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Introduction: YBE and Bethe/Gauge

Consider a chain of L spin-1/2 with nearest-neighbor interactions and
periodic boundary condition:

L
1
xT xT y_y z z
—5 E J oo+ Jyo; o1+ J.0; UHl) .
=il

This is a Heisenberg spin chain model. Depending on coupling J;, Jy, J.,
it is called

o XYZ model, if J,, Jy, J. are different from each other,
o XXZ model, if J, = Jy, # J,
o XXX model, if J, = J, = J..



Introduction: R-Matrix and YBE

For the XXX model, [H. Bethe (1931)] completely solved the eigenvalues
and eigenvectors, using a method which is nowadays called Coordinate
Bethe Ansatz. Bethe's work became the starting point of quantum
integrability.

Later, [L. D. Faddeev, E. K. Sklyanin, and L. A. Takhtajan (1979)] developed the
Algebraic Bethe Ansatz (ABA) (also called Quantum Inverse Scattering
Method (QISM)).

The ABA, among other things, gives a transfer matrix 7'(u) which
satisfies

[T(u), T(v)] =0, VY(u,v)e€ C?

such that T'(u) = Id + Y, Tyu~" with Ty =Hamiltonian, and Bethe's
eigenvector is a common eigenvector for T'(u) for all u € C.



Introduction: R-Matrix and YBE

In the framework of ABA, the key to the integrability is a collection of

R-matrices
Ryy(u,v): UV —UQRYV,

meromorphically depends on spectral parameters (u,v). Pictorially
presented as:

which satisfies the Yang-Baxter Equation(YBE)



Introduction: R-Matrix and YBE

RUV (u, ’U)RUw(u, w)RVW (’U, w) = va(’u, ’LU)RUW (’LL, w)RUV (u, U).

Pictorially presented as:

For simplicity, we assume that Ryy (u,v) = Ryy (u — v).



Introduction: R-Matrix and YBE

Given the spin chain Hilbert space H = ®iL=1 Vi, we add an auxiliary site
U to it with spectral parameter u. Then we define the transfer matrix:

T(u) := try[Ruv, (u — v1)Ruv, (u — v2) - - - Ry, (uw — vr)] € End(H),

which can be depicted in a diagram as:




Introduction: R-Matrix and YBE

Then YBE = T'(u) commutes with each other, i.e.
[T(u),T(v)] =0, Y(u,v)e C?
More generally, we can define
7;’(u) = trU[E;RUV1 (v —v1)Ryv,(u—v3) -+ Ryv, (u —vr)] € End(H),

where EJ is the elementary matrix in End(U). In general, T;/(u) do not
commute with each other, they satisfy the RTT relations:

Riz(u —v)Ti(u)T2(v) = Ta(v) T (u) Ri2(u — v)

where T, (u) = E! T/ (u) € End(U, @ H), a = 1,2.



Introduction: R-Matrix and YBE

Definition

Fix U together with R-matrix R(u), we define the spectrum generating
algebra A to be the algebra generated by the the modes 7;’n in

Tj(u) =Td 4 > 2, T}, u™" subject to RTT relations.

y

In the XXX spin chain model, U = C? and

Ru)=T1d+ P
u

where II(v, ® vp) = vp ® V4. In this case

A= Yp(al(2)),

the Yangian of gl(2). )




Introduction: R-Matrix and YBE

In general, R(u) depends on the spectral parameter u in a periodic way
R(u+ A) = R(u)

for certain discrete subgroup A C C, we call C/A the spectral curve.

For Heisenberg spin chains, the spectral curves and spectral generating
algebras are the following.

Spin chain | Spectral curve Spectrum generating algebra A
XXX C Yangian, Y5 (gl(2))
XXZ C* =C/Z Quantum affine, Up(gl(2))
XYZ E, =C/(Z @ 7Z) | Elliptic quantum group, E; 1(gl(2))




Introduction: R-Matrix and YBE

Question: How to find R-matrices?

@ Algebraically, one way is to replace gl(2) by more general Lie (super)
algebras and play with quantum groups.

@ In this talk, we focus on a different (but related) approach, which is
hinted from the gauge theories.

In the work of [N. Nekrasov, S. Shatashvili (2009)], a correspondence between
integrable spin chain models and SUSY gauge theories with 4
supercharges was proposed.



Introduction: Bethe/Gauge

For example

XXX model with L sites and N magnons (excitation) «—
2d N = (2,2) U(N) with L fundamental hypermultiplets

A particular essence of the Bethe/Gauge correspondence is
Hilbert space H «— Cohomology of Higgs branch H(Mg)
e.g. H(N,L):= N magnon sector in XXX model with L sites,
H(N, L) = H(T*Gx(N, L)).

This suggests a geometric approach to quantum integrability.



Introduction: Bethe/Gauge

@ It was not clear in Nekrasov-Shatashvili's original paper that how to
see the R-matrix or the full spectrum generating algebra from the
Higgs branch geometry.

@ There were works on the math side concerning quantum algebras
acting on (generalized) cohomology of certain spaces:

[Nakajima (1999)]Uq (Lgq) M Keq(Mq),
[Varagnolo (2000)]Yh(gQ) % Heq(MQ).
Q@: a quiver.

gq: Kac-Moody algebra associated to ().
M: Nakajima quiver varieties (recalled later in this talk).



Introduction: R-Matrix from Stable Envelope

The rational R-matrix (i.e. R(u) is a rational function of u) from the
Higgs branch geometry was later found by [D. Maulik and A. Okounkov
(2013)], using a construction called the stable envelope.

@ Assume that X is a complex symplectic variety with a torus T’
action, and a subtorus A C T fixing the symplectic form.

@ A stable envelope is a map
Stab : Hy(X?) — Hp(X),

subject to certain conditions (reviewed later in this talk).

@ Stab depends on a choice of chamber
¢ C Lle(A)]R
and the R-matrix of a pair of chambers €5, €, is defined as

Re, ¢, := Stabg, o Stabe, : Hr(X?) — Hp(X™?).



Introduction: R-Matrix from Stable Envelope

e It follows from definition that

Re, ¢, 1Re, 1¢, 5 " Re,ey = Re, e

o If there are three chambers €3, €5, €1, then we can write R_¢, ¢, in
two ways:

R*€17€3R¢3,¢2R¢2,¢1 = R*¢1,¢1 = R*¢1,*¢2R*¢2,*¢3R*¢3,¢1

@ In the above case, if assume moreover that each pair €;,€; is
separated by a wall &;;, then Maulik-Okounkov's theory of stable
envelope implies that

R,Q‘iyfgj = R@],’Qi, denoted by Rji

If we set R_¢, ¢, = R31, Re,,¢, = R32, Re, ¢, = Ro1, then we
have YBE:

R31R32R21 = R21R32R31



Introduction: R-Matrix from Stable Envelope

@ The main examples are Nakajima quiver varieties M, in this case
the spectrum generating algebra (Maulik-Okounkov Yangian),
denoted by YMO(Q), is expected to be isomorphic to a
Cartan-doubled version of Y5 (gg) (proven in finite ADE case by [M.
McBreen (2013)]).

@ The particular example @Q = A7 gives the R-matrix of XXX spin
chain, and YMO(A)) = Yy (gl(2)).

@ Cohomology can be replaced by K-theory or elliptic cohomology, the
corresponding stable envelopes for hypertoric varieties and Nakajima
quiver varieties were constructed by [M. Aganagic and A. Okounkov
(2016)].

K-theory — trigonometric R-matrix,
elliptic cohomology — elliptic dynamical R-matrix.

@ Physical realization of elliptic stable envelopes were recently worked
out by [M. Dedushenko and N. Nekrasov (2021)], and independently by [M.
Bullimore and D. Zhang (2021)].



Introduction: R-Matrix from Stable Envelope

In the above formulation of stable envelope, X is assumed to be complex
symplectic. Typically it is a Higgs branch of 3d A/ = 4 gauge theory.

For gauge theory with 4 supercharges, e.g. 3d N = 2, the Higgs branch
is not necessarily symplectic.

Question: Can we extend the construction of stable envelopes to the
Higgs branch of some 3d N = 2 theory which do not have A" = 4 SUSY?



Introduction: R-Matrix from Stable Envelope

@ [R. Riményi and L. Rozanky (2021)] studied Tot(V — Gr(N, L)) for
certain vector bundles V, e.g. O(—1)%2 on P!. They show that
cohomological stable envelopes exist for these varieties, and the
R-matrix is

h
Id + —II € End(C'* @ C'I)
u

(v, ® vp) = (—1)!val"vely, ® v,. This is the rational R-matrix for
gl(1]1).

Tot(V — Gr(N, L)) is the Higgs branch of a 3d A/ = 2 U(N) theory
with L fundamental hypermultiplets.

In [S. F. Moosavian, N. Ishtiaque, and Y. Z. (2023)], we show that elliptic
stable envelopes exist for the Higgs branches of 3d NV = 2 quiver
gauge theories. Tot(V — Gr(N, L)) is the special case when

Q=A,.



Higgs Branch of 3d A/ = 2 Gauge Theories: Generalities

The essential data extracted from a 3d A/ = 2 gauge theory is
© a complex algebraic group G,

@ a complex G-representation M,

© a G-invariant algebraic function W : M — C,

© and a character ( : G — C*.

The Higgs branch of the 3d A/ = 2 gauge theory associated to
(G,M, W, () is then the GIT quotient

My (G, M, W, ) := Crit(W)*~*/G.

Assumption. We assume that the semistable locus Crit(W)S=*¢ is
smooth and the action of G on it is free.

Under the above assumption, My (G, M, W, () is smooth.



Higgs Branch: Generalities

A typical example is as follows.
o Take G = Goy X Goda, R € Rep(G), and then take
M:=RORY D gev.
@ We choose a complex moment map p: R ® RY — g for the G

action, and define o, : R ® RY — g, to be the composition
pry, © i, where pr,, : g¥ — g% is the projection to the even part.

o We take W = (X, lioy) where X is the coordinate on ge, and (-, -) is
the pairing between ge, and g .

@ Then we choose a generic character ( : G — C*.

In this case, the Higgs branch is then isomorphic to
Mg (G, M, W, () = 15} (0)~*/G.

Note that 1= (0)¢~/G = i (0)¢=**/G.



Higgs Branch: Abelian Gauge Theories

When G is abelian, choose R such that we get exact sequence of abelian
groups:

1—>G—>((Cx)rkR—>Q—>l.
Then we have a commutative diagram

WO /G s gk (0)* /G s (RORY)S™/G

| ! le

{o} 9oy gV

@ The squares are Cartesian.
e [ is flat.

e 1~ 1(0)57%% /G is a hypertoric variety, and (R & R")¢~%%/G is known
as the Lawrence toric variety.



Higgs Branch: Abelian Gauge Theories

e If the charge matrix A : Z*™*® — Char(G) is surjective and
unimodular, i.e. every rkG x rkG submatrix has determinant
€ {0,£1}, then i is smooth.

Assumption. When we talk about Higgs branch of abelian gauge
theories, we always assume the charge matrix is surjective and
unimodular.

@ Under the above assumption, we have isomorphisms
H(u™(0)7""/G) = H(pg, (0)°*°/G) 2 H(R® RY)™*/G)

In fact, every fiber i~!(z) is diffeomorphic to i~1(0), which is
p~1(0)¢7%% /G [T. Hausel and B. Sturmfels (2002)].



Higgs Branch: Quiver Gauge Theories

A large class of GIT quotients comes from 3d A/ = 2 quiver gauge
theories.

e Let Q = (Qo, Q1) be a quiver, @y =set of nodes, Q)1 =set of arrows.
@ h,t: Q1 — Qo maps an edge to its head and tail, respectively.

e We separate () into two parts Qo = Q¢ LI Q544, called even and
odd respectively. Notations:

odd even

X O

o Let w,v € N¥ be Qo-tuples of natural numbers, called framing
dimension vector and gauge dimension vector respectively.



Higgs Branch: Quiver Gauge Theories

@ The gauge group G = Goy X Goqq is such that

Gev: H GL(VZ'), Godd: H GL(Vi).

1€QgY ieQde
@ The representation space R is the following

R = @ HOHI(V;;, Wz) D @ Hom(‘/t(a)a Vh(a))a
1€EQo a€Q1

e The flavour symmetry group F' = Gy x C;, such that

Gw = [] GL(w),

i€Qo

GL(w;) acts on W; by fundamental representation, and C; acts on
R @ RY by scaling RY with weight A~! and fixing R.



Higgs Branch: Quiver Gauge Theories

@ Notations of elements in R:
o; € Hom(V;, W), x4 € Hom(Vi(ay, Vi(a))
For the dual representation R":
a; € Hom(W;,V;), . € Hom(Vy(a), Vi(a))
@ The holomorphic symplectic form on R & R is

w= Y dzg AdZ, + Y da; Add,
ac@Q 1€Q0o

@ There is a moment map p: R ® RY — g¥ which is given by

M(xa7$aaai7ai) = § J?a,ﬂfa E O(ZOQ

acQy i€Qo



Higgs Branch: Quiver Gauge Theories

@ We choose a character ( : G — C*, { can be written as
¢(9) = ITieq, det(g:)®.

Definition

The quiver variety is defined to be the GIT quotient
ME(v, W) = pg (0)7/G.

For a fixed w, we write

For a generic ¢, we have p2}(0)¢7* = . 1(0)¢~*, and

MH(Ga Ma W7 <) = MC(V’ W)



Higgs Branch: Quiver Gauge Theories

Assume that ( is generic then, MS(v,w) is a smooth variety and the
quotient map pzt(0)$7%5 — MS(v,w) is a principal G-bundle.

Two generic (:

C+::(17"'71)7 C*::(_l’“.7_l)’

then according to the King's criterion for the stability [A. D. King (1994)], a
quiver representation (V, 4,24, a, @;) € R ® RY is (-semistable if and
only if
(C4+) If S; C V; are subspaces such that S is preserved under the maps
(Ta,Tq), and that S; D Im(a;) for all i € Qg, then S =V.

() If T; C V; are subspaces such that T is preserved under the maps
(Za,Zq), and that T; C Ker(ay) for all i € Q, then T' = 0.



Higgs Branch: Quiver Gauge Theories

Example 1. If there is no odd node, i.e. Q399 is empty, then pe, = 11

and in this case M¢ (v, w) is a Nakajima quiver variety.
Example 2. Let QQ be an A,, quiver. Below is the doubled quiver Q:

U1 V2 Un—1 U,

() X)

e MS+ (v, w) is nonempty if and only if 7 > vy > -+ > v,,.
e If nonempty then M+ (v, w) = GL, x"m, where P C GL,
stabilizes a fixed flag

F.:F1CF2C"'CFnCFn+1:(CT, dlan+1/FZ:UZ

m C Lie(P) such that m(F; 1) C F; for i < n.

e M+ (v, w) contains T*Fl, as a closed subvariety.



Higgs Branch: Quiver Gauge Theories

Example 3. Let Q be an A,, quiver. Below is the doubled quiver Q.

U1 V2 Un—1 Un,

- ———0—=0

e M+ (v, w) is nonempty if and only if v,, < r and
Vit1 S v S viqq + T

e If nonempty, MS+ (v, w) is the total space of a vector bundle on
Grar QGrg‘i’:fl X QGrg‘fr7

where d; = v; —v;41 for 1 <1 <n—1and d, = v,, and w; is the
i-th fundamental coweight of GL,..



Higgs Branch: Quiver Gauge Theories

Remark. In the last example, if we replace the odd node with a even
one, then MS+ (v, w) is nonempty if and only if 7 > v; > vy > -+ > wv,.
In particular, if n > 2 then there exists v such that p~1(0)%+75% is empty
but £2,1(0)$+5% is nonempty, for instance v = (nr, (n — 1)r,--- 7).

Let A C Ty be a subtorus, such that W decomposes as eigenspaces

w= € w

A€Char(A)

and we write w =y N w? for the dimension vector, then

M (w)P = H M(w?).

A€Cochar(A)




Review of Equivariant Elliptic Cohomology

Let ¢ be a nonzero complex number such that |g| < 1, then take the
elliptic curve E = C* /¢Z.

For a reductive algebraic group G, the zeroth degree G-equivariant
elliptic cohomology is a functor

{G-varieties} — {schemes finite over £¢}
X  Ellg(X),

€ is the moduli scheme of semistable principal G-bundles of trivial
topological type on the dual elliptic curve EV.

We will not encounter nonzero degree elliptic cohomology in this talk.



Equivariant Elliptic Cohomology Base

@ For a torus T,
&r = E ®z Cochar(T).

o If T is maximal torus of G then [R. Friedman, J. W. Morgan and E. Witten
(1997)]

Ea = Ep/W.

@ When G is simple and simply-connected, [Looijenga (1976)] showed
that ¢ is isomorphic to the weighted projective space
P(1,91,- - ,g-), where g; are coefficients in the decomposition

0V =" giaf,
A

of the dual of highest root into simple coroots.



Chern Class

If H is another reductive group, and P — X is a G-equivariant principal
H-bundle, then P induces the Chern class map:

@ 3 Ellg(X) — EHH(pt) = SH

Definition

For a vector bundle V of rank r, the Thom line bundle associated to V is
defined as

O(V):=c*0(Dg), Do ={0}+ S 'EC SE = Eqy,.

@ O(V) inherits a canonical section (V') from the effective divisor Dg.



Theta Bundles

e O(V)=0(V1) ® ©(V;) for a short exact sequence
0>V =V -V, -0,

s0 ©:V — ©(V) descends to a group homomorphism
Ka(X) — Pic(Ellg(X)).
@ The canonical section simply multiplies: (V') = 9(V7)9(Va).
@ We also have

oY) =e(v),

such that the canonical section picks up a sign
IVY) = (1) Va(V).

o 9(2) = (¢} — o H) [Lno(1 — "0)(1 — g"27Y).



Gysin Map

For a proper G-equivariant map f : X — Y, assume that f factors as a
regular embedding i : X < Z and a smooth projection p: Z — Y, and
that both 7 and p are G-equivariant, then there exists a distinguished
element (Gysin map):

fe € Homoy,, . (f+O(Tf), Orng(v))

where f, : Ellg(X) — Ellg(Y) is the induced map between elliptic
cohomologies, and 7% is the relative tangent bundle.



Gysin Map

If Ts equals to f*V for some V € K (Y'), then we denote by [X] the
section I'(Ellg(Y), ©(—V)) induced by

f
Orig(v) — f+Orug(x) — O(=V).

For example, let N — X be a G-equivariant vector bundle and let
i: X — N be the zero section, then f, : Ellg(X) — Ellg(N) is an
isomorphism, and ig € I'(Ellg(X),©(N)) is the section J(N).



Supports

For a section « of a coherent sheaf & on Ellg(X), and a G-invariant
open subset j : U < X, we say that « is supported on X \ U if
j*(a) = 0in Ellg(U).

We define supp(«) to be the intersection of G-invariant closed subset
that « is supported on.

The Gysin map can be defined for compactly supported sections. Namely
there exists a distinguished element

fe € Homoy, _ v (f+©(T)e, Orig (v))s

where ©(Ty). C ©(TY) is the subsheaf of sections o such that f|supp(a)
is proper.



Correspondences

Consider the diagram

XQXXl

7
Xo Xy -
pt
Assume that X7 is smooth, then for a pair of line bundles
L; € Pic(Ellg(X;)), and for any section
a € T(Ellg(Xa x X1),L: K (L) ® O(Tx,))),
such that supp(«) is proper over X5, « induces a map

p2e (apy (+))

q1+L1 q2+L2,



Degree of Line Bundle

For a line bundle £ on an abelian variety A, we define

deg £ := [£] € Néron-Severi group = Pic(A)/Pic’(A).

e It is known that NS(A) = {f € Hom(A, AY) : f = fV}, and the
isomorphism is given by [D. Mumford (1974)]

L (g x>z L®LTT).
e Let 7' be a torus, then Hom(Er, &) is isomorphic to
Char(T)®? @z End(E).
@ We choose ¢ generic so that End(E) = Z, so NS(€7) = S2Char(T).

e Explicitly, any o € Char(T') gives a map ¢, : Er — E, then
deg ¢*0(De) = pn® p € S*Char(T). For V = >0 Vi 1 € Kr(pt),

deg®(V) = Z(dim Viu ® p.

j2



Elliptic Stable Envelope: Partial Polarization

In [M. Aganagic, A. Okounkov (2016)], an ingredient for defining elliptic stable
envelope is a polarization:

Tx =TY? + Y (TY?)V € Kp(X).

This structure is absent for Higgs branch of a general 3d NV = 2 gauge
theory. E.g. 3 polarization = dim T’x is even, which is not true for
Tot(O(—1)%2 — P1).

We introduce a generalization, called partial polarization, which will
cover the 3d V' = 2 abelian or quiver gauge theories.

Setting. We denote by X a smooth quasi-projective complex variety with
a torus T action, we fix a nontrivial group homomorphism T — C; and a
subtorus A C ker(T — C;).



Partial Polarization

Definition ([S. F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

A partial polarization on X is the following data:

@ a decomposition of the tangent bundle
Tx = Poly, + A~ (Polf)Y + Poly + A(Poly )Y + € € K1(X),

such that

(1) €=¢&Y in K7(X),

(2) ©(€) admits a square root.

We define the opposite partial polarization to be

Polg® = Poly> + Polg>™ = h~!(Poly)" + A(Poly)".




Partial Polarization

In practice, the existence of 1/O(E) is subtle. We give one criterion as
follows:

Lemma ([S F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

Let G be a reductive group whose derived subgroup [G, G| is simply
connected and every simple constituent is of type A, C,D,Eg, or Go. Let
P be a T-equivariant principal G-bundle on X, then ©(adj(P)) has a
square root in Pic(Ellt(X)).

Remark. When G = GL,,, the existence of \/O(adj(P)) follows from
the “trick of diagonal” in the enumerative geometry.



Partial Polarization

Lemma ([N Nekrasov, A. Okounkov (2014)])

Let £ be a line bundle on'Y x Y such that (12)*L = L, where (12)
permutes two copies of Y, then A*L admits a square root.

Back to the case when G = GL,,, adj(P) = End(V) for a T-equivariant
vector bundle V. Notice that ©(V ® V) is isomorphic to pullback
A*O(V; ¥ VYY) along the diagonal morphism

A : Ellr(X) — Ellt(X) x Ellt(X)
Moreover,
(12)"0(V RVY) =2 eV X V) 20V, KVY)

Thus O(V ®@ VV)1/2 exists.



Partial Polarization

Example. Suppose G = Gey X Goad, R € Rep(G) and

loy : R®RY — goy is the moment map for Ge,. Assume moreover that
Goad is the reductive group whose derived subgroup [Godd, Godd] is
simply connected and every simple constituent is of type A, C, D, Eg, or
Ga. Then X := p; 1 (0)¢=%%/G is a partially-polarized variety with

Polx = Polyf = R — adj(Pey),
Tx = Poly + h™'Poly — adj(Poqq)-

® Poy X Podq is the principal Goy X Goqq bundle 7 1(0)573% — X.
@ R is the bundle associated to the representation R.



Partial Polarization

Let @ be a quiver with decomposition of nodes Qy = Q5" LU Q§%4. In this
case T = A x CFXL, where A = Ty is the maximal torus of the flavour

group.
1, ieQq,
-1, ieqQy.
We define the action of C; on the doubled quiver Q by

We further decompose Q¢ = Qj UQq, and set ¢; = {

Ty -%a Q; &z

Cr-weight | 0 | —cp) | 0 | —c

Assumption. We assume that if t(a) € Qf", then cp(q) = ¢y(a).-



Partial Polarization

In this setting,

Polj(,l = Z WiV + Z Vh(a)vtv(a) - Z VJ'VJ\'/’

ieQt h(a)eQy jeQy
Pol],t E= Z WiViV + Z Vh(a)Vtv(a) - Z VjVJY,
i€Qy h(a)€Qqy JEQY"T

is a partial polarization on M¢(v,w), and we have

Tt vowy = Polly + B (Polf)¥ + Polyy + A(Poly )Y — Y~ VY,

7lerdd



Elliptic Stable Envelope: Chambers and Attracting Sets

Let Cochar(A) be the cocharacter lattice of A, and we denote
ag := Cochar(A) ®z R C Lie(A).

We define

@ Roots of the pair (X, A) = set of weights {a} appearing in the
normal bundle to XA.

@ A chamber = a connected component of the complement of
hyperplanes cut out by roots, i.e.

aR\ U at = |_|QZz

aEroots

@ Let € be a chamber, then we say that a root « is attracting (resp.
repelling) if « is positive (resp. negative) on €.



Chambers and Attracting Sets

We define attracting subvariety
Attre(F) := {z € X| }irr(l)a(t) -x € F},

for some o € €N Cochar(A).
@ Attrg(F) does not depend on the choice of ¢.
o Attre(F) is the exponential of attracting part of the normal bundle
Ny 5.
Define the union Attre := ] Attre(F), it admits an immersion
Attre — X x XA,z (z,limo(t) - z).

t—0

o Attre is not closed in X x XA,



Chambers and Attracting Sets

We define Attr£ to be the set of pairs (x,y) that belongs to a chain of
closures of attracting A-orbits.

o Attr] is closed in X x XA,

We define a partial order < on the set of connected components of X* by
]:j n Attrg(]-'i) 75 )= ]:j = Fi.
We define closed subvarieties Attrg C Attrg C X x XA by

Attrg = U Attre (F;) x Fi,
Fi=<F;

Attrs = U Attre (F;) x Fi.

o Note that Attr) N (Attrs \ Attrg) = Attre.



Chambers and Attracting Sets: Quiver Variety

Consider X = M~ (v, w) for a quiver ) with dimension vectors (v, w)
and the stability condition (_. Let A = C ~ W such that

W =W®0 @ aW® (dimension decomposes as w = w(!) + w(?)), then

XA = |_| MDD, w5 ME(vE) w@),
v(1)+v(2):v
Then for all u € N@o,
MC(V(l),W(l)) > MC(V(Q),W(z)) <
MED 4, wh) x ME(v® — u, w®),



Chambers and Attracting Sets

The restriction of partial polarization Polx to X* decomposes according
to the chamber € as

P01X|XA = POIX|XA7>O =+ P01X|XA,ﬁxed =+ POIX|XA7<O.

Definition

We define the index bundle

ind = Poly[xr 0 — Poly [xa >0 € K1(X%),

Lemma ([S F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

Polx|xa fixea i @ partial polarization on XA,




Elliptic Stable Envelope: Attractive Line Bundle

Definition ([A. Okounkov (2020)])
A line bundle £ on Ellt(X) is called attractive for a given chamber € if

degp £ = degp @(N;/XA),

where degp £ is the degree of the restriction of £ to the fiber along the
projection Ellt(X") — Ellt/a(X*).

e Each fiber of Ellt(X") — Ellt/(X*) is isomorphic to Ea.
e The deg, takes value in HO(XA, S2Char(A)).



Attractive Line Bundle

Consider a partial polarization Polx = Pol;<r -+ Poly with
Tx = Poly + A~ ! (Polf)Y + Poly + A(Poly )Y + €

From now on we fix a square root for ©(&).

Definition

Define a line bundle on Ellt(X):

Sx := O(Polx) ® O(£)®?

Proposition ([S F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

Sx is an attractive line bundle for every chamber € C ag.




Attractive Line Bundle

For a line bundle £ on Elly(X), define twisted dual £V := LY @ ©(T%).
Then )
SY = O(Pol) ® O(€)®3

therefore 8Y is the attractive line bundle associated to the opposite
partial polarization.

We define
Sx.a:=i*8x ® @(—N;/XA), i : Ell(X*) — EllT(X)

On the other hand, we also have the line bundle Sxa defined using the
restriction of the partial polarization Polya. Then we have:

Sx.A @ U2 8xa ® O(h) ™M @ 7(—hdet ind)*U.

U and 7(---) will be explained soon.



Elliptic Stable Envelope: Kahler Parameters

Assumption. We assume that Pic(X) is finitely generated as an abelian
group, and we fix a set of generators {£}7_,, which induces

K = (CX)" - Pic(X) @z C*.

K is called the Kahler torus.
e For quiver variety M¢(v,w), K can be chosen to be (C*)%o.

We choose an equivariant lift £; € Pict(X) for each £f, then get Chern
classes ¢; : Ellt(X) — E. We define

U(Lz,zl) = (Ci X 1)*uPoincaré, Cc; X 1l g EHT(X) X 821‘ — E x 827‘,7

where we identify E = 8;/1_, and WUpoincare is the universal line bundle on
ExEV.



Kahler Parameters

Definition ([M. Aganagic, A. Okounkov (2016)])

We define the extended equivariant elliptic cohomology

ET(X) = EHT(X) X EK
which is a scheme over
BT,X = (ST X 8K.

And we define a line bundle on Et(X):

U o= ®U(LZ, Zz)
i=1




Kahler Parameters

For a homomorphism between abelian varieties g : E1 — €k, we
associate an automorphism 7(g) : Bt x = Bt x by

(t,2) = (£, 2+ g(1))-

We use the same notation 7(g) : ET(X) = E+(X).
e 7(g) does not affect Ellt(X), it only shift the K3hler parameters.

@ The line bundle 7(g)*U @ U~! is trivial along €k direction, i.e. it is
the pullback of a line bundle from Ellt(X).

@ The line bundle 7(g)*U ® U~ depends linearly on g, i.e.

7(g1)"U ® 7(g2)*U _ 7(g1 - g2)"U
u u u ’




Kahler Parameters

An example is as follows: for a pair
p € Char(T) = Hom(E1,E), X € Cochar(K) = Hom(E, k),
Ap € Hom(E7, Ek), so we have 7(Ap).

It is known [M. Aganagic, A. Okounkov (2016)] that there is a meromorphic
section

J(A - )
I(N)I (1)’

of the line bundle 7(Ap)*U @ U~! on EllT(X), here A - p is the
coordinate multiplication.



Elliptic Stable Envelope: Main Results

For a line bundle £ on Ell+(X), denote

Lp=1"L®O(~Ny ya), @ Ellt(X*) — Ellt(X)

Theorem ([A. Okounkov (2020)])
If £ is an attractive line bundle for the chamber €, then there exists a
unique meromorphic section

Stabe s, € T(ET(X x XM)\A, L@ UK (Lo @ U)Y),

such that
. f
© it is supported on Attry

@ its restriction to the complement of Attrg is given by [Attre].

Here A C By i is the locus where Stabg s, has poles.



Main Results

Theorem ([S. F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

If X is partially-polarized, then for every chamber €, there exists a unique
meromorphic section
Stabg s, € T(ET(X x X))\ A, 8x @ UK (8xa @ U)7),
such that
@ it is supported on Attr’é

@ its restriction to the complement of Attrg is given by
(—1)*kind[Attre].




Main Results

Stabg¢ s, gives rise to a map between sheaves
Stang)< : SX7A RU—8x U

on Bt x\A, such that
(1) The support of Stabg s, is triangular with respect to <, i.e.

Stabe s |7, x7 =0

for a pair of connected components of X such that F; £ Fi.
(2) The diagonal

Stabagx FixF; = (71)rk indﬁ(N_

X/]:i)




Example: Abelian Case

Consider a torus G = Gey X Goqqa ™~ R @ RY. There is a Cartesian
diagram

P07 /G —— g (0)7°/G

| |

{0} ——— o

o T=AxCy = ((C*)*R/G) x C), where C; ~R&®R" by
R® I IRY.

X = pu;1(0)$=%% /G is a T-equivariant smooth deformation of

Xo 1= u~1(0)°7%% /G over the base g2,

The inclusion Xy < X induces Ellt(Xp) 2 EllT(X). And Sx & 8x,.

Components of XA <=5 components of XA
Stab@’gx = Stabgygxo.



Example: A; Quiver

Consider an A; quiver Q with one odd node. Take v = N,w = L, and
¢ =(_, then

e MCS(N, L) is nonempty if and only if N < L

o If nonempty then

ME(N, L) = Tot(V®E — Gr(N, L)),

where V is the tautological bundle of rank N.

@ In this case A = (C*)Z and T = A x C. A acts on both the base
and the fiber of Tot(V®L — Gr(N, L)), and C; scales the fiber with
weight A~ 1.

@ Connected components of A-fixed points are labelled by
order-preserving embedding p : {1,--- ,N} — {1,--- | L}.

@ Denote by {mq,--- ,mp} the coordinates on Lie(A)g, then we
choose the chamber

Cz{m1<~--<mL}



Example: A; Quiver

Equivariant parameters:
@ gauge group GLy: s = {s,}V;
@ flavour torus A: = = {z;}L ;.

Kahler torus K = C*, with Kahler parameter z.
The natural inclusion i ,}(0)7%%/G — [R @ RY/G] induces a map

@ Sx is actually defined on £t x .

o Every component F,, of XA is a vector space, thus

Ellr(X x F,) & Elly(X)



Example: A; Quiver

Then the elliptic stable envelope is

1
Stabg sy |xxr, = Symg, [(H om0, @, Z)) c (H 79)] :

a>b (sasb 1)

e Symg, = summation over permutations {54} + {S5(a)}oesy

o f,,(s,@,h,z) is the following function

£n(s,2,h,2) = i Sx;;m i H I(sx;) H Y(sxjh)

<m j>m



R-Matrix

Fix a partial polarization and write Stabe = Stabg s, .

Definition

Let €, €, be two chambers in Lie(A), then we define the R-matrix

R¢2E¢1 o= Stabgj o Stabgl.

This is a map from Sya ® 7(—Adetind;y)*U to Sya ® 7(—hdetindy)*U,
where ind; and indy are index bundles for the chambers €; and €,
respectively.

It follows from definition that

R¢3H€2 R€2H(’31 = R€3H€1 .



Wall R-Matrix

Let ¢’ C € be a face, and let A’ C A be the subtorus associated to the
span of €’ in Lie(A). Then
e ¢/¢ is a chamber of A/A’.

o There is a partial polarization Poly|ya gyeq 00 X*', 50 we get
attractive lien bundle Syar.

@ So we have stable envelope on XA
Stabc/c/,xA/ o SXA/,A ® u— SxA/ ® U
o (Triangle Lemma)

Stabe(z) = Stabg(z) o Stabg e/ (2 — Iidet indya ).



Wall R-Matrix

If ¢ = ¢ N ¢, is of codimension one, then we say €; and ¢, are
separated by the wall @', and define the wall R-matrix

Ryan == Re,jerce, /e
Ryan only involves one equivariant parameter coming from A/A’.

Example. Suppose that A = (C*)3 and let my, mo, m3 be coordinates
on Lie(A)g. Consider two chambers:

Cio3 = {m1 <me < mg}, C301 = {mg < ma < ml}.

There are two paths that connects €53 and €3o1:
Q Cio3 — €30 — €319 — €30
O €23 — Ca13 — Ca31 — 391

Expansion of Re,,, ¢ ., in two ways:



Dynamical YBE

The Triangle Lemma implies:

Rio(z — hdet indg(lg))ng(z — hdet ind(lg)g)R23(z — hdet ind1(23)) =
R23(Z — hdet ind(23)1)R13(Z — hdet indg(lg))ng(z — hdet ind(lg)g),

where R,;; is the ij-wall R-matrix, and the subscript of ind means the
wall and chamber for which the index bundle is taken, for example, 3(12)
means the chamber {ms < m; = may}.

We get the dynamical Yang-Baxter equation.



Quiver R-Matrix

Let Q be a quiver with decomposition of nodes Qp = Q5" U Q549.

@ We choose ¢ =(_.
1, i€eqQq,
-1, i€Q,.
We define the action of C; on the doubled quiver Q by

We further decompose Q¢ = QS’ UQq, and set ¢; = {

Tq -%/a Q; az

Cr-weight | 0 | —cp@) | 0 | —ci

We take A = (C*)3 ~ W such that W decomposes into eigenspaces

W =u WO + W@ 4 ysw®,



Quiver R-Matrix

Define the signed adjacency matrix of @
Qij = ¢j - #(a € Q1 : h(a) = j,t(a) = 1),

and define diagonal matrices:

Cis 1€ Q8V7
Dii=ci, Piu=  odd
0, €.

Definition

Define the quiver R-matrix
R%(2) := Ryan(z + A(P — Q")v),

where z := {z;};cq, are the Kahler parameters corresponding to the
ample line bundles (det V;) 1.




Quiver R-Matrix

Let p := Dw — Cv where
C=2P-Q-Q"
Then the dynamical YBE reads:
R%(2)R%(2z — is®)R3(2) = R (2 — AR (2)RE (2 — ip®).

Here we have suppressed the equivariant parameters (spectral
parameters), Rg(z) should be Rg—(uj — U, Z)



Example: s[(1]1)

Consider a quiver () with one odd node.
@ Choose ( = (_.
@ Choose ¢; = 1.
e Choose the framing dimensions w(!) = w(?) = w(®) = 1.
Then
@ MS(wh) is disjoint union of two points,
@ Ex(MS(wM)) is a free module of rank two over &, x &, x &..
Label the basis by

v = [ME(0,1)] w1 = [M(1,1)]

Q@ MS(wh + w®) = ptuTot (O(—1)%2 — PL) LC™



Example: s[(1]1)

The quiver R-matrix in the basis {vy ® vg,v1 ® vy, vy ® v1,v1 ® V1 }:

1 0 0 0
0 9(2)9(zh )0 (u) 9 ()9 (uzh ™) 0
0 I(zh—1)29(uh—1) I(zh=1)9(u—1h)
16y 2) = 0| 2meGutn 9(w) 0 ’
I(zh=1)9(u=Th) J(uh—T)

DYBE reads (variables written multiplicatively):
R (u, 2) R (uw, 2/ MR (w, 2) = R (w, 2/ MR (uw, 2)R7y (u, 2/h),

which is the DYBE for s[(1|1) in the fundamental representation.



Example: sl(n|1)

Consider the quiver:

U1 V2 Un—1 Up,

() ®

@ Choose ( = (_.
@ Choose ¢; =1 for all i € Q.
e Choose w() = w® =w® =(1,0,---,0)



Example: sl(n|1)

Then

@ MS(wW) is the disjoint union of 7 + 1 points.

@ Er(MS(wM))is a free module of rank n + 1 over &, x &, x &,
basis labelled by {vy }7_-

Q@ C; =20,;(1 —0in) —0it1,; —di—1;, (1 <4,5 < n), which is the
symmetric Cartan matrix of sl(n|1).

@ p(vq) is the weight of v, in the fundamental rep of sl(n|1).

0 MS(w + w®) is disjoint union of the following four kinds of

varieties:

pt, T*P', Tot(0(-1)%* —P'), C*.



Example: sl(n|1)

The quiver R-matrix is

R%(u, 2)(vy ® v5) =
Vo ®U[j, a = /3 < /n/7
D(U)’UQ®’I}B7 O[:ﬁ:’l%

C(u)vy ® vg —|—B( hi—%.n Hz at12i)V8 ® Vo, a < B,
A(u,h™ Sa,n fept1 l)va®vg

+B(u,hl>n T p0 26 Hos@ua’ B<O¢-
where
. ) = JENVERT)I(w) y D) (uz)
A = =g 0 P Gty
V(u I(uh
Clu) = ﬁ(u(h)l)’ D(u) = 19(751;1)’



K-Theory and Cohomology Limit

In the ¢ — 0 limit, the E = C* /% degenerates to a nodal
compactification of C*, and Ell1(X) degenerates to K1(X) @ C

@ Because of half-periodicity property of ¥-function:
I(e?>™x) = —J(x), their ¢ — 0 limit is defined on the double cover
of C*.

@ For the limit of elliptic stable envelope, one should take ¢ — 0 limit
in a twisted way:

Staby := lirr%) [(det Polx)fé o Stabg o (det Pole)%} o ags € KT(XXXA).
q—)

where s € Pict(X) ®z R is generic.

@ A further reduction from the K-theory to cohomology can be defined
by

Stabe := lowest cohomological degree term in ch(Stab}),



K-Theory and Cohomology Limit

Assume that either
@ the gauge group is abelian, or
e X is a quiver variety,

then

Proposition ([S F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

Staby is the K-theoretic stable envelope with slope s for the chamber €,
and Stabe is the cohomological stable envelope for the chamber €.




K-Theory and Cohomology Limit: A; Quiver

In the example of A; quiver with an odd node,

N
. #(i>p(a))
Stab@([‘rp]) =h 2 SymSN l(H fp(a)(sa,w,ha S)

a=1

where f,, (s, x, h,s) is

)

H a(sqsy ')

a>b

=il

fon(s, @, h,s) := (52 H (1—s1z;h) H (1- h_ls_lxj ),

i<m j>m

)|



K-Theory and Cohomology Limit: A; Quiver

A further reduction to cohomology gives

Stabe([}—] —SymSN [(Hf (a0, 2, h) <H5 1Sb>‘|’

where f,,, (s, x, h) is the following function

fm (s, @, h) := H(s+mi) H (s +z; + h).

i<m j>m

This recovers the result of [R. Rimanyi and L. Rozanky (2021)].



Rational R-Matrix of sl(n|1)

Reduction to cohomology for the elliptic dynamical R-matrix of sl(n|1)
gives

R(u):P(uﬁhH—uf#).

e P is the usual swapping-tensor operator: P(v, ® vg) = v3 ® vq,
o II is the super swapping-tensor operator:
M(ve ® vg) = (~1)=elos @ v,
We can rewrite
(u — h)TIPR(u) = ul — All,

the RHS is the rational R-matrix for the fundamental representation of
sl(n|1) in the literature [E. Ragoucy and G. Satta, (2007)].



Representation Theoretic Perspective

Consider a finite or affine type A quiver

) (X ( ) (X (

.

This reminds us of Kac-Dynkin diagram

O X O O & 29

We found that the dynamical shifts g in DYBE are weights in a certain
highest-weight module of sl(m|n) or sl(m|n).



Representation Theoretic Perspective

Conjecture ([S F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

Let Q be a finite or affine type A quiver with nodes decorated as above,
and let gg be the Lie superalgebra associated with the corresponding
Kac-Dynkin diagram. The there exist actions

En+(9q) ~ Er(MS(w))
Un(dg) ~ K1(ME(w))
Yi(gq) ~ Hr(M(w))

Moreover, all the actions factor through the corresponding

Maulik-Okounkov quantum groups constructed via the stable envelopes
for MS(w).




Representation Theoretic Perspective

Theorem ([M Yamazaki and Y.Z. In progress])

The above conjecture is true.

@ We anticipate that the conjecture is still true when @ is not of type
A, the corresponding algebra should be replaced by the quiver BPS
algebra studied by Gelakhov-Li-Yamazaki.

o If Q3¢ = (), then the corresponding statement is a result of A.
Negut.



Future Directions

@ Relation to integrable systems.
@ Stable envelopes from 4d Chern-Simons theory.

© Compare the modules of the quiver BPS algebra coming from stable
envelope with the ones studied by Gelakhov-Li-Yamazaki.

@ It will be nice if there is a 3d A/ = 2 mirror symmetry for the stable
envelope, generalizing the mirror symmetry in the 3d A/ = 4 setting.



The End

Thank You!



