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Non-Invertible Duality Symmetries

via Relative QFTs and “Polarization Pairs”

Based on 2306.11783
with Craig Lawrie and Xingyang Yu

Hao Y. Zhang / 张昊

University of Pennsylvania → Kavli IPMU, University of Tokyo

Sep. 27, 2023 @ BIMSA / Joint HEP-TH Seminars



2/32.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Table of Contents

Generalized Global Symmetries

Relative and Absolute QFT

Non-Invertible Symmetries via Polarization Pairs
General Story
2D
4D
6D: new constructions

Conclusion and Future Directions



3/32.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Global Symmetries

Symmetries are the most fundamental properties of a QFT.

▶ E.g., every conservation law has an underlying symmetry
(Noether)

▶ E.g., discrete symmetries → selection rules, anomaly
constraints

Robust across different descriptions, does not require a Lagrangian

Usually: a group acting on operators/excitations of a QFT.



4/32.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Generalized Global Symmetries

[GKSW ’14] redefines global symmetries by topological operators.

When a topological operator of a G symmetry crosses the charged
operator, it does the g ∈ G transformation.
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Higher Form Symmetries
Higher (n > 0) form symmetry via codim-(n + 1) top ops. Abelian.
charging n-dimensional operators/excitations.

▶ E.g.: 4D U(1) theory has U(1)(1)e × U(1)(1)

▶ 4D SU(N) theory (Z(e)
N ) vs SU(N)/ZN theory (Z(m)

N )

Remark: both SU(N) and PSU(N) have identical gauge dynamics
(of su(n)), but differ in extended operators!

Later, we will explain that SU(N) and PSU(N) absolute theories
both come from the su(N) relative theory
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Gauging a (Discrete) Higher-Form Symmetry
Gauging a continuous symmetry: coupling the gauge field to a
conserved current.

Gauging a discrete n ≥ 0-form symmetry G(n): summing over all
G-values of the (n + 1)-form bkf field B.

Z[B] Gauge G(n)
−−−−−−−→

∑
B∈Hn+1(M,G)

ei
∫

M b∧BZ[B] (1)

Applies to both ordinary and higher-form symmetries. [Vafa

’89][GKSW ’14])

In order to gauge a symmetry, it has to be non-anomalous in the
first place.

Physically: sum over all insertions of G(n) symmetry ops. in M.

Higher gauging: sum over G(n) symmetry ops. on a submanifold
N ⊂ M. [Roumpedakis, Seifnashri, Shao ’22]



7/32.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-Invertible Symmetries

Relax the condition that symmetries obey group laws, s.t. a
symmetry operator might not have an inverse.

Then, the general math structure is a fusion category C.

▶ e.g., Tambara-Yamagami category: {1, η,N} s.t.

η2 = 1, ηN = Nη = N , N 2 = 1 + η (2)

(so N has no inverse).

Physical realization? “duality defects”!
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Lattice: Kramer-Wannier Duality

Discrete story: 2D Ising model.

E = −1

2
J
∑
n.n.

σiσk − mH
∑

i
σi (3)

Krammer-Wannier duality: Ordered states ↔ disordered states

Exact match of Zlow−T with Zhi−T. [Kramers, Wannier ’41]
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Lattice: Non-invertible duality defect in 2D Ising Models

K = J
2kBT , K∗ = J

2kBT∗ , s.t. sinh(2K) sinh(2K∗) = 1

Criticality @ kBTc =
2J

ln(1+
√
2)

, where T = T∨ = Tc.

Two ingredients to build non-invertible topological line:
▶ IKW: duality interface within Tc system! (Ordered σ to

disorder µ state.)
▶ Gauge Z2 spin flip symmetry (ΣZ2)

▶ Doing once gives a dual Z∨
2 symmetry

▶ Doing twice projects onto the “parity-even” sector.

Combined interface N = ΣZ2 ◦ IKW is non-invertible!

N ×N = 1 + ηZ2,spin flip (4)
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Continuum: 2D Ising CFT and Non-Invertible Symmetries
Continuum / IR limit of the lattice model: a Majorana fermion

L =
1

2

(
ψ
∂

∂zψ + ψ
∂

∂zψ
)
+ mψψ (5)

Try: combine “gauging Z2” line with “KW duality” Line.

Ising(T) gauge Z2−−−−−→ Ising∨(T) KW duality−−−−−−−→ Ising(T∨) (6)

Needs critical temperature T = T∨ = Tc!: Then m = 0, Ising CFT
becomes KW self-dual. EOM gives ψ = ψ(z) and ψ = ψ(z).

N = ΣZ2 ◦ IKW: non-inv. duality symmetry w/ action on states:
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Non-Invertible Symmetries in 4D: Review
In 2021, non-invertible symmetries have been identified in 4D. [Choi,

Cordova, Hsin, Lam, Shao ’21], [Kaidi, Ohmori, Zheng ’21]

Today: “half-space gauging” approach. [Choi, Cordova, Hsin, Lam, Shao ’21]

N = ΣS: non-invertible duality defect, S ∈ SL(2,Z). Illustration /
convention following [Kaidi, Zafrir, Zheng ’22].

Order operators (W) maps to disorder operators (H).
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Extra data: SPT phases
Symmetry Protected Topological (SPT) phases shows up when
looking for more ways to identify non-invertible symmetries.

4D: Z[B] → Z[B] exp(2πi
2N

∫
M4

B ∪ B), B: bkg field of 1-form
symmetry.

Affects the outcome of gauging 1-form symmetry!

(Figure form [Kaidi, Zafrir, Zheng ’22])
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[Lawrie, Yu, Zhang ’23]:

Reinterpret and generalize all this via relative and absolute QFT!

Give a concrete prescription, “polarization pairs”, which

▶ Refines our understanding of “absolute QFTs” in some cases;

▶ Incorporates a large family of half-space gauging constructions
of non-invertible symmetries.
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Weird type of Quantum Theories in 6D as Relative QFTs

Mysterious 6D theories [Witten ’95] [Seiberg ’96] that has a partition vector,
labeled only by a Lie algebra.

This has to do with Heisenberg non-commutativity of flux
operators, labeled by the defect group D (more on the next slide)

Are they QFT?

But maybe one should manage to think of them as QFTs.
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Defect Groups

Relative and absolute QFTs all comes from a via defect group.

We focus on intermediate dimensional defects (Dirac S.D.)

▶ Λ-charged dynamical particles in 4D or dynamic strings in 6D
▶ Λ∗-charged heavy defects: W/H in 4D, surface defects in 6D

Defect group D via ’t Hooft screening argument [’t Hooft ’78]:

D = Λ∗/Λ. (7)

D ̸= 0 => Heisenberg alg. non-commutative => relative QFT
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Relative and Absolute QFTs

[Freed, Teleman ’12]: primarily about 6D (or 4k+2 D), where a QFT admit
a partition vector space (rather than a partition function).

A (2k)D relative QFT lives on the boundary of, (and thus is
“relative” to), a (2k + 1)D Topological QFT (TQFT).

The defect group D controls braiding relations of k-dim’l ops. in
(2k + 1)D
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Absolute QFTs

Only some D gives one (or more) absolute QFTs.

Need to specify a Lagrangian subgroup L ⊂ D, such that

▶ |L|2 = |D|, and

▶ Dirac pairing on D vanish on identically L.

Specifying an L involves specifying a direction in the partition
vector space.

L ⊂ D is called a Polarization, resulting in a (k − 1)-form global
symmetry valued in D/L.

Physically, L means Topological B.C. of operators in the 7D TQFT.



18/32.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Global Structures of 4D SYM, Revisited

Relative and absolute QFTs does not appear often in 4d?

All 4D relative QFTs can be made absolute since
D = Dele. ⊕ Dmag., and at least L ∼= Dmag. is always possible.

E.g., SU(2) and SO(3) SYM are both absolute QFTs coming from
the SAME su(2) relative theory.

Only in (4k + 2)D are there some relative QFT which cannot be
made absolute.
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Polarization Pairs
When D = L ⊕ L splits, D/L is non-anomalous / gaugeable.

Polarization pair Ordered pair (L, L) of Lagrangian subgroups
L, L ⊂ D s.t. D = L ⊕ L.

So that, the global symmetry D/L, whose uplift to D is specified
by L. (This key statement is unfortunately formal.)

L: “polarization” as usually known, L: a choice of SPT phase.

▶ Gauging D/L: exchanging (L, L) → (L, L)
▶ Stacking SPT phase: changing L → L′

▶ Duality(e.g. SL(2,Z): action on (L, L) via action on D.

Simple algebraic approach to duality defects via Polarization Pair!
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Duality Defects in 2D Ising Model, Revisited

E.g., D = Z2 × Z2, 6 choices of (L, L)

(1, 0): Z2 of the original Ising; (0, 1): Z2 of the dual Ising.
E.g. in the original Ising, the dual Z2 is gauged.

T c= 1
2

(0,1)(1,0): Ising, T c= 1
2

(1,0)(0,1): Ising∨.

T c= 1
2

(0,1)(1,0)

gauge Z2−−−−−→ T c= 1
2

(1,0)(0,1)

KW duality−−−−−−−→ T c= 1
2

(0,1)(1,0) (8)

the two interfaces combines into a non-invertible symmetry in 2D.

Q: T c= 1
2

(0,1),(1,1): T c= 1
2

(0,1)(1,0) + SPT phase?

A: Fermionic SPT phase [Kapustin, Thorngren, Turzillo, Wang ’14]
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4D N = 4 su(2) SYM Case

[Kaidi, Zafrir, Zheng ’22]

[Lawrie, Yu, Zhang ’23]

Non-invertible sym: closed loops (with σ) among different absolute
QFTs corresponding to the same relative QFT
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Illustration: su(3)

We exactly reproduces the su(3) case in [Kaidi, Zafrir, Zheng ’22]

together with all other cases of N = 4 SYM (next slide ...)
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Illustration: su(3), Cont.

[Lawrie, Yu, Zhang ’23]

Then all the arrows can be visually checked via our “three rules”.
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General Duality Actions on D

Dualities we have up till now:

▶ Kramers-Wannier duality in 2D Ising CFT
▶ SL(2,Z) duality in 4D N = 4 SYM

▶ Sp(N,Z) in 4D N = 2 class S. [Bashmakov, Del Zotto, Hasan, Kaidi ’22]

▶ 2D T6D[M4] via mapping class group of M4 [Chen, Cui, Haghighat, Wang

’23], [Bashmakov, Del Zotto, Hasan, ’23]

Common feature: some automorphism of the QFT acting on D.

Look for other such dualities acting on D, potentially in higher dim
and not via 6D compactification!
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6D (2,0) SCFTs

6D (2,0): strongly-coupled, non-Lagrangian, ADE classified.

▶ Realized as worldvolume theory of M5 branes,
▶ or type IIB on R1,5 × C2/ΓADE.

On the “tensor branch”, there are rk(gADE) tensor multiplets,
couple to effective strings.

Their Dirac pairing matrix (add def!) ∼= Cartan matrix of gADE

D = Λ∗/Λ = ΓADE/[ΓADE,ΓADE] = Ab[ΓADE]! (9)

(We used McKay correspondence: gADE ↔ ΓADE ⊂ SU(2).)
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Automorphisms of 6D SCFTs Acting on D

“Green-Schwarz Automorphisms” [Apruzzi, Heckman, Rudelius ’17]!
For 6D (2, 0), outer auto. of ADE Dynkin diagrams.

Acts (on Λ∗, and thus) on the tensor multiplets. Thus on the
string charge lattice Λ and D = Λ∗/Λ. Exchange different absolute
theories.

So we propose to rename them as “Green-Schwarz Dualities”

(analog of S-duality S : SU(2)[τYM] → SO(3)+[− 1
τYM

],
which also exchange different absolute theories of 4D su(2))!
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Non-Invertible Symmetries in 6D (2,0): D4 Example

Concrete example: D4(2, 0) theory, D = Z2 × Z2.

GGS(D4) = S3: automorphism of the D4 Dynkin diagram.

This S3 automorphism permutes the

(1, 0), (0, 1), (1, 1) (10)

elements of Z(Spin(8)) = Z2 × Z2 in all possible ways.

Thus permuting different Absolute (2,0) theories:
“SO(8), Sc(8), Ss(8)” (2-form charge lattices, not gauge dynamics)
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Non-Invertible Symmetries in 6D (2,0): D4 Example

T D4

(1,1),(0,1)

σ (gauging)−−−−−−−→ T D4

(0,1),(1,1)

a (GS)−−−−→ T D4

(1,1),(0,1) (11)

Thanks to many hints in [Gukov, Hsin, Pei ’20]

Let M5 ⊂ R1,5 be a codim-1 interface

N (M5) = Σ(M5) ◦ a(LSO,LSc)(M5) (12)

Fusion rules:

N (M5)×N (M5) =
∑

S3∈H3(M5,Z2)

U(S3) (13)

N (M5)× U(S3) = N (M5) (14)

Non-invertible duality defects in 6D!
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Non-Invertible Symmetries in 6D (2,0): D4 Example, Cont.
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Comments: String Perspective
View 6D (2,0) as IIB on C2/Γ.

Then the Green-Schwarz duality can be Geometrized as
automorphisms of C2/Γ .

Concretely, one can consider a “S3/Γ fiber degeneration” at
(r = ∞, x⊥ = 0).

Top-down perspective by starting from 10D, instead of 6D.
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Conclusion and Future Directions

We introduced “polarization pairs” refining polarizations in even D.

▶ which reproduces non-invertible symmetries in 2D and 4D
▶ and leads to novel non-invertible symmetries in 6D.

Upcoming work [Lawrie, Yu, Zhang, 2311.XXXXX]:
comparing non-invertible duality symmetries across dimensions

Anomalies of non-invertible duality symmetries via relative and
absolute QFTs?
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