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Introduction: YBE and Bethe/Gauge

Consider a chain of L spin-1/2 with nearest-neighbor interactions and
periodic boundary condition:

H = −1
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This is a Heisenberg spin chain model. Depending on coupling Jx, Jy, Jz,
it is called

XYZ model, if Jx, Jy, Jz are different from each other,

XXZ model, if Jx = Jy ̸= Jz,

XXX model, if Jx = Jy = Jz.



Introduction: R-Matrix and YBE

For the XXX model, [H. Bethe (1931)] completely solved the eigenvalues
and eigenvectors, using a method which is nowadays called Coordinate
Bethe Ansatz. Bethe’s work became the starting point of quantum
integrability.

Later, [L. D. Faddeev, E. K. Sklyanin, and L. A. Takhtajan (1979)] developed the
Algebraic Bethe Ansatz (ABA) (also called Quantum Inverse Scattering
Method (QISM)).

The ABA, among other things, gives a transfer matrix T (u) which
satisfies

[T (u), T (v)] = 0, ∀(u, v) ∈ C2,

such that T (u) = Id +
∑

i≥1 Tiu
−i with T1 =Hamiltonian, and Bethe’s

eigenvector is a common eigenvector for T (u) for all u ∈ C.



Introduction: R-Matrix and YBE

In the framework of ABA, the key to the integrability is a collection of
R-matrices

RUV (u, v) : U ⊗ V −! U ⊗ V,

meromorphically depends on spectral parameters (u, v). Pictorially
presented as:

U(u) V (v)

V (v) U(u)

R

which satisfies the Yang-Baxter Equation(YBE)



Introduction: R-Matrix and YBE

RUV (u, v)RUW (u,w)RVW (v, w) = RVW (v, w)RUW (u,w)RUV (u, v).

Pictorially presented as:

U(u) V (v) W (w)

W (w) V (v) U(u)

RUW

RUV

RVW

=

U(u) V (v) W (w)

W (w) V (v) U(u)

RUW

RUV

RVW

For simplicity, we assume that RUV (u, v) = RUV (u− v).



Introduction: R-Matrix and YBE

Given the spin chain Hilbert space H =
⊗L

i=1 Vi, we add an auxiliary site
U to it with spectral parameter u. Then we define the transfer matrix:

T (u) := trU [RUV1
(u− v1)RUV2

(u− v2) · · ·RUVL
(u− vL)] ∈ End(H),

which can be depicted in a diagram as:

T (u) =

RUV1 RUV2
RUVL· · ·

· · ·
· · ·

· · ·V1(v1) V2(v2) VL(vL)

U(u)
.



Introduction: R-Matrix and YBE

Then YBE =⇒ T (u) commutes with each other, i.e.

[T (u), T (v)] = 0, ∀(u, v) ∈ C2,

More generally, we can define

T i
j (u) := trU [E

i
jRUV1(u− v1)RUV2(u− v2) · · ·RUVL

(u− vL)] ∈ End(H),

where Ei
j is the elementary matrix in End(U). In general, T i

j (u) do not
commute with each other, they satisfy the RTT relations:

R12(u− v)T1(u)T2(v) = T2(v)T1(u)R12(u− v)

where Ta(u) = Ej
i ⊗ T i

j (u) ∈ End(Ua ⊗H), a = 1, 2.



Introduction: R-Matrix and YBE

Definition

Fix U together with R-matrix R(u), we define the spectrum generating
algebra A to be the algebra generated by the the modes T i

j;n in

T i
j (u) = Id +

∑∞
n=1 T i

j;nu
−n subject to RTT relations.

Example

In the XXX spin chain model, U = C2 and

R(u) = Id +
ℏ
u
P,

where Π(va ⊗ vb) = vb ⊗ va. In this case

A ∼= Yℏ(gl(2)),

the Yangian of gl(2).



Introduction: R-Matrix and YBE

In general, R(u) depends on the spectral parameter u in a periodic way

R(u+ Λ) = R(u)

for certain discrete subgroup Λ ⊂ C, we call C/Λ the spectral curve.

For Heisenberg spin chains, the spectral curves and spectral generating
algebras are the following.

Spin chain Spectral curve Spectrum generating algebra A
XXX C Yangian, Yℏ(gl(2))

XXZ C× = C/Z Quantum affine, Uℏ(ĝl(2))
XYZ Eτ = C/(Z⊕ τZ) Elliptic quantum group, Eτ,ℏ(gl(2))



Introduction: R-Matrix and YBE

Question: How to find R-matrices?

Algebraically, one way is to replace gl(2) by more general Lie (super)
algebras and play with quantum groups.

In this talk, we focus on a different (but related) approach, which is
hinted from the gauge theories.

In the work of [N. Nekrasov, S. Shatashvili (2009)], a correspondence between
integrable spin chain models and SUSY gauge theories with 4
supercharges was proposed.



Introduction: Bethe/Gauge

For example

XXX model with L sites and N magnons (excitation) !

2d N = (2, 2) U(N) with L fundamental hypermultiplets

A particular essence of the Bethe/Gauge correspondence is

Hilbert space H  ! Cohomology of Higgs branch H(MH)

e.g. H(N,L) := N magnon sector in XXX model with L sites,

H(N,L) ∼= H(T ∗Gr(N,L)).

This suggests a geometric approach to quantum integrability.



Introduction: Bethe/Gauge

It was not clear in Nekrasov-Shatashvili’s original paper that how to
see the R-matrix or the full spectrum generating algebra from the
Higgs branch geometry.

There were works on the math side concerning quantum algebras
acting on (generalized) cohomology of certain spaces:

[Nakajima (1999)]Uq(LgQ) ↷ Keq(MQ),

[Varagnolo (2000)]Yℏ(gQ) ↷ Heq(MQ).

Q: a quiver.
gQ: Kac-Moody algebra associated to Q.
MQ: Nakajima quiver varieties (recalled later in this talk).



Introduction: R-Matrix from Stable Envelope

The rational R-matrix (i.e. R(u) is a rational function of u) from the
Higgs branch geometry was later found by [D. Maulik and A. Okounkov

(2013)], using a construction called the stable envelope.

Assume that X is a complex symplectic variety with a torus T
action, and a subtorus A ⊂ T fixing the symplectic form.

A stable envelope is a map

Stab : HT (X
A)! HT (X),

subject to certain conditions (reviewed later in this talk).

Stab depends on a choice of chamber

C ⊂ Lie(A)R

and the R-matrix of a pair of chambers C2,C1 is defined as

RC2,C1
:= Stab−1

C2
◦ StabC1

: HT (X
A)! HT (X

A).



Introduction: R-Matrix from Stable Envelope

It follows from definition that

RCn,Cn−1
RCn−1,Cn−2

· · ·RC2,C1
= RCn,C1

.

If there are three chambers C3,C2,C1, then we can write R−C1,C1
in

two ways:

R−C1,C3RC3,C2RC2,C1 = R−C1,C1 = R−C1,−C2R−C2,−C3R−C3,C1

In the above case, if assume moreover that each pair Ci,Cj is
separated by a wall Cij , then Maulik-Okounkov’s theory of stable
envelope implies that

R−Ci,−Cj
= RCj ,Ci

, denoted by Rji

If we set R−C1,C3
= R31, RC3,C2

= R32, RC2,C1
= R21, then we

have YBE:

R31R32R21 = R21R32R31



Introduction: R-Matrix from Stable Envelope

The main examples are Nakajima quiver varieties MQ, in this case
the spectrum generating algebra (Maulik-Okounkov Yangian),
denoted by YMO(Q), is expected to be isomorphic to a
Cartan-doubled version of Yℏ(gQ) (proven in finite ADE case by [M.

McBreen (2013)]).

The particular example Q = A1 gives the R-matrix of XXX spin
chain, and YMO(A1) ∼= Yℏ(gl(2)).

Cohomology can be replaced by K-theory or elliptic cohomology, the
corresponding stable envelopes for hypertoric varieties and Nakajima
quiver varieties were constructed by [M. Aganagic and A. Okounkov

(2016)].

K-theory −! trigonometric R-matrix,

elliptic cohomology −! elliptic dynamical R-matrix.

Physical realization of elliptic stable envelopes were recently worked
out by [M. Dedushenko and N. Nekrasov (2021)], and independently by [M.

Bullimore and D. Zhang (2021)].



Introduction: R-Matrix from Stable Envelope

In the above formulation of stable envelope, X is assumed to be complex
symplectic. Typically it is a Higgs branch of 3d N = 4 gauge theory.

For gauge theory with 4 supercharges, e.g. 3d N = 2, the Higgs branch
is not necessarily symplectic.

Question: Can we extend the construction of stable envelopes to the
Higgs branch of some 3d N = 2 theory which do not have N = 4 SUSY?



Introduction: R-Matrix from Stable Envelope

[R. Rimányi and L. Rozanky (2021)] studied Tot(V ! Gr(N,L)) for
certain vector bundles V , e.g. O(−1)⊕2 on P1. They show that
cohomological stable envelopes exist for these varieties, and the
R-matrix is

Id +
ℏ
u
Π ∈ End(C1|1 ⊗ C1|1)

Π(va ⊗ vb) = (−1)|va|·|vb|vb ⊗ va. This is the rational R-matrix for
gl(1|1).
Tot(V ! Gr(N,L)) is the Higgs branch of a 3d N = 2 U(N) theory
with L fundamental hypermultiplets.

In [S. F. Moosavian, N. Ishtiaque, and Y. Z. (2023)], we show that elliptic
stable envelopes exist for the Higgs branches of 3d N = 2 quiver
gauge theories. Tot(V ! Gr(N,L)) is the special case when
Q = A1.



Higgs Branch of 3d N = 2 Gauge Theories: Generalities

The essential data extracted from a 3d N = 2 gauge theory is

1 a complex algebraic group G,

2 a complex G-representation M,

3 a G-invariant algebraic function W : M! C,
4 and a character ζ : G! C×.

The Higgs branch of the 3d N = 2 gauge theory associated to
(G,M,W, ζ) is then the GIT quotient

MH(G,M,W, ζ) := Crit(W)ζ−ss/G.

Assumption. We assume that the semistable locus Crit(W)ζ−ss is
smooth and the action of G on it is free.

Under the above assumption, MH(G,M,W, ζ) is smooth.



Higgs Branch: Generalities

A typical example is as follows.

Take G = Gev ×Godd, R ∈ Rep(G), and then take
M := R⊕R∨ ⊕ gev.

We choose a complex moment map µ : R⊕R∨ ! g for the G
action, and define µev : R⊕R∨ ! g∨ev to be the composition
prev ◦ µ, where prev : g∨ ! g∨ev is the projection to the even part.

We take W = ⟨X,µev⟩ where X is the coordinate on gev and ⟨·, ·⟩ is
the pairing between gev and g∨ev.

Then we choose a generic character ζ : G! C×.

In this case, the Higgs branch is then isomorphic to

MH(G,M,W, ζ) ∼= µ−1
ev (0)ζ−ss/G.

Note that µ−1(0)ζ−ss/G ↪! µ−1
ev (0)ζ−ss/G.



Higgs Branch: Abelian Gauge Theories

When G is abelian, choose R such that we get exact sequence of abelian
groups:

1 −! G −! (C×)rkR −! Q −! 1.

Then we have a commutative diagram

µ−1(0)ζ−ss/G µ−1
ev (0)ζ−ss/G (R⊕R∨)ζ−ss/G

{0} g⊥ev g∨

µ̄

The squares are Cartesian.

µ̄ is flat.

µ−1(0)ζ−ss/G is a hypertoric variety, and (R⊕R∨)ζ−ss/G is known
as the Lawrence toric variety.



Higgs Branch: Abelian Gauge Theories

If the charge matrix A : ZrkR ! Char(G) is surjective and
unimodular, i.e. every rkG× rkG submatrix has determinant
∈ {0,±1}, then µ̄ is smooth.

Assumption. When we talk about Higgs branch of abelian gauge
theories, we always assume the charge matrix is surjective and
unimodular.

Under the above assumption, we have isomorphisms

H(µ−1(0)ζ−ss/G) ∼= H(µ−1
ev (0)ζ−ss/G) ∼= H((R⊕R∨)ζ−ss/G)

In fact, every fiber µ̄−1(x) is diffeomorphic to µ̄−1(0), which is
µ−1(0)ζ−ss/G [T. Hausel and B. Sturmfels (2002)].



Higgs Branch: Quiver Gauge Theories

A large class of GIT quotients comes from 3d N = 2 quiver gauge
theories.

Let Q = (Q0, Q1) be a quiver, Q0 =set of nodes, Q1 =set of arrows.

h, t : Q1 ! Q0 maps an edge to its head and tail, respectively.

We separate Q0 into two parts Q0 = Qev
0 ⊔Qodd

0 , called even and
odd respectively. Notations:

evenodd

Let w,v ∈ NQ0 be Q0-tuples of natural numbers, called framing
dimension vector and gauge dimension vector respectively.



Higgs Branch: Quiver Gauge Theories

The gauge group G = Gev ×Godd is such that

Gev =
∏

i∈Qev
0

GL(vi), Godd =
∏

i∈Qodd
0

GL(vi).

The representation space R is the following

R =
⊕
i∈Q0

Hom(Vi,Wi)⊕
⊕
a∈Q1

Hom(Vt(a), Vh(a)),

The flavour symmetry group F = GW × C×
ℏ , such that

GW =
∏
i∈Q0

GL(wi),

GL(wi) acts on Wi by fundamental representation, and C×
ℏ acts on

R⊕R∨ by scaling R∨ with weight ℏ−1 and fixing R.



Higgs Branch: Quiver Gauge Theories

Notations of elements in R:

αi ∈ Hom(Vi,Wi), xa ∈ Hom(Vt(a), Vh(a))

For the dual representation R∨:

α̃i ∈ Hom(Wi, Vi), x̃a ∈ Hom(Vh(a), Vt(a))

The holomorphic symplectic form on R⊕R∨ is

ω =
∑
a∈Q1

dxa ∧ dx̃a +
∑
i∈Q0

dαi ∧ dα̃i,

There is a moment map µ : R⊕R∨ ! g∨ which is given by

µ(xa, x̃a, αi, α̃i) =
∑
a∈Q1

[xa, x̃a] +
∑
i∈Q0

α̃iαi.



Higgs Branch: Quiver Gauge Theories

We choose a character ζ : G! C×, ζ can be written as
ζ(g) =

∏
i∈Q0

det(gi)
ζi .

Definition

The quiver variety is defined to be the GIT quotient

Mζ(v,w) = µ−1
ev (0)ζ−ss/G.

For a fixed w, we write

Mζ(w) :=
⊔

v∈NQ0

Mζ(v,w).

For a generic ζ, we have µ−1
ev (0)ζ−ss = µ−1

ev (0)ζ−s, and

MH(G,M,W, ζ) ∼= Mζ(v,w).



Higgs Branch: Quiver Gauge Theories

Lemma

Assume that ζ is generic then, Mζ(v,w) is a smooth variety and the
quotient map µ−1

ev (0)ζ−ss !Mζ(v,w) is a principal G-bundle.

Two generic ζ:

ζ+ := (1, · · · , 1), ζ− := (−1, · · · ,−1),

then according to the King’s criterion for the stability [A. D. King (1994)], a
quiver representation (V, xa, x̃a, αi, α̃i) ∈ R⊕R∨ is ζ-semistable if and
only if

(ζ+) If Si ⊂ Vi are subspaces such that S is preserved under the maps
(xa, x̃a), and that Si ⊃ Im(α̃i) for all i ∈ Q0, then S = V .

(ζ−) If Ti ⊂ Vi are subspaces such that T is preserved under the maps
(xa, x̃a), and that Ti ⊂ Ker(αi) for all i ∈ Q0, then T = 0.



Higgs Branch: Quiver Gauge Theories

Example 1. If there is no odd node, i.e. Qodd
0 is empty, then µev = µ

and in this case Mζ(v,w) is a Nakajima quiver variety.

Example 2. Let Q be an An quiver. Below is the doubled quiver Q:

v1 v2
· · ·

vn−1 vn

r

Mζ+(v,w) is nonempty if and only if r ≥ v1 ≥ · · · ≥ vn.

If nonempty then Mζ+(v,w) ∼= GLr×Pm, where P ⊂ GLr

stabilizes a fixed flag

F• = F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ Fn+1 = Cr, dimFn+1/Fi = vi

m ⊂ Lie(P ) such that m(Fi+1) ⊂ Fi for i < n.

Mζ+(v,w) contains T ∗Flv as a closed subvariety.



Higgs Branch: Quiver Gauge Theories

Example 3. Let Q be an An quiver. Below is the doubled quiver Q.

v1 v2
· · ·

vn−1 vn

r

Mζ+(v,w) is nonempty if and only if vn ≤ r and
vi+1 ≤ vi ≤ vi+1 + r.

If nonempty, Mζ+(v,w) is the total space of a vector bundle on

Gr
ωdn

GLr
×̃Gr

ωdn−1

GLr
×̃ · · · ×̃Gr

ωd1

GLr
,

where di = vi − vi+1 for 1 ≤ i ≤ n− 1 and dn = vn, and ωi is the
i-th fundamental coweight of GLr.



Higgs Branch: Quiver Gauge Theories

Remark. In the last example, if we replace the odd node with a even
one, then Mζ+(v,w) is nonempty if and only if r ≥ v1 ≥ v2 ≥ · · · ≥ vn.
In particular, if n ≥ 2 then there exists v such that µ−1(0)ζ+−ss is empty
but µ−1

ev (0)ζ+−ss is nonempty, for instance v = (nr, (n− 1)r, · · · , r).

Lemma

Let A ⊂ TW be a subtorus, such that W decomposes as eigenspaces

W =
⊕

λ∈Char(A)

Wλ,

and we write w =
∑

λ w
λ for the dimension vector, then

Mζ(w)A ∼=
∏

λ∈Cochar(A)

M(wλ).



Review of Equivariant Elliptic Cohomology

Let q be a nonzero complex number such that |q| < 1, then take the
elliptic curve E = C×/qZ.

For a reductive algebraic group G, the zeroth degree G-equivariant
elliptic cohomology is a functor

{G-varieties}! {schemes finite over EG}
X 7! EllG(X),

EG is the moduli scheme of semistable principal G-bundles of trivial
topological type on the dual elliptic curve E∨.

We will not encounter nonzero degree elliptic cohomology in this talk.



Equivariant Elliptic Cohomology Base

For a torus T ,

ET = E⊗Z Cochar(T ).

If T is maximal torus of G then [R. Friedman, J. W. Morgan and E. Witten

(1997)]

EG
∼= ET /W.

When G is simple and simply-connected, [Looijenga (1976)] showed
that EG is isomorphic to the weighted projective space
P(1, g1, · · · , gr), where gi are coefficients in the decomposition

θ∨ =
∑
i

giα
∨
i ,

of the dual of highest root into simple coroots.



Chern Class

If H is another reductive group, and P ! X is a G-equivariant principal
H-bundle, then P induces the Chern class map:

c : EllG(X)! EllH(pt) = EH .

Definition

For a vector bundle V of rank r, the Thom line bundle associated to V is
defined as

Θ(V ) := c∗O(DΘ), DΘ = {0}+ Sr−1E ⊂ SrE = EGLr .

Θ(V ) inherits a canonical section ϑ(V ) from the effective divisor DΘ.



Theta Bundles

Θ(V ) = Θ(V1)⊗Θ(V1) for a short exact sequence

0! V1 ! V ! V2 ! 0,

so Θ : V ! Θ(V ) descends to a group homomorphism
KG(X)! Pic(EllG(X)).

The canonical section simply multiplies: ϑ(V ) = ϑ(V1)ϑ(V2).

We also have

Θ(V ∨) ∼= Θ(V ),

such that the canonical section picks up a sign
ϑ(V ∨) = (−1)rk V ϑ(V ).

ϑ(x) = (x
1
2 − x− 1

2 )
∏

n>0(1− qnx)(1− qnx−1).



Gysin Map

For a proper G-equivariant map f : X ! Y , assume that f factors as a
regular embedding i : X ↪! Z and a smooth projection p : Z ! Y , and
that both i and p are G-equivariant, then there exists a distinguished
element (Gysin map):

f⊛ ∈ HomOEllG(Y )
(f∗Θ(Tf ),OEllG(Y )),

where f∗ : EllG(X)! EllG(Y ) is the induced map between elliptic
cohomologies, and Tf is the relative tangent bundle.



Gysin Map

If Tf equals to f∗V for some V ∈ KG(Y ), then we denote by [X] the
section Γ(EllG(Y ),Θ(−V )) induced by

OEllG(Y ) −! f∗OEllG(X)
f⊛
−! Θ(−V ).

For example, let N ! X be a G-equivariant vector bundle and let
i : X ↪! N be the zero section, then f∗ : EllG(X)! EllG(N) is an
isomorphism, and i⊛ ∈ Γ(EllG(X),Θ(N)) is the section ϑ(N).



Supports

For a section α of a coherent sheaf F on EllG(X), and a G-invariant
open subset j : U ↪! X, we say that α is supported on X \ U if
j∗(α) = 0 in EllG(U).

We define supp(α) to be the intersection of G-invariant closed subset
that α is supported on.

The Gysin map can be defined for compactly supported sections. Namely
there exists a distinguished element

f⊛ ∈ HomOEllG(Y )
(f∗Θ(Tf )c,OEllG(Y )),

where Θ(Tf )c ⊂ Θ(Tf ) is the subsheaf of sections α such that f |supp(α)
is proper.



Correspondences

Consider the diagram

X2 ×X1

X2 X1

pt

p2 p1

q2 q1

.

Assume that X1 is smooth, then for a pair of line bundles
Li ∈ Pic(EllG(Xi)), and for any section

α ∈ Γ(EllG(X2 ×X1),L2 ⊠ (L∨
1 ⊗Θ(TX1))),

such that supp(α) is proper over X2, α induces a map

q1∗L1 q2∗L2,
p2⊛(αp∗

1(·))



Degree of Line Bundle

For a line bundle L on an abelian variety A, we define

degL := [L] ∈ Néron-Severi group = Pic(A)/Pic0(A).

It is known that NS(A) ∼= {f ∈ Hom(A,A∨) : f = f∨}, and the
isomorphism is given by [D. Mumford (1974)]

L 7! (ϕL : x 7! x∗L⊗ L−1).

Let T be a torus, then Hom(ET ,E
∨
T ) is isomorphic to

Char(T )⊗2 ⊗Z End(E).
We choose q generic so that End(E) = Z, so NS(ET ) ∼= S2Char(T ).

Explicitly, any µ ∈ Char(T ) gives a map ϕµ : ET ! E, then
deg ϕ∗

µO(DΘ) = µ⊗ µ ∈ S2Char(T ). For V =
∑

µ Vµ · µ ∈ KT (pt),

degΘ(V ) =
∑
µ

(dimVµ)µ⊗ µ.



Elliptic Stable Envelope: Partial Polarization

In [M. Aganagic, A. Okounkov (2016)], an ingredient for defining elliptic stable
envelope is a polarization:

TX = T
1/2
X + ℏ−1(T

1/2
X )∨ ∈ KT (X).

This structure is absent for Higgs branch of a general 3d N = 2 gauge
theory. E.g. ∃ polarization =⇒ dimTX is even, which is not true for
Tot(O(−1)⊕2 ! P1).

We introduce a generalization, called partial polarization, which will
cover the 3d N = 2 abelian or quiver gauge theories.

Setting. We denote by X a smooth quasi-projective complex variety with
a torus T action, we fix a nontrivial group homomorphism T! C×

ℏ and a
subtorus A ⊂ ker(T! C×

ℏ ).



Partial Polarization

Definition ([S. F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

A partial polarization on X is the following data:

a decomposition of the tangent bundle

TX = Pol+X + ℏ−1(Pol+X )
∨ + Pol−X + ℏ(Pol−X )

∨ + E ∈ KT(X),

such that

(1) E = E∨ in KT(X),

(2) Θ(E) admits a square root.

We define the opposite partial polarization to be

PolopX = Polop,+X + Polop,−X = ℏ−1(Pol+X )
∨ + ℏ(Pol−X )

∨.



Partial Polarization

In practice, the existence of
√
Θ(E) is subtle. We give one criterion as

follows:

Lemma ([S. F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

Let G be a reductive group whose derived subgroup [G,G] is simply
connected and every simple constituent is of type A,C,D,E6, or G2. Let
P be a T-equivariant principal G-bundle on X, then Θ(adj(P)) has a
square root in Pic(EllT(X)).

Remark. When G = GLn, the existence of
√
Θ(adj(P)) follows from

the “trick of diagonal” in the enumerative geometry.



Partial Polarization

Lemma ([N. Nekrasov, A. Okounkov (2014)])

Let L be a line bundle on Y × Y such that (12)∗L ∼= L, where (12)
permutes two copies of Y , then ∆∗L admits a square root.

Back to the case when G = GLn, adj(P) ∼= End(V) for a T-equivariant
vector bundle V. Notice that Θ(V ⊗ V∨) is isomorphic to pullback
∆∗Θ(V1 ⊠ V∨

2 ) along the diagonal morphism

∆ : EllT(X) ↪! EllT(X)× EllT(X)

Moreover,

(12)
∗
Θ(V1 ⊠ V∨

2 )
∼= Θ(V∨

1 ⊠ V2) ∼= Θ(V1 ⊠ V∨
2 )

Thus Θ(V ⊗ V∨)1/2 exists.



Partial Polarization

Example. Suppose G = Gev ×Godd, R ∈ Rep(G) and
µev : R⊕R∨ ! gev is the moment map for Gev. Assume moreover that
Godd is the reductive group whose derived subgroup [Godd, Godd] is
simply connected and every simple constituent is of type A,C,D,E6, or
G2. Then X := µ−1

ev (0)ζ−ss/G is a partially-polarized variety with

PolX = Pol+X = R− adj(Pev),

TX = PolX + ℏ−1Pol∨X − adj(Podd).

Pev × Podd is the principal Gev ×Godd bundle µ−1
ev (0)ζ−ss ! X.

R is the bundle associated to the representation R.



Partial Polarization

Let Q be a quiver with decomposition of nodes Q0 = Qev
0 ⊔Qodd

0 . In this
case T = A× C×

ℏ , where A = TW is the maximal torus of the flavour
group.

We further decompose Q0 = Q+
0 ⊔Q−

0 , and set ci =

{
1, i ∈ Q+

0 ,

−1, i ∈ Q−
0 .

We define the action of C×
ℏ on the doubled quiver Q by

xa x̃a αi α̃i

C×
ℏ -weight 0 −ch(a) 0 −ci

Assumption. We assume that if t(a) ∈ Qev
0 , then ch(a) = ct(a).



Partial Polarization

In this setting,

Pol+M :=
∑
i∈Q+

0

WiV∨
i +

∑
h(a)∈Q+

0

Vh(a)V∨
t(a) −

∑
j∈Qev,+

0

VjV∨
j ,

Pol−M :=
∑
i∈Q−

0

WiV∨
i +

∑
h(a)∈Q−

0

Vh(a)V∨
t(a) −

∑
j∈Qev,−

0

VjV∨
j ,

is a partial polarization on Mζ(v,w), and we have

TMζ(v,w) = Pol+M + ℏ−1(Pol+M)∨ + Pol−M + ℏ(Pol−M)∨ −
∑

i∈Qodd
0

ViV∨
i ,



Elliptic Stable Envelope: Chambers and Attracting Sets

Let Cochar(A) be the cocharacter lattice of A, and we denote

aR := Cochar(A)⊗Z R ⊂ Lie(A).

We define

1 Roots of the pair (X,A) = set of weights {α} appearing in the
normal bundle to XA.

2 A chamber = a connected component of the complement of
hyperplanes cut out by roots, i.e.

aR
∖ ⋃

α∈roots

α⊥ =
⊔
i

Ci.

3 Let C be a chamber, then we say that a root α is attracting (resp.
repelling) if α is positive (resp. negative) on C.



Chambers and Attracting Sets

We define attracting subvariety

AttrC(F) := {x ∈ X | lim
t!0

σ(t) · x ∈ F},

for some σ ∈ C ∩ Cochar(A).

AttrC(F) does not depend on the choice of σ.

AttrC(F) is the exponential of attracting part of the normal bundle
N+

X/F .

Define the union AttrC :=
∐

F AttrC(F), it admits an immersion

AttrC ↪! X× XA, x 7! (x, lim
t!0

σ(t) · x).

AttrC is not closed in X× XA.



Chambers and Attracting Sets

We define AttrfC to be the set of pairs (x, y) that belongs to a chain of
closures of attracting A-orbits.

AttrfC is closed in X× XA.

We define a partial order ⪯ on the set of connected components of XA by

Fj ∩ AttrC(Fi) ̸= ∅ =⇒ Fj ⪯ Fi.

We define closed subvarieties Attr<C ⊂ Attr≤C ⊂ X× XA by

Attr<C :=
⋃

Fj≺Fi

AttrC(Fj)×Fi,

Attr≤C :=
⋃

Fj⪯Fi

AttrC(Fj)×Fi.

Note that AttrfC ∩ (Attr≤C \ Attr<C ) = AttrC.



Chambers and Attracting Sets: Quiver Variety

Consider X = Mζ−(v,w) for a quiver Q with dimension vectors (v,w)
and the stability condition ζ−. Let A = C×

a ↷ W such that

W = W (1) ⊕ aW (2) (dimension decomposes as w = w(1) +w(2)), then

XA =
⊔

v(1)+v(2)=v

Mζ(v(1),w(1))×Mζ(v(2),w(2)).

Then for all u ∈ NQ0 ,

Mζ(v(1),w(1))×Mζ(v(2),w(2)) ⪯
Mζ(v(1) + u,w(1))×Mζ(v(2) − u,w(2)),



Chambers and Attracting Sets

The restriction of partial polarization PolX to XA decomposes according
to the chamber C as

PolX|XA = PolX|XA,>0 + PolX|XA,fixed + PolX|XA,<0.

Definition

We define the index bundle

ind = Pol+X |XA,>0 − Pol−X |XA,>0 ∈ KT(X
A),

Lemma ([S. F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

PolX|XA,fixed is a partial polarization on XA.



Elliptic Stable Envelope: Attractive Line Bundle

Definition ([A. Okounkov (2020)])

A line bundle L on EllT(X) is called attractive for a given chamber C if

degA L = degA Θ(N−
X/XA),

where degA L is the degree of the restriction of L to the fiber along the
projection EllT(X

A)! EllT/A(X
A).

Each fiber of EllT(X
A)! EllT/A(X

A) is isomorphic to EA.

The degA takes value in H0(XA, S2Char(A)).



Attractive Line Bundle

Consider a partial polarization PolX = Pol+X + Pol−X with

TX = Pol+X + ℏ−1(Pol+X )
∨ + Pol−X + ℏ(Pol−X )

∨ + E

From now on we fix a square root for Θ(E).

Definition

Define a line bundle on EllT(X):

SX := Θ(PolX)⊗Θ(E)⊗
1
2

Proposition ([S. F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

SX is an attractive line bundle for every chamber C ⊂ aR.



Attractive Line Bundle

For a line bundle L on EllT(X), define twisted dual L▽ := L∨ ⊗Θ(TX).
Then

S▽X
∼= Θ(PolopX )⊗Θ(E)⊗

1
2

therefore S▽X is the attractive line bundle associated to the opposite
partial polarization.

We define

SX,A := i∗SX ⊗Θ(−N−
X/XA), i : EllT(X

A)! EllT(X)

On the other hand, we also have the line bundle SXA defined using the
restriction of the partial polarization PolXA . Then we have:

SX,A ⊗ U ∼= SXA ⊗Θ(ℏ)−rk ind ⊗ τ(−ℏdet ind)∗U.

U and τ(· · · ) will be explained soon.



Elliptic Stable Envelope: Kähler Parameters

Assumption. We assume that Pic(X) is finitely generated as an abelian
group, and we fix a set of generators {L◦

i }ri=1, which induces

K = (C×)r ↠ Pic(X)⊗Z C×.

K is called the Kähler torus.

For quiver variety Mζ(v,w), K can be chosen to be (C×)Q0 .

We choose an equivariant lift Li ∈ PicT(X) for each L◦
i , then get Chern

classes ci : EllT(X)! E. We define

U(Li, zi) := (ci × 1)∗UPoincaré, ci × 1 : EllT(X)× Ezi ! E× Ezi ,

where we identify E ∼= E∨
zi , and UPoincaré is the universal line bundle on

E× E∨.



Kähler Parameters

Definition ([M. Aganagic, A. Okounkov (2016)])

We define the extended equivariant elliptic cohomology

ET(X) := EllT(X)× EK

which is a scheme over

BT,X := ET × EK.

And we define a line bundle on ET(X):

U :=

r⊗
i=1

U(Li, zi).



Kähler Parameters

For a homomorphism between abelian varieties g : ET ! EK, we
associate an automorphism τ(g) : BT,X

∼= BT,X by

(t, z) 7! (t, z + g(t)).

We use the same notation τ(g) : ET(X) ∼= ET(X).

τ(g) does not affect EllT(X), it only shift the Kähler parameters.

The line bundle τ(g)∗U⊗ U−1 is trivial along EK direction, i.e. it is
the pullback of a line bundle from EllT(X).

The line bundle τ(g)∗U⊗ U−1 depends linearly on g, i.e.

τ(g1)
∗U

U
⊗ τ(g2)

∗U

U
∼=

τ(g1 · g2)∗U
U

.



Kähler Parameters

An example is as follows: for a pair

µ ∈ Char(T) = Hom(ET,E), λ ∈ Cochar(K) = Hom(E,EK),

λµ ∈ Hom(ET,EK), so we have τ(λµ).

It is known [M. Aganagic, A. Okounkov (2016)] that there is a meromorphic
section

ϑ(λ · µ)
ϑ(λ)ϑ(µ)

,

of the line bundle τ(λµ)∗U⊗ U−1 on EllT(X), here λ · µ is the
coordinate multiplication.



Elliptic Stable Envelope: Main Results

For a line bundle L on EllT(X), denote

LA := i∗L⊗Θ(−N−
X/XA), i : EllT(X

A)! EllT(X)

Theorem ([A. Okounkov (2020)])

If L is an attractive line bundle for the chamber C, then there exists a
unique meromorphic section

StabC,SX
∈ Γ(ET(X× XA)\∆,L⊗ U⊠ (LA ⊗ U)▽),

such that

1 it is supported on AttrfC
2 its restriction to the complement of Attr<C is given by [AttrC].

Here ∆ ⊂ BT,K is the locus where StabC,SX
has poles.



Main Results

Theorem ([S. F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

If X is partially-polarized, then for every chamber C, there exists a unique
meromorphic section

StabC,SX
∈ Γ(ET(X× XA)\∆, SX ⊗ U⊠ (SX,A ⊗ U)▽),

such that

1 it is supported on AttrfC
2 its restriction to the complement of Attr<C is given by

(−1)rk ind[AttrC].



Main Results

StabC,SX
gives rise to a map between sheaves

StabC,SX
: SX,A ⊗ U! SX ⊗ U

on BT,X\∆, such that

(1) The support of StabC,SX
is triangular with respect to ≺, i.e.

StabC,SX
|Fj×Fi = 0

for a pair of connected components of XA such that Fj ⪯̸ Fi.

(2) The diagonal

StabC,SX
|Fi×Fi

= (−1)rk indϑ(N−
X/Fi

)



Example: Abelian Case

Consider a torus G = Gev ×Godd ↷ R⊕R∨. There is a Cartesian
diagram

µ−1(0)ζ−ss/G µ−1
ev (0)ζ−ss/G

{0} g⊥ev

T = A× C×
ℏ = ((C×)rkR/G)× C×

ℏ , where C×
ℏ ↷ R⊕R∨ by

R⊕ ℏ−1R∨.

X := µ−1
ev (0)ζ−ss/G is a T-equivariant smooth deformation of

X0 := µ−1(0)ζ−ss/G over the base g⊥ev

The inclusion X0 ↪! X induces EllT(X0) ∼= EllT(X). And SX ∼= SX0
.

Components of XA
0

1:1
 ! components of XA.

StabC,SX
= StabC,SX0

.



Example: A1 Quiver

Consider an A1 quiver Q with one odd node. Take v = N,w = L, and
ζ = ζ−, then

Mζ(N,L) is nonempty if and only if N ≤ L

If nonempty then

Mζ(N,L) ∼= Tot(V⊕L ! Gr(N,L)),

where V is the tautological bundle of rank N .

In this case A = (C×)L and T = A× C×
ℏ . A acts on both the base

and the fiber of Tot(V⊕L ! Gr(N,L)), and C×
ℏ scales the fiber with

weight ℏ−1.

Connected components of A-fixed points are labelled by
order-preserving embedding p : {1, · · · , N} ↪! {1, · · · , L}.
Denote by {m1, · · · ,mL} the coordinates on Lie(A)R, then we
choose the chamber

C = {m1 < · · · < mL}

.



Example: A1 Quiver

Equivariant parameters:

1 gauge group GLN : s = {sa}Na=1

2 flavour torus A: x = {xi}Li=1.

Kähler torus K = C×, with Kähler parameter z.

The natural inclusion µ−1
ev (0)ζ−ss/G ↪! [R⊕R∨/G] induces a map

EllT(X)! EllT([R⊕R∨/G]) ∼= ET × EG.

SX is actually defined on ET × EG.

Every component Fp of XA is a vector space, thus

EllT(X×Fp) ∼= EllT(X)



Example: A1 Quiver

Then the elliptic stable envelope is

StabC,SX
|X×Fp

= SymSN

[(
N∏

a=1

fp(a)(sa,x, ℏ, z)

)
·

(∏
a>b

1

ϑ(sas
−1
b )

)]
,

SymSN
= summation over permutations {sa} 7! {sσ(a)}σ∈SN

fm(s,x, ℏ, z) is the following function

fm(s,x, ℏ, z) :=
ϑ(sxmℏm−Lz)

ϑ(ℏm−Lz)

∏
i<m

ϑ(sxi)
∏
j>m

ϑ(sxjℏ),



R-Matrix

Fix a partial polarization and write StabC = StabC,SX
.

Definition

Let C1,C2 be two chambers in Lie(A), then we define the R-matrix

RC2�C1
:= Stab−1

C2
◦ StabC1

.

This is a map from SXA ⊗ τ(−ℏdet ind1)∗U to SXA ⊗ τ(−ℏdet ind2)∗U,
where ind1 and ind2 are index bundles for the chambers C1 and C2

respectively.

It follows from definition that

RC3�C2RC2�C1 = RC3�C1 .



Wall R-Matrix

Let C′ ⊂ C be a face, and let A′ ⊂ A be the subtorus associated to the
span of C′ in Lie(A). Then

C/C′ is a chamber of A/A′.

There is a partial polarization PolX|XA′ ,fixed on XA′
, so we get

attractive lien bundle SXA′ .

So we have stable envelope on XA′
:

StabC/C′,XA′ : SXA′ ,A ⊗ U! SXA′ ⊗ U

(Triangle Lemma)

StabC(z) = StabC′(z) ◦ StabC/C′(z − ℏdet indXA′ ).



Wall R-Matrix

If C′ = C1 ∩ C2 is of codimension one, then we say C1 and C2 are
separated by the wall C′, and define the wall R-matrix

Rwall := RC2/C′�C1/C′ .

Rwall only involves one equivariant parameter coming from A/A′.

Example. Suppose that A = (C×)3 and let m1,m2,m3 be coordinates
on Lie(A)R. Consider two chambers:

C123 = {m1 < m2 < m3}, C321 = {m3 < m2 < m1}.

There are two paths that connects C123 and C321:

1 C123 ! C132 ! C312 ! C321

2 C123 ! C213 ! C231 ! C321

Expansion of RC321�C123 in two ways:



Dynamical YBE

The Triangle Lemma implies:

R12(z− ℏdet ind3(12))R13(z− ℏdet ind(13)2)R23(z− ℏdet ind1(23)) =
R23(z − ℏdet ind(23)1)R13(z − ℏdet ind2(13))R12(z − ℏdet ind(12)3),

where Rij is the ij-wall R-matrix, and the subscript of ind means the
wall and chamber for which the index bundle is taken, for example, 3(12)
means the chamber {m3 < m1 = m2}.

We get the dynamical Yang-Baxter equation.



Quiver R-Matrix

Let Q be a quiver with decomposition of nodes Q0 = Qev
0 ⊔Qodd

0 .

We choose ζ = ζ−.

We further decompose Q0 = Q+
0 ⊔Q−

0 , and set ci =

{
1, i ∈ Q+

0 ,

−1, i ∈ Q−
0 .

We define the action of C×
ℏ on the doubled quiver Q by

xa x̃a αi α̃i

C×
ℏ -weight 0 −ch(a) 0 −ci

We take A = (C×)3 ↷ W such that W decomposes into eigenspaces

W = u1W
(1) + u2W

(2) + u3W
(3).



Quiver R-Matrix

Define the signed adjacency matrix of Q

Qij = cj ·#(a ∈ Q1 : h(a) = j, t(a) = i),

and define diagonal matrices:

Dii = ci, Pii =

{
ci, i ∈ Qev

0 ,

0, i ∈ Qodd
0 .

Definition

Define the quiver R-matrix

RQ(z) := Rwall(z + ℏ(P− Qt)v),

where z := {zi}i∈Q0
are the Kähler parameters corresponding to the

ample line bundles (detVi)
−1.



Quiver R-Matrix

Let µ := Dw − Cv where

C = 2P− Q− Qt.

Then the dynamical YBE reads:

RQ
12(z)R

Q
13(z − ℏµ(2))RQ

23(z) = RQ
23(z − ℏµ(1))RQ

13(z)R
Q
12(z − ℏµ(3)).

Here we have suppressed the equivariant parameters (spectral

parameters), RQ
ij(z) should be RQ

ij(uj − ui, z)



Example: sl(1|1)

Consider a quiver Q with one odd node.

Choose ζ = ζ−.

Choose c1 = 1.

Choose the framing dimensions w(1) = w(2) = w(3) = 1.

Then

1 Mζ(w(1)) is disjoint union of two points,

2 ET(Mζ(w(1))) is a free module of rank two over Ex × Eℏ × Ez.
Label the basis by

v0 = [Mζ(0, 1)] v1 = [Mζ(1, 1)]

3 Mζ(w(1) +w(2)) = pt ⊔ Tot
(
O(−1)⊕2 ! P1

)
⊔ C4.



Example: sl(1|1)

The quiver R-matrix in the basis {v0 ⊗ v0, v1 ⊗ v0, v0 ⊗ v1, v1 ⊗ v1}:

RQ(u, z) =



1 0 0 0

0 ϑ(z)ϑ(zℏ−2)ϑ(u)
ϑ(zℏ−1)2ϑ(uℏ−1)

ϑ(ℏ)ϑ(uzℏ−1)
ϑ(zℏ−1)ϑ(u−1ℏ) 0

0 ϑ(ℏ)ϑ(zu−1ℏ−1)
ϑ(zℏ−1)ϑ(u−1ℏ)

ϑ(u)
ϑ(uℏ−1) 0

0 0 0 ϑ(uℏ)
ϑ(u−1ℏ)


,

DYBE reads (variables written multiplicatively):

RQ
12(u, z)R

Q
13(uw, z/ℏ)R

Q
23(w, z) = RQ

23(w, z/ℏ)R
Q
13(uw, z)R

Q
12(u, z/ℏ),

which is the DYBE for sl(1|1) in the fundamental representation.



Example: sl(n|1)

Consider the quiver:

v1 v2
· · ·

vn−1 vn

r

Choose ζ = ζ−.

Choose ci = 1 for all i ∈ Q0.

Choose w(1) = w(2) = w(3) = (1, 0, · · · , 0)



Example: sl(n|1)

Then

1 Mζ(w(1)) is the disjoint union of n+ 1 points.

2 ET(Mζ(w(1)))is a free module of rank n+ 1 over Ex × Eℏ × Ez,
basis labelled by {vα}nα=0.

3 Ci,j = 2δi,j(1− δi,n)− δi+1,j − δi−1,j , (1 ≤ i, j ≤ n), which is the
symmetric Cartan matrix of sl(n|1).

4 µ(vα) is the weight of vα in the fundamental rep of sl(n|1).
5 Mζ(w(1) +w(2)) is disjoint union of the following four kinds of

varieties:

pt, T ∗P1, Tot
(
O(−1)⊕2 ! P1

)
, C4.



Example: sl(n|1)

The quiver R-matrix is

RQ(u, z)(vα ⊗ vβ) =

=


vα ⊗ vβ , α = β < n,

D(u)vα ⊗ vβ , α = β = n,

C(u)vα ⊗ vβ +B(u, ℏ−δβ,n
∏β

i=α+1 zi)vβ ⊗ vα, α < β,
A(u,ℏ−δα,n

∏α
i=β+1 zi)vα⊗vβ

+B(u,ℏδα,n
∏α

i=β+1 z−1
i )vβ⊗vα

, β < α.

where

A(u, z) =
ϑ(zℏ)ϑ(zℏ−1)ϑ(u)

ϑ(z)2ϑ(uℏ−1)
, B(u, z) =

ϑ(ℏ)ϑ(uz)
ϑ(z)ϑ(u−1ℏ)

,

C(u) =
ϑ(u)

ϑ(uℏ−1)
, D(u) =

ϑ(uℏ)
ϑ(u−1ℏ)

,



K-Theory and Cohomology Limit

In the q ! 0 limit, the E = C×/qZ degenerates to a nodal
compactification of C×, and EllT(X) degenerates to KT(X)⊗ C

Because of half-periodicity property of ϑ-function:
ϑ(e2πix) = −ϑ(x), their q ! 0 limit is defined on the double cover
of C×.

For the limit of elliptic stable envelope, one should take q ! 0 limit
in a twisted way:

StabsC := lim
q!0

[
(det PolX)

− 1
2 ◦ StabC ◦ (det PolXA)

1
2

]
|z 7!zqs ∈ KT(X×XA).

where s ∈ PicT(X)⊗Z R is generic.

A further reduction from the K-theory to cohomology can be defined
by

StabC := lowest cohomological degree term in ch(StabsC),



K-Theory and Cohomology Limit

Assume that either

the gauge group is abelian, or

X is a quiver variety,

then

Proposition ([S. F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

StabsC is the K-theoretic stable envelope with slope s for the chamber C,
and StabC is the cohomological stable envelope for the chamber C.



K-Theory and Cohomology Limit: A1 Quiver

In the example of A1 quiver with an odd node,

StabsC([Fp]) = ℏ
#(i>p(a))

2 SymSN

[(
N∏

a=1

fp(a)(sa,x, ℏ, s)

)
·

(∏
a>b

â(sas
−1
b )

)]
,

where fm(s,x, ℏ, s) is

fm(s,x, ℏ, s) := (sxm)⌊s⌋
∏
i<m

(1− s−1x−1
i )

∏
j>m

(1− ℏ−1s−1x−1
j ),

and â(w) = 1

w
1
2 −w− 1

2
.



K-Theory and Cohomology Limit: A1 Quiver

A further reduction to cohomology gives

StabC([Fp]) = SymSN

[(
N∏

a=1

fp(a)(sa,x, ℏ)

)
·

(∏
a>b

1

sa − sb

)]
,

where fm(s,x, ℏ) is the following function

fm(s,x, ℏ) :=
∏
i<m

(s+ xi)
∏
j>m

(s+ xj + ℏ).

This recovers the result of [R. Rimányi and L. Rozanky (2021)].



Rational R-Matrix of sl(n|1)

Reduction to cohomology for the elliptic dynamical R-matrix of sl(n|1)
gives

R(u) = P

(
u

u− ℏ
Π− ℏ

u− ℏ
1

)
.

P is the usual swapping-tensor operator: P(vα ⊗ vβ) = vβ ⊗ vα,

Π is the super swapping-tensor operator:
Π(vα ⊗ vβ) = (−1)|vα|·|vβ |vβ ⊗ vα

We can rewrite
(u− ℏ)ΠPR(u) = u1− ℏΠ,

the RHS is the rational R-matrix for the fundamental representation of
sl(n|1) in the literature [E. Ragoucy and G. Satta, (2007)].



Representation Theoretic Perspective

Consider a finite or affine type A quiver

· · ·

This reminds us of Kac-Dynkin diagram

· · ·

We found that the dynamical shifts µ in DYBE are weights in a certain
highest-weight module of ŝl(m|n) or sl(m|n).



Representation Theoretic Perspective

Conjecture ([S. F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

Let Q be a finite or affine type A quiver with nodes decorated as above,
and let gQ be the Lie superalgebra associated with the corresponding
Kac-Dynkin diagram. The there exist actions

Eℏ,τ (gQ) ↷ ET(Mζ(w))

Uℏ(ĝQ) ↷ KT(Mζ(w))

Yℏ(gQ) ↷ HT(Mζ(w))

Moreover, all the actions factor through the corresponding
Maulik-Okounkov quantum groups constructed via the stable envelopes
for Mζ(w).



Representation Theoretic Perspective

Theorem ([M. Yamazaki and Y.Z. In progress])

The above conjecture is true.

We anticipate that the conjecture is still true when Q is not of type
A, the corresponding algebra should be replaced by the quiver BPS
algebra studied by Gelakhov-Li-Yamazaki.

If Qodd
0 = ∅, then the corresponding statement is a result of A.

Negut.



Future Directions

1 Relation to integrable systems.

2 Stable envelopes from 4d Chern-Simons theory.

3 Compare the modules of the quiver BPS algebra coming from stable
envelope with the ones studied by Gelakhov-Li-Yamazaki.

4 It will be nice if there is a 3d N = 2 mirror symmetry for the stable
envelope, generalizing the mirror symmetry in the 3d N = 4 setting.



The End

Thank You!


