Q_2^{(\lambda)}$$

In the nonrelativistic limit, the $T\bar{T}$ -deformation reduces to the qj-deformation

$$\delta H^{(\lambda)} = \delta \lambda \int dx (q_0^{(\lambda)}(x-\epsilon)j_1^{(\lambda)}(x) - j_0^{(\lambda)}(x-\epsilon)q_1^{(\lambda)}(x)), \quad Q_0 = N$$
$$X^{(\lambda)} = \int_0^L dx \int_0^{x-\epsilon} dy q_0^{(\lambda)}(x)q_1^{(\lambda)}(y), \quad \frac{\delta Q_2^{(\lambda)}}{\delta \lambda} = i[X^{(\lambda)}, Q_2^{(\lambda)}] + Q_0^{(\lambda)}$$

6;

 $j_{1}^{(\lambda)}(0) - j_{0}^{(\lambda)}(0)Q_{1}^{(\lambda)}$

 $T\bar{T}$

qj-deformation as a hard-rod deformation

Consider a pair of classical free particles that are not allowed to cross in space (reflective potential)

$$H = \frac{p_1^2 + p_2^2}{2m} + V(x_1, x_2), \quad V(x_1, x_2) = \begin{cases} \infty & x_1 \ge x_2 \\ 0 & x_1 < x_2 \end{cases}$$

The bilinear generator is given by $X = -p_2$, which deforms the phase-space coordinates as

$$p_1^{(\lambda)} = p_1, \quad p_2^{(\lambda)} = p_2, \quad x_1^{(\lambda)} = x_1, \quad x_2^{(\lambda)} = x_2 - \lambda,$$

When $\lambda > 0$, the particles have less space to explore

When instead $\lambda < 0$, the particles have an extra space

In the case of N-particles, the effective space is $L - \lambda N$

We can also interpret that these particles are jumping forward ($\lambda > 0$) or backward ($\lambda < 0$) as tracer particles (go-through picture)

The qj-deformation thus induces the nontrivial phase shift $\varphi = -\lambda$

$$V(x_1^{(\lambda)}, x_2^{(\lambda)}) = \begin{cases} \infty & \lambda \le x_1 - x_2 \\ 0 & \lambda > x_1 - x_2 \end{cases}$$

Generalized *TT*-deformation

The solvability of $T\bar{T}$ -deformations is kept even after including other conserved charges Q_i in the system

$$\delta H^{(\lambda)} = \delta \lambda_{ij} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) j_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x) - j_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int dx (q_i^{(\lambda)}(x - \epsilon) q_j^{(\lambda)}(x)) + \frac{\delta \lambda_{ij}}{\beta} \int$$

In integrable systems, one can also include all the quasi-local charges labeled by quasi-momenta heta

$$Q_{\theta} = \int \mathrm{d}x \, q_{\theta}(x), \quad q_{\theta}(x) = \sum_{i} \delta_{i}$$

Generalized $T\overline{T}$ -deformation is then given by

$$\delta H^{(\lambda)} = \delta \lambda \int d\theta d\alpha dx dx' w(x - x', \theta - \alpha) \left(q_{\theta}^{(\lambda)}(x) j_{\alpha}^{(\lambda)}(x') - j_{\theta}^{(\lambda)}(x) q_{\alpha}^{(\lambda)}(x') \right)$$

$$X_{\theta\phi}^{(\lambda)} = \int_0^L \mathrm{d}x \int_0^{x-\varepsilon} \mathrm{d}y q_{\theta}^{(\lambda)}(x) q_{\phi}^{(\lambda)}(y), \quad \frac{\delta Q_{\gamma}^{(\lambda)}}{\delta \lambda_{\theta\phi}} = \mathrm{i}[X_{\theta\phi}^{(\lambda)}, Q_n^{(\lambda)}] + Q_{\theta}^{(\lambda)} j_{\gamma\phi}^{(\lambda)}(0) - j_{\gamma\theta}^{(\lambda)}(0) Q_{\phi}^{(\lambda)}$$

where the generalized current $j_{\theta\phi}(x)$ satisfies i[

 $\delta(\theta - \theta_i)\delta(x - x_i), \quad \partial_t q_{\theta}(x) + \partial_x j_{\theta}(x) = 0$ [Ilievski, Quinn, Caux, 2017]

[Doyon, During, Yoshimura, 2022]

$$[Q_{\theta}, q_{\phi}(x)] + \partial_x j_{\theta\phi}(x) = 0$$

Scatterings in generalized *TT*-deformation

As in the standard one, generalized TT-deformations induce a phase shift

 $S^{(\lambda)}(\theta) = e^{i\phi(\theta)}S^{(0)}(\theta)$

 Conservation laws remain intact in quantum systems • Thermodynamics is given by TBA (flow equations admit a unique solution that gives TBA)

$$\begin{split} \langle q_{\theta} \rangle &= \frac{\delta f}{\delta \beta^{\theta}} \quad \langle j_{\theta\phi} \rangle = \frac{\delta g_{\theta}}{\delta \beta^{\phi}} \\ \frac{\delta f}{\delta \lambda_{\theta\phi}} &= g_{\theta} \frac{\delta f}{\delta \beta^{\phi}} - g_{\phi} \frac{\delta f}{\delta \beta^{\theta}}, \quad \frac{\delta g_{\gamma}}{\delta \lambda_{\theta\phi}} = g_{\theta} \frac{\delta g_{\gamma}}{\delta \beta^{\phi}} - g_{\phi} \frac{\delta g_{\gamma}}{\delta \beta^{\theta}} \end{split}$$

An explicit construction of the Hamiltonian is rather challenging in quantum systems In the classical case, we have a full control over the microscopic details of the deformed theory!

$$\theta$$
), $\phi(\theta) = 2\lambda \int dx w_{\theta}(x, \theta)$

[Doyon, Durning, Yoshimura, 2022]

Semiclassical Bethe systems

For a given function ψ , consider the phase space trajectories given by the equations

$$y_i = x_i + \sum_{j \neq i} \partial_{\theta} \psi(x_i - x_j, \theta_i - \theta_j) \begin{cases} \psi(-x, -x_j, \theta_i - \theta_j) \\ \|x\| \psi_x(x_i) - x_j, \theta_i - \theta_j \end{cases}$$

and define the associated Hamiltonian

$$H^{[\psi]} = \sum_{i} \frac{1}{2} \theta_i^2(x)$$

Semiclassical Bethe systems

For a given function ψ , consider the phase space trajectories given by the equations

$$y_{i} = x_{i} + \sum_{j \neq i} \partial_{\theta} \psi(x_{i} - x_{j}, \theta_{i} - \theta_{j}) \begin{cases} \psi(-x, -x_{j}, \theta_{i} - \theta_{j}) \\ \|x\|\psi_{x}(x_{i} - x_{j}, \theta_{i} - \theta_{j}) \end{cases}$$

and define the associated Hamiltonian

$$H^{[\psi]} = \sum_{i} \frac{1}{2} \theta_i^2 (x)$$

The Hamiltonian of the generalized $T\bar{T}$ -deformed $H^{(\lambda)}$ is given by

$$H^{(\lambda)} = H^{[\psi^{\lambda}]}, \quad \psi^{\lambda}(x,\theta)$$

These equations can be thought of as a canonical coordinate transformation $(y, \theta) \mapsto (x, p)$ induced by the generating function

$$\Phi^{[\psi]}(\boldsymbol{x}, \boldsymbol{\theta}) = \sum_{i} x_{i} \theta_{i} + \frac{1}{2} \sum_{i \neq j} \psi(x_{i} - x_{j}, \theta_{i} - \theta_{j})$$
$$y_{i} = \partial_{\theta_{i}} \Phi(\boldsymbol{x}, \boldsymbol{p}), \quad p_{i} = \partial_{x_{i}} \Phi(\boldsymbol{x}, \boldsymbol{p})$$

- The Hamiltonian $H^{[\psi]}$ generates trajectories in the phase space $t \mapsto (\mathbf{x}(t), \mathbf{p}(t))$
- in the Lieb-Liniger model $\Psi = e^{i\Phi}$

• In terms of the (y, θ) coordinates, the time-evolution is trivial: $y(t) = y + t\theta, \theta(t) = \theta$ • The generating function is similar to the phase appearing in the semiclassical Bethe wave function

[Doyon and Hübner, 2023]

These equations can be thought of as a canonical coordinate transformation $(y, \theta) \mapsto (x, p)$ induced by the generating function

$$\Phi^{[\psi]}(\boldsymbol{x}, \boldsymbol{\theta}) = \sum_{i} x_{i} \theta_{i} + \frac{1}{2} \sum_{i \neq j} \psi(x_{i} - x_{j}, \theta_{i} - \theta_{j})$$
$$y_{i} = \partial_{\theta_{i}} \Phi(\boldsymbol{x}, \boldsymbol{p}), \quad p_{i} = \partial_{x_{i}} \Phi(\boldsymbol{x}, \boldsymbol{p})$$

$$\Phi^{[\psi]}(\boldsymbol{x}, \boldsymbol{\theta}) = \sum_{i} x_{i} \theta_{i} + \frac{1}{2} \sum_{i \neq j} \psi(x_{i} - x_{j}, \theta_{i} - \theta_{j})$$
$$y_{i} = \partial_{\theta_{i}} \Phi(\boldsymbol{x}, \boldsymbol{p}), \quad p_{i} = \partial_{x_{i}} \Phi(\boldsymbol{x}, \boldsymbol{p})$$

- The Hamiltonian $H^{[\psi]}$ generates trajectories in the phase space $t \mapsto (\mathbf{x}(t), \mathbf{p}(t))$
- in the Lieb-Liniger model $\Psi = e^{i\Phi}$

The semiclassical Bethe systems are Liouville integrable and finite-range interacting with the scattering shift

> $\varphi(\theta) = \lim (\partial_{\theta})$ $x \rightarrow \infty$

The conserved charges $Q_i(x, p)$ can be constructed as

$$Q_n(\boldsymbol{x},\boldsymbol{p}) = \sum_i \theta_i^n(\boldsymbol{x},\boldsymbol{p}), \quad H = \frac{1}{2}Q_2(\boldsymbol{x},\boldsymbol{p})$$

• In terms of the (y, θ) coordinates, the time-evolution is trivial: $y(t) = y + t\theta, \theta(t) = \theta$ • The generating function is similar to the phase appearing in the semiclassical Bethe wave function [Doyon and Hübner, 2023]

$$_{\theta}\psi(x,\theta) - \partial_{\theta}\psi(-x,\theta))$$

Trajectories in the semiclassical Bethe systems

When $\varphi(\theta) > 0$, there is a unique trajectory. This is not necessarily the case if $\varphi(\theta) < 0$

At large scales all of these trajectories give rise to the same dynamics

Thermodynamics of the semiclassical Bethe systems

We are interested in computing the free energy density of the system in a GGE $e^{-\sum_a \beta_a Q_a(x,p)}$

$$f_L = -\frac{1}{L} \log Z_L, \quad Z_L = \sum_{N=0}^{\infty}$$

Thermodynamics of the semiclassical Bethe systems

$$f_L = -\frac{1}{L}\log Z_L, \quad Z_L = \sum_{N=0}^{\infty}$$

We first rewrite the finite-volume partition function Z_L as

$$Z_{L} = \sum_{N=0}^{\infty} \frac{1}{(2\pi)^{N} N!} \int \prod_{j=1}^{N} \mathrm{d}x_{j} \mathrm{d}\theta_{j}$$

 $\Gamma_{ii} = \delta_{ii} + L_{ii}$ is the Gaudin matrix where L_{ii} is a Laplace matrix

 $L_{ij} = \delta_{ij} \sum_{k \neq i} \psi_{x\theta}(x_{ik}, \theta_{ik}) - (1 - \delta_{ij})\psi_{x\theta}(x_{ij}, \theta_{ij})$ Matrix tree theorem allows the Gaudin determinant $|\Gamma|$ to be written as a sum of spanning forests made of N vertices [Chiken and Kleitman, 1978]

$$|\Gamma| = \sum_{\alpha \in \{1, \dots, N\}} \sum_{F \in \mathcal{F}_{\alpha}} \prod_{\langle jk \rangle \in F} \psi_{x\theta}(x_{jk}, \theta_{jk})$$

- We are interested in computing the free energy density of the system in a GGE $e^{-\sum_a \beta_a Q_a(x,p)}$
 - $\int \frac{\mathrm{d}^{N} x \mathrm{d}^{N} p}{(2\pi)^{N} N!} e^{-\sum_{a=0}^{b} \beta_{a} Q_{a}(\boldsymbol{x}, \boldsymbol{p})}, \quad b \in \mathbb{Z}_{\geq 0}$

 - $\theta_{j} | \Gamma(\mathbf{x}, \boldsymbol{\theta}) | e^{-\sum_{i=1}^{N} \beta(\theta_{i})}, \quad \beta(\theta) = \sum_{a} \beta_{a} \theta^{a}$

The partition function can be expressed graphically as

$$Z_{L} = 1 + \sum_{(\theta_{1}, x_{1})} + \frac{1}{2!} \sum_{(\theta_{1}, x_{1})} \sum_{(\theta_{2}, x_{2})} + \frac{1}{3!} \sum_{(\theta_{1}, x_{1})} \sum_{(\theta_{2}, x_{2})} \sum_{(\theta_{3}, x_{3})} + \frac{1}{2!} \sum_{(\theta_{1}, x_{1})} \sum_{(\theta_{2}, x_{2})} \sum_{(\theta_{3}, x_{3})} \sum_{(\theta_{3}, \theta_{3})} \sum_{(\theta_{3}, \theta_{3}$$

Upon the integration over the phase space, we get

where $Y_L(x, \theta)$ is the generating function of the spanning tree rooted at (x, θ)

$$Y_L(x,\theta) =$$

The generating function $Y_I(x, \theta)$ satisfies the Schwinger-Dyson equation

This amounts to the

$$\begin{split} & \bigotimes_{(x,\theta)} = \bigotimes_{(x,\theta)} + \bigotimes_{(x,\theta)} + \frac{1}{2!} \bigotimes_{(x,\theta)} + \frac{1}{3!} \bigotimes_{(x,\theta)} + \cdots \\ & \text{This amounts to the integral equation for the pseudo-energy defined by } Y_L(x,\theta) = e^{-\varepsilon_L(x,\theta)} \\ & \varepsilon_L(x,\theta) = \beta(\theta) - \frac{1}{2\pi} \int_{[-L/2,L/2] \times \mathbb{R}} dx' d\theta' \psi_{x\theta}(x - x', \theta - \theta') e^{-\varepsilon_L(x',\theta')} \\ & \text{The finite-volume free energy density is given by } f_L = -(2\pi L)^{-1} \int_{[-L/2,L/2] \times \mathbb{R}} dx d\theta \, e^{-\varepsilon_L(x,\theta)} \end{split}$$

In the infinite volume limit $L \to \infty$, the integral equation reduces to the TBA equation for $\varepsilon(x,\theta) = \lim_{L \to \infty} \varepsilon_L(x,\theta)$ $\varepsilon(\theta) = \beta(\theta) - \frac{1}{2}$

• Works also in the presence of a trap

$$\frac{1}{2\pi} \int \mathrm{d}\theta' \,\varphi(\theta - \theta') e^{-\varepsilon(\theta')}$$

Hydrodynamics of the semiclassical Bethe systems

Generalized hydrodynamics (GHD) emerges at large space-time in the semiclassical Bethe systems

To see it, we take macroscopic space and time $x = L\bar{x}, t = L\bar{t}$ with the rescaled coordinates $\bar{x}_i(t) = x_i(t)/L, \bar{y}_i(t) = y_i(t)/L$. The "empirical density"

$$\rho_{\rm e}(\theta,\bar{x},\bar{t}) = L^{-1} \sum_{i} \delta(\bar{x} - \bar{x}_{i}(\bar{t})) \delta(\theta - \theta_{i}) \xrightarrow{L \to \infty} \rho_{\rm p}(\theta,x,t)$$

satisfies

$$\partial_{\bar{t}}\rho_{\rm e}(\theta,\bar{x},\bar{t}) + \partial_{\bar{x}}\left(L^{-1}\sum_{i}\dot{\bar{x}}_{i}\delta(\bar{x}-\bar{x}_{i})\delta(\theta-\theta_{i})\right) = 0$$

Using the equation for trajectories it follows that $\dot{\bar{x}} \to v_{[\rho_n(\cdot, \bar{x}, \bar{t})]}^{\text{eff}}$ as $L \to \infty$. The GHD equation therefore emerges in the limit of $L \rightarrow \infty$:

$$\partial_{\bar{t}}\rho_{\rm p}(\theta,\bar{x},\bar{t}) + \partial_{\bar{x}}(v)$$

 $v_{[\rho_{\rm p}]}^{\rm eff}(\theta, \bar{x}, \bar{t})\rho_{\rm p}(\theta, \bar{x}, \bar{t})) = 0.$

[Castro-Alvaredo, Doyon, TY, 2016; Bertini, Collura, De Nardis, Fagotti, 2016]

We also numerically verified the agreement with GHD

- contributions in the classical integrable system with the same phase shift
- soliton gas

$$L = 300, \quad N \approx 3000$$

$$\rho_{\rm p}(\theta, x, 0) = \frac{25}{2\pi} e^{-x^2/2} \left(e^{-25(\theta - 1)^2/2} + e^{-25(\theta + 1)^2/2} \right)$$

$$\psi(x,\theta) = \frac{x}{2\sqrt{x^2 + \alpha^2}}\phi(\theta), \quad \phi(\theta) = 2 \arctan \frac{\theta}{c}$$

• Hydrodynamics of the semiclassical Bethe systems is expected reproduce all the higher derivative

The trajectories of the semiclassical Bethe systems can capture the locations of solitons in the

- A novel class of classical integrable systems can be obtained from generalized TT-deformations
- The explicit Hamiltonian and trajectories can be obtained
- The trajectories with the negative phase shift admits an interpretation in terms of particleantiparticle pair creations
- Thermo/hydrodynamics are described by TBA and GHD as in standard integrable systems Outlook
- External potential • Rigorous proof of the emergence of GHD

Conclusion