Elliptic stable envelopes for certain non-symplectic varieties, and dynamical R-matrices for super spin chains from 3d $\mathcal{N}=2$ quiver gauge theories

Yehao Zhou^a

Based on the joint work arXiv:2308.12333 with Seyed Faroogh Moosavian^{b,c}, Nafiz Ishtiaque^d

^aKavli IPMU ^bMcGill U. ^cOxford U. ^dIHES

Joint HEP-TH Seminar, BIMSA September 13, 2023

Outline

- Introduction
 - R-Matrix and Yang-Baxter Equation
 - 2 R-Matrix from Stable Envelope
- Higgs Branch of 3d $\mathcal{N} = 2$ Gauge Theories
 - Generalities
 - 2 Abelian Gauge Theories
 - Quiver Gauge Theories
- Review of Equivariant Elliptic Cohomology
- Elliptic Stable Envelope
 - Partial Polarization
 - Ohambers and Attracting Sets
 - Attractive Line Bundle
 - Kähler Parameters
 - Main Results and Examples
 - 6 K-Theory & Cohomology Degeneration

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Representation Theoretic Perspective
- Future Directions

Consider a chain of L spin-1/2 with nearest-neighbor interactions and periodic boundary condition:

$$H = -\frac{1}{2} \sum_{i=1}^{L} \left(J_x \sigma_i^x \sigma_{i+1}^x + J_y \sigma_i^y \sigma_{i+1}^y + J_z \sigma_i^z \sigma_{i+1}^z \right)$$

This is a Heisenberg spin chain model. Depending on coupling J_x, J_y, J_z , it is called

A D M A

- XYZ model, if J_x, J_y, J_z are different from each other,
- XXZ model, if $J_x = J_y \neq J_z$,
- XXX model, if $J_x = J_y = J_z$.

For the XXX model, [H. Bethe (1931)] completely solved the eigenvalues and eigenvectors, using a method which is nowadays called *Coordinate Bethe Ansatz*. Bethe's work became the starting point of quantum integrability.

Later, [L. D. Faddeev, E. K. Sklyanin, and L. A. Takhtajan (1979)] developed the *Algebraic Bethe Ansatz (ABA)* (also called Quantum Inverse Scattering Method (QISM)).

The ABA, among other things, gives a transfer matrix ${\cal T}(u)$ which satisfies

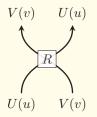
$$[T(u), T(v)] = 0, \quad \forall (u, v) \in \mathbb{C}^2,$$

such that $T(u) = \text{Id} + \sum_{i \ge 1} T_i u^{-i}$ with $T_1 = \text{Hamiltonian}$, and Bethe's eigenvector is a common eigenvector for T(u) for all $u \in \mathbb{C}$.

In the framework of ABA, the key to the integrability is a collection of $\ensuremath{\textbf{R}\xspace-matrices}$

$$R_{UV}(u,v): U \otimes V \longrightarrow U \otimes V,$$

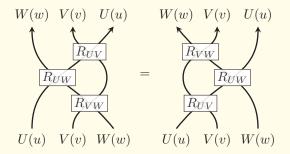
meromorphically depends on spectral parameters (u, v). Pictorially presented as:



which satisfies the Yang-Baxter Equation(YBE)

 $R_{UV}(u, v)R_{UW}(u, w)R_{VW}(v, w) = R_{VW}(v, w)R_{UW}(u, w)R_{UV}(u, v).$

Pictorially presented as:



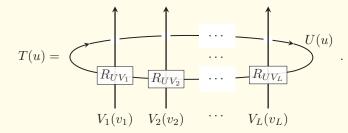
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

For simplicity, we assume that $R_{UV}(u, v) = R_{UV}(u - v)$.

Given the spin chain Hilbert space $\mathcal{H} = \bigotimes_{i=1}^{L} V_i$, we add an auxiliary site U to it with spectral parameter u. Then we define the transfer matrix:

$$T(u) := \operatorname{tr}_U[R_{UV_1}(u-v_1)R_{UV_2}(u-v_2)\cdots R_{UV_L}(u-v_L)] \in \operatorname{End}(\mathcal{H}),$$

which can be depicted in a diagram as:



Then YBE \implies T(u) commutes with each other, i.e.

$$[T(u), T(v)] = 0, \quad \forall (u, v) \in \mathbb{C}^2,$$

More generally, we can define

$$\mathcal{T}_j^i(u) := \operatorname{tr}_U[E_j^i R_{UV_1}(u-v_1) R_{UV_2}(u-v_2) \cdots R_{UV_L}(u-v_L)] \in \operatorname{End}(\mathcal{H}),$$

where E_j^i is the elementary matrix in End(U). In general, $\mathcal{T}_j^i(u)$ do not commute with each other, they satisfy the *RTT relations*:

$$R_{12}(u-v)\mathcal{T}_1(u)\mathcal{T}_2(v) = \mathcal{T}_2(v)\mathcal{T}_1(u)R_{12}(u-v)$$

where $\mathcal{T}_a(u) = E_i^j \otimes \mathcal{T}_j^i(u) \in \operatorname{End}(U_a \otimes \mathcal{H}), a = 1, 2.$

▲□▶▲□▶▲□▶▲□▶ = のへで

Definition

Fix U together with R-matrix R(u), we define the **spectrum generating** algebra \mathcal{A} to be the algebra generated by the the modes $\mathcal{T}^i_{j;n}$ in $\mathcal{T}^i_j(u) = \mathrm{Id} + \sum_{n=1}^{\infty} \mathcal{T}^i_{j;n} u^{-n}$ subject to RTT relations.

Example

In the XXX spin chain model, $U = \mathbb{C}^2$ and

$$R(u) = \mathrm{Id} + \frac{\hbar}{u}P,$$

where $\Pi(v_a \otimes v_b) = v_b \otimes v_a$. In this case

 $\mathcal{A}\cong \mathsf{Y}_{\hbar}(\mathfrak{gl}(2)),$

the Yangian of $\mathfrak{gl}(2)$.

In general, R(u) depends on the spectral parameter u in a periodic way

$$R(u + \Lambda) = R(u)$$

for certain discrete subgroup $\Lambda \subset \mathbb{C}$, we call \mathbb{C}/Λ the **spectral curve**.

For Heisenberg spin chains, the spectral curves and spectral generating algebras are the following.

Spin chain	Spectral curve	Spectrum generating algebra ${\mathcal A}$
XXX	\mathbb{C}	Yangian, $Y_{\hbar}(\mathfrak{gl}(2))$
XXZ	$\mathbb{C}^{ imes} = \mathbb{C}/\mathbb{Z}$	Quantum affine, $\mathfrak{U}_{\hbar}(\widehat{\mathfrak{gl}}(2))$
XYZ	$\mathbb{E}_{\tau} = \mathbb{C}/(\mathbb{Z} \oplus \tau\mathbb{Z})$	Elliptic quantum group, $E_{ au,\hbar}(\mathfrak{gl}(2))$

A D M A

Question: How to find R-matrices?

- Algebraically, one way is to replace $\mathfrak{gl}(2)$ by more general Lie (super) algebras and play with quantum groups.
- In this talk, we focus on a different (but related) approach, which is hinted from the gauge theories.

In the work of [N. Nekrasov, S. Shatashvili (2009)], a correspondence between integrable spin chain models and SUSY gauge theories with 4 supercharges was proposed.

For example

XXX model with L sites and N magnons (excitation) \longleftrightarrow 2d $\mathcal{N} = (2,2) \ U(N)$ with L fundamental hypermultiplets

A particular essence of the Bethe/Gauge correspondence is

Hilbert space $\mathcal{H} \iff$ Cohomology of Higgs branch $H(\mathcal{M}_H)$

e.g. $\mathcal{H}(N,L) := N$ magnon sector in XXX model with L sites,

 $\mathcal{H}(N,L) \cong H(T^*\mathrm{Gr}(N,L)).$

This suggests a geometric approach to quantum integrability.

Introduction: Bethe/Gauge

- It was not clear in Nekrasov-Shatashvili's original paper that how to see the R-matrix or the full spectrum generating algebra from the Higgs branch geometry.
- There were works on the math side concerning quantum algebras acting on (generalized) cohomology of certain spaces:

```
\begin{split} & [\mathsf{Nakajima} \ (1999)] \mathfrak{U}_q(L\mathfrak{g}_Q) \curvearrowright K_{\mathrm{eq}}(\mathcal{M}_Q), \\ & [\mathsf{Varagnolo} \ (2000)] \mathsf{Y}_\hbar(\mathfrak{g}_Q) \curvearrowright H_{\mathrm{eq}}(\mathcal{M}_Q). \end{split}
```

Q: a quiver. \mathfrak{g}_Q : Kac-Moody algebra associated to Q. \mathcal{M}_Q : Nakajima quiver varieties (recalled later in this talk).

The rational R-matrix (i.e. R(u) is a rational function of u) from the Higgs branch geometry was later found by [D. Maulik and A. Okounkov (2013)], using a construction called the **stable envelope**.

- Assume that X is a complex symplectic variety with a torus T action, and a subtorus A ⊂ T fixing the symplectic form.
- A stable envelope is a map

Stab :
$$H_T(X^A) \to H_T(X),$$

subject to certain conditions (reviewed later in this talk).

• Stab depends on a choice of *chamber*

$$\mathfrak{C} \subset \operatorname{Lie}(A)_{\mathbb{R}}$$

and the R-matrix of a pair of chambers $\mathfrak{C}_2, \mathfrak{C}_1$ is defined as

$$R_{\mathfrak{C}_2,\mathfrak{C}_1} := \operatorname{Stab}_{\mathfrak{C}_2}^{-1} \circ \operatorname{Stab}_{\mathfrak{C}_1} : H_T(X^A) \to H_T(X^A).$$

It follows from definition that

$$R_{\mathfrak{C}_n,\mathfrak{C}_{n-1}}R_{\mathfrak{C}_{n-1},\mathfrak{C}_{n-2}}\cdots R_{\mathfrak{C}_2,\mathfrak{C}_1}=R_{\mathfrak{C}_n,\mathfrak{C}_1}.$$

 If there are three chambers C₃, C₂, C₁, then we can write R_{-C₁, C₁} in two ways:

$$R_{-\mathfrak{C}_1,\mathfrak{C}_3}R_{\mathfrak{C}_3,\mathfrak{C}_2}R_{\mathfrak{C}_2,\mathfrak{C}_1} = R_{-\mathfrak{C}_1,\mathfrak{C}_1} = R_{-\mathfrak{C}_1,-\mathfrak{C}_2}R_{-\mathfrak{C}_2,-\mathfrak{C}_3}R_{-\mathfrak{C}_3,\mathfrak{C}_1}$$

 In the above case, if assume moreover that each pair C_i, C_j is separated by a wall C_{ij}, then Maulik-Okounkov's theory of stable envelope implies that

$$R_{-\mathfrak{C}_i,-\mathfrak{C}_j}=R_{\mathfrak{C}_j,\mathfrak{C}_i},$$
 denoted by R_{ji}

If we set $R_{-\mathfrak{C}_1,\mathfrak{C}_3} = R_{31}$, $R_{\mathfrak{C}_3,\mathfrak{C}_2} = R_{32}$, $R_{\mathfrak{C}_2,\mathfrak{C}_1} = R_{21}$, then we have YBE:

$$R_{31}R_{32}R_{21} = R_{21}R_{32}R_{31}$$

- The main examples are Nakajima quiver varieties M_Q, in this case the spectrum generating algebra (Maulik-Okounkov Yangian), denoted by Y^{MO}(Q), is expected to be isomorphic to a Cartan-doubled version of Y_ħ(g_Q) (proven in finite ADE case by [M. McBreen (2013)]).
- The particular example $Q = A_1$ gives the R-matrix of XXX spin chain, and $\mathsf{Y}^{\mathrm{MO}}(A_1) \cong \mathsf{Y}_{\hbar}(\mathfrak{gl}(2))$.
- Cohomology can be replaced by K-theory or elliptic cohomology, the corresponding stable envelopes for hypertoric varieties and Nakajima quiver varieties were constructed by [M. Aganagic and A. Okounkov (2016)].

K-theory \longrightarrow trigonometric R-matrix,

elliptic cohomology \longrightarrow elliptic dynamical R-matrix.

 Physical realization of elliptic stable envelopes were recently worked out by [M. Dedushenko and N. Nekrasov (2021)], and independently by [M. Bullimore and D. Zhang (2021)]. In the above formulation of stable envelope, X is assumed to be complex symplectic. Typically it is a Higgs branch of 3d $\mathcal{N} = 4$ gauge theory.

For gauge theory with 4 supercharges, e.g. 3d $\mathcal{N}=2,$ the Higgs branch is not necessarily symplectic.

Question: Can we extend the construction of stable envelopes to the Higgs branch of some 3d $\mathcal{N} = 2$ theory which do not have $\mathcal{N} = 4$ SUSY?

• [R. Rimányi and L. Rozanky (2021)] studied $\operatorname{Tot}(V \to \operatorname{Gr}(N,L))$ for certain vector bundles V, e.g. $\mathcal{O}(-1)^{\oplus 2}$ on \mathbb{P}^1 . They show that cohomological stable envelopes exist for these varieties, and the R-matrix is

$$\mathrm{Id} + \frac{\hbar}{u} \Pi \in \mathrm{End}(\mathbb{C}^{1|1} \otimes \mathbb{C}^{1|1})$$

 $\Pi(v_a\otimes v_b)=(-1)^{|v_a|\cdot|v_b|}v_b\otimes v_a.$ This is the rational R-matrix for $\mathfrak{gl}(1|1).$

- $Tot(V \rightarrow Gr(N, L))$ is the Higgs branch of a 3d $\mathcal{N} = 2 U(N)$ theory with L fundamental hypermultiplets.
- In [S. F. Moosavian, N. Ishtiaque, and Y. Z. (2023)], we show that elliptic stable envelopes exist for the Higgs branches of 3d $\mathcal{N} = 2$ quiver gauge theories. $\operatorname{Tot}(V \to \operatorname{Gr}(N,L))$ is the special case when $Q = A_1$.

Higgs Branch of 3d $\mathcal{N} = 2$ Gauge Theories: Generalities

The essential data extracted from a 3d $\mathcal{N}=2$ gauge theory is

- **(**) a complex algebraic group G,
- 2 a complex G-representation \mathbf{M} ,
- ${\ensuremath{ \bullet} }$ a G-invariant algebraic function $\mathcal{W}:\mathbf{M}\to\mathbb{C},$
- $\ \, \bullet \ \, \text{and a character} \ \, \zeta: G \to \mathbb{C}^{\times}.$

The Higgs branch of the 3d $\mathcal{N}=2$ gauge theory associated to $(G,\mathbf{M},\mathcal{W},\zeta)$ is then the GIT quotient

$$\mathcal{M}_H(G, \mathbf{M}, \mathcal{W}, \zeta) := \operatorname{Crit}(\mathcal{W})^{\zeta - ss} / G.$$

Assumption. We assume that the semistable locus $Crit(\mathcal{W})^{\zeta-ss}$ is smooth and the action of G on it is free.

Under the above assumption, $\mathcal{M}_H(G, \mathbf{M}, \mathcal{W}, \zeta)$ is smooth.

Higgs Branch: Generalities

A typical example is as follows.

- Take $G = G_{ev} \times G_{odd}$, $\mathcal{R} \in \operatorname{Rep}(G)$, and then take $\mathbf{M} := \mathcal{R} \oplus \mathcal{R}^{\vee} \oplus \mathfrak{g}_{ev}$.
- We choose a complex moment map $\mu : \mathcal{R} \oplus \mathcal{R}^{\vee} \to \mathfrak{g}$ for the G action, and define $\mu_{\text{ev}} : \mathcal{R} \oplus \mathcal{R}^{\vee} \to \mathfrak{g}_{\text{ev}}^{\vee}$ to be the composition $\operatorname{pr}_{\text{ev}} \circ \mu$, where $\operatorname{pr}_{\text{ev}} : \mathfrak{g}^{\vee} \to \mathfrak{g}_{\text{ev}}^{\vee}$ is the projection to the even part.
- We take $\mathcal{W} = \langle X, \mu_{ev} \rangle$ where X is the coordinate on \mathfrak{g}_{ev} and $\langle \cdot, \cdot \rangle$ is the pairing between \mathfrak{g}_{ev} and \mathfrak{g}_{ev}^{\vee} .
- Then we choose a generic character $\zeta : G \to \mathbb{C}^{\times}$.

In this case, the Higgs branch is then isomorphic to

$$\mathcal{M}_H(G, \mathbf{M}, \mathcal{W}, \zeta) \cong \mu_{\mathrm{ev}}^{-1}(0)^{\zeta - ss} / G$$

Note that $\mu^{-1}(0)^{\zeta-ss}/G \hookrightarrow \mu_{ev}^{-1}(0)^{\zeta-ss}/G$.

When G is abelian, choose \mathcal{R} such that we get exact sequence of abelian groups:

$$1 \longrightarrow G \longrightarrow (\mathbb{C}^{\times})^{\mathrm{rk}\mathcal{R}} \longrightarrow Q \longrightarrow 1.$$

Then we have a commutative diagram

- The squares are Cartesian.
- $\bar{\mu}$ is flat.
- $\mu^{-1}(0)^{\zeta-ss}/G$ is a hypertoric variety, and $(\mathcal{R}\oplus\mathcal{R}^{\vee})^{\zeta-ss}/G$ is known as the Lawrence toric variety.

Higgs Branch: Abelian Gauge Theories

 If the charge matrix A : Z^{rkR} → Char(G) is surjective and unimodular, i.e. every rkG × rkG submatrix has determinant ∈ {0,±1}, then µ is smooth.

Assumption. When we talk about Higgs branch of abelian gauge theories, we always assume the charge matrix is surjective and unimodular.

• Under the above assumption, we have isomorphisms

$$H(\mu^{-1}(0)^{\zeta-ss}/G) \cong H(\mu_{\mathrm{ev}}^{-1}(0)^{\zeta-ss}/G) \cong H((\mathcal{R} \oplus \mathcal{R}^{\vee})^{\zeta-ss}/G)$$

In fact, every fiber $\bar{\mu}^{-1}(x)$ is diffeomorphic to $\bar{\mu}^{-1}(0)$, which is $\mu^{-1}(0)^{\zeta-ss}/G$ [T. Hausel and B. Sturmfels (2002)].

A large class of GIT quotients comes from 3d $\mathcal{N}=2$ quiver gauge theories.

- Let $Q = (Q_0, Q_1)$ be a quiver, Q_0 =set of nodes, Q_1 =set of arrows.
- $h, t: Q_1 \rightarrow Q_0$ maps an edge to its head and tail, respectively.
- We separate Q₀ into two parts Q₀ = Q₀^{ev} ⊔ Q₀^{odd}, called even and odd respectively. Notations:



 Let w, v ∈ N^{Q₀} be Q₀-tuples of natural numbers, called framing dimension vector and gauge dimension vector respectively.

 $\bullet\,$ The gauge group $G=G_{\rm ev}\times G_{\rm odd}$ is such that

$$G_{\text{ev}} = \prod_{i \in Q_0^{\text{ev}}} \operatorname{GL}(\mathbf{v}_i), \quad G_{\text{odd}} = \prod_{i \in Q_0^{\text{odd}}} \operatorname{GL}(\mathbf{v}_i).$$

The representation space *R* is the following

$$\mathcal{R} = \bigoplus_{i \in Q_0} \operatorname{Hom}(V_i, W_i) \oplus \bigoplus_{a \in Q_1} \operatorname{Hom}(V_{t(a)}, V_{h(a)}),$$

• The flavour symmetry group $F = G_W \times \mathbb{C}_{\hbar}^{\times}$, such that

$$G_W = \prod_{i \in Q_0} \operatorname{GL}(\mathbf{w}_i),$$

 $\operatorname{GL}(\mathbf{w}_i)$ acts on W_i by fundamental representation, and $\mathbb{C}_{\hbar}^{\times}$ acts on $\mathcal{R} \oplus \mathcal{R}^{\vee}$ by scaling \mathcal{R}^{\vee} with weight \hbar^{-1} and fixing \mathcal{R} .

• Notations of elements in \mathcal{R} :

 $\alpha_i \in \operatorname{Hom}(V_i, W_i), \quad x_a \in \operatorname{Hom}(V_{t(a)}, V_{h(a)})$

For the dual representation \mathcal{R}^{\vee} :

 $\widetilde{\alpha}_i \in \operatorname{Hom}(W_i, V_i), \quad \widetilde{x}_a \in \operatorname{Hom}(V_{h(a)}, V_{t(a)})$

 \bullet The holomorphic symplectic form on $\mathcal{R}\oplus \mathcal{R}^{\vee}$ is

$$\omega = \sum_{a \in Q_1} \mathsf{d} x_a \wedge \mathsf{d} \widetilde{x}_a + \sum_{i \in Q_0} \mathsf{d} \alpha_i \wedge \mathsf{d} \widetilde{\alpha}_i,$$

• There is a moment map $\mu: \mathcal{R} \oplus \mathcal{R}^{\vee} \to \mathfrak{g}^{\vee}$ which is given by

$$\mu(x_a, \widetilde{x}_a, \alpha_i, \widetilde{\alpha}_i) = \sum_{a \in Q_1} [x_a, \widetilde{x}_a] + \sum_{i \in Q_0} \widetilde{\alpha}_i \alpha_i.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

• We choose a character $\zeta: G \to \mathbb{C}^{\times}$, ζ can be written as $\zeta(g) = \prod_{i \in Q_0} \det(g_i)^{\zeta_i}$.

Definition

The quiver variety is defined to be the GIT quotient

$$\mathcal{M}^{\zeta}(\mathbf{v}, \mathbf{w}) = \mu_{\mathrm{ev}}^{-1}(0)^{\zeta - ss} / G.$$

For a fixed \mathbf{w} , we write

$$\mathcal{M}^{\zeta}(\mathbf{w}) := \bigsqcup_{\mathbf{v} \in \mathbb{N}^{Q_0}} \mathcal{M}^{\zeta}(\mathbf{v}, \mathbf{w}).$$

For a generic $\zeta,$ we have $\mu_{\rm ev}^{-1}(0)^{\zeta-ss}=\mu_{\rm ev}^{-1}(0)^{\zeta-s},$ and

$$\mathcal{M}_H(G, \mathbf{M}, \mathcal{W}, \zeta) \cong \mathcal{M}^{\zeta}(\mathbf{v}, \mathbf{w}).$$

Lemma

Assume that ζ is generic then, $\mathcal{M}^{\zeta}(\mathbf{v}, \mathbf{w})$ is a smooth variety and the quotient map $\mu_{\text{ev}}^{-1}(0)^{\zeta-ss} \to \mathcal{M}^{\zeta}(\mathbf{v}, \mathbf{w})$ is a principal *G*-bundle.

Two generic ζ :

$$\zeta_+ := (1, \cdots, 1), \quad \zeta_- := (-1, \cdots, -1),$$

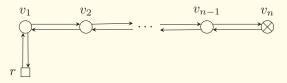
then according to the King's criterion for the stability [A. D. King (1994)], a quiver representation $(V, x_a, \tilde{x}_a, \alpha_i, \tilde{\alpha}_i) \in \mathcal{R} \oplus \mathcal{R}^{\vee}$ is ζ -semistable if and only if

 (ζ_+) If $S_i \subset V_i$ are subspaces such that S is preserved under the maps (x_a, \tilde{x}_a) , and that $S_i \supset \operatorname{Im}(\tilde{\alpha}_i)$ for all $i \in Q_0$, then S = V.

 (ζ_{-}) If $T_i \subset V_i$ are subspaces such that T is preserved under the maps (x_a, \tilde{x}_a) , and that $T_i \subset \text{Ker}(\alpha_i)$ for all $i \in Q_0$, then T = 0.

Example 1. If there is no odd node, i.e. Q_0^{odd} is empty, then $\mu_{\text{ev}} = \mu$ and in this case $\mathcal{M}^{\zeta}(\mathbf{v}, \mathbf{w})$ is a Nakajima quiver variety.

Example 2. Let Q be an A_n quiver. Below is the doubled quiver \overline{Q} :

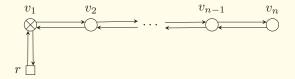


- $\mathcal{M}^{\zeta_+}(\mathbf{v}, \mathbf{w})$ is nonempty if and only if $r \geq v_1 \geq \cdots \geq v_n$.
- If nonempty then $\mathcal{M}^{\zeta_+}(\mathbf{v}, \mathbf{w}) \cong \mathrm{GL}_r \times^P \mathfrak{m}$, where $P \subset \mathrm{GL}_r$ stabilizes a fixed flag

 $F_{\bullet} = F_1 \subset F_2 \subset \cdots \subset F_n \subset F_{n+1} = \mathbb{C}^r, \quad \dim F_{n+1}/F_i = v_i$

 $\mathfrak{m} \subset \operatorname{Lie}(P) \text{ such that } \mathfrak{m}(F_{i+1}) \subset F_i \text{ for } i < n.$ • $\mathcal{M}^{\zeta_+}(\mathbf{v}, \mathbf{w})$ contains $T^*\operatorname{Fl}_{\mathbf{v}}$ as a closed subvariety.

Example 3. Let Q be an A_n quiver. Below is the doubled quiver Q.



- $\mathcal{M}^{\zeta_+}(\mathbf{v}, \mathbf{w})$ is nonempty if and only if $v_n \leq r$ and $v_{i+1} \leq v_i \leq v_{i+1} + r$.
- $\bullet\,$ If nonempty, $\mathcal{M}^{\zeta_+}(\mathbf{v},\mathbf{w})$ is the total space of a vector bundle on

$$\operatorname{Gr}_{\operatorname{GL}_r}^{\omega_{d_n}} \widetilde{\times} \operatorname{Gr}_{\operatorname{GL}_r}^{\omega_{d_{n-1}}} \widetilde{\times} \cdots \widetilde{\times} \operatorname{Gr}_{\operatorname{GL}_r}^{\omega_{d_1}}$$

where $d_i = v_i - v_{i+1}$ for $1 \le i \le n-1$ and $d_n = v_n$, and ω_i is the *i*-th fundamental coweight of GL_r .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

Remark. In the last example, if we replace the odd node with a even one, then $\mathcal{M}^{\zeta_+}(\mathbf{v}, \mathbf{w})$ is nonempty if and only if $r \ge v_1 \ge v_2 \ge \cdots \ge v_n$. In particular, if $n \ge 2$ then there exists \mathbf{v} such that $\mu^{-1}(0)^{\zeta_+-ss}$ is empty but $\mu_{\mathrm{ev}}^{-1}(0)^{\zeta_+-ss}$ is nonempty, for instance $\mathbf{v} = (nr, (n-1)r, \cdots, r)$.

Lemma

Let $A \subset T_W$ be a subtorus, such that W decomposes as eigenspaces

$$W = \bigoplus_{\lambda \in \operatorname{Char}(\mathsf{A})} W^{\lambda},$$

and we write $\mathbf{w} = \sum_{\lambda} \mathbf{w}^{\lambda}$ for the dimension vector, then

$$\mathcal{M}^{\zeta}(\mathbf{w})^{\mathsf{A}} \cong \prod_{\lambda \in \operatorname{Cochar}(\mathsf{A})} \mathcal{M}(\mathbf{w}^{\lambda}).$$

Let q be a nonzero complex number such that |q|<1, then take the elliptic curve $\mathbb{E}=\mathbb{C}^\times/q^\mathbb{Z}.$

For a reductive algebraic group G, the zeroth degree $G\mbox{-}{\rm equivariant}$ elliptic cohomology is a functor

$$\{G\text{-varieties}\} \to \{\text{schemes finite over } \mathcal{E}_G\}$$

 $X \mapsto \operatorname{Ell}_G(X),$

 \mathcal{E}_G is the moduli scheme of semistable principal *G*-bundles of trivial topological type on the dual elliptic curve \mathbb{E}^{\vee} .

We will not encounter nonzero degree elliptic cohomology in this talk.

Equivariant Elliptic Cohomology Base

 $\bullet~\mbox{For}$ a torus T ,

$$\mathcal{E}_T = \mathbb{E} \otimes_{\mathbb{Z}} \operatorname{Cochar}(T).$$

• If T is maximal torus of G then [R. Friedman, J. W. Morgan and E. Witten (1997)]

$$\mathcal{E}_G \cong \mathcal{E}_T / W.$$

• When G is simple and simply-connected, [Looijenga (1976)] showed that \mathcal{E}_G is isomorphic to the weighted projective space $\mathbb{P}(1, g_1, \cdots, g_r)$, where g_i are coefficients in the decomposition

$$\theta^{\vee} = \sum_{i} g_i \alpha_i^{\vee},$$

of the dual of highest root into simple coroots.

If H is another reductive group, and $P\to X$ is a G-equivariant principal H-bundle, then P induces the Chern class map:

 $c: \operatorname{Ell}_G(X) \to \operatorname{Ell}_H(\operatorname{pt}) = \mathcal{E}_H.$

Definition

For a vector bundle V of rank r, the Thom line bundle associated to V is defined as

 $\Theta(V) := c^* \mathcal{O}(D_{\Theta}), \quad D_{\Theta} = \{0\} + S^{r-1} \mathbb{E} \subset S^r \mathbb{E} = \mathcal{E}_{\mathrm{GL}_r}.$

• $\Theta(V)$ inherits a canonical section $\vartheta(V)$ from the effective divisor D_{Θ} .

Theta Bundles

• $\Theta(V) = \Theta(V_1) \otimes \Theta(V_1)$ for a short exact sequence

$$0 \to V_1 \to V \to V_2 \to 0,$$

so $\Theta: V \to \Theta(V)$ descends to a group homomorphism $K_G(X) \to \operatorname{Pic}(\operatorname{Ell}_G(X)).$

- The canonical section simply multiplies: $\vartheta(V) = \vartheta(V_1)\vartheta(V_2)$.
- We also have

$$\Theta(V^{\vee}) \cong \Theta(V),$$

such that the canonical section picks up a sign
$$\begin{split} \vartheta(V^{\vee}) &= (-1)^{\operatorname{rk} V} \vartheta(V).\\ \bullet \ \vartheta(x) &= (x^{\frac{1}{2}} - x^{-\frac{1}{2}}) \prod_{n > 0} (1 - q^n x) (1 - q^n x^{-1}). \end{split}$$

For a proper G-equivariant map $f: X \to Y$, assume that f factors as a regular embedding $i: X \hookrightarrow Z$ and a smooth projection $p: Z \to Y$, and that both i and p are G-equivariant, then there exists a distinguished element (Gysin map):

$$f_{\circledast} \in \operatorname{Hom}_{\mathcal{O}_{\operatorname{Ell}_G(Y)}}(f_*\Theta(T_f), \mathcal{O}_{\operatorname{Ell}_G(Y)}),$$

where $f_* : \operatorname{Ell}_G(X) \to \operatorname{Ell}_G(Y)$ is the induced map between elliptic cohomologies, and T_f is the relative tangent bundle.

If T_f equals to f^*V for some $V \in K_G(Y)$, then we denote by [X] the section $\Gamma(\text{Ell}_G(Y), \Theta(-V))$ induced by

$$\mathcal{O}_{\mathrm{Ell}_G(Y)} \longrightarrow f_* \mathcal{O}_{\mathrm{Ell}_G(X)} \xrightarrow{f_{\circledast}} \Theta(-V).$$

For example, let $N \to X$ be a *G*-equivariant vector bundle and let $i: X \hookrightarrow N$ be the zero section, then $f_* : \text{Ell}_G(X) \to \text{Ell}_G(N)$ is an isomorphism, and $i_{\circledast} \in \Gamma(\text{Ell}_G(X), \Theta(N))$ is the section $\vartheta(N)$.

For a section α of a coherent sheaf \mathcal{F} on $\operatorname{Ell}_G(X)$, and a *G*-invariant open subset $j: U \hookrightarrow X$, we say that α is supported on $X \setminus U$ if $j^*(\alpha) = 0$ in $\operatorname{Ell}_G(U)$.

We define $\mathrm{supp}(\alpha)$ to be the intersection of G-invariant closed subset that α is supported on.

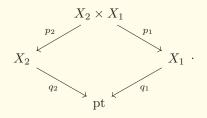
The Gysin map can be defined for compactly supported sections. Namely there exists a distinguished element

$$f_{\circledast} \in \operatorname{Hom}_{\mathcal{O}_{\operatorname{Ell}_G(Y)}}(f_*\Theta(T_f)_c, \mathcal{O}_{\operatorname{Ell}_G(Y)}),$$

where $\Theta(T_f)_c \subset \Theta(T_f)$ is the subsheaf of sections α such that $f|_{\text{supp}(\alpha)}$ is proper.

Correspondences

Consider the diagram



Assume that X_1 is smooth, then for a pair of line bundles $\mathcal{L}_i \in \operatorname{Pic}(\operatorname{Ell}_G(X_i))$, and for any section

 $\alpha \in \Gamma(\mathrm{Ell}_G(X_2 \times X_1), \mathcal{L}_2 \boxtimes (\mathcal{L}_1^{\vee} \otimes \Theta(T_{X_1}))),$

such that $\operatorname{supp}(\alpha)$ is proper over X_2 , α induces a map

$$q_{1*}\mathcal{L}_1 \xrightarrow{p_{2\circledast}(\alpha p_1^*(\cdot))} q_{2*}\mathcal{L}_2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Degree of Line Bundle

For a line bundle ${\mathcal L}$ on an abelian variety ${\mathcal A},$ we define

 $\deg \mathcal{L} := [\mathcal{L}] \in \mathsf{N}$ éron-Severi group $= \operatorname{Pic}(\mathcal{A})/\operatorname{Pic}^0(\mathcal{A}).$

• It is known that $NS(\mathcal{A}) \cong \{f \in Hom(\mathcal{A}, \mathcal{A}^{\vee}) : f = f^{\vee}\}$, and the isomorphism is given by [D. Mumford (1974)]

$$\mathcal{L} \mapsto (\phi_{\mathcal{L}} : x \mapsto x^* \mathcal{L} \otimes \mathcal{L}^{-1}).$$

- Let T be a torus, then Hom(E_T, E[∨]_T) is isomorphic to Char(T)^{⊗2} ⊗_Z End(E).
- We choose q generic so that $\operatorname{End}(\mathbb{E}) = \mathbb{Z}$, so $\operatorname{NS}(\mathcal{E}_T) \cong S^2\operatorname{Char}(T)$.
- Explicitly, any μ ∈ Char(T) gives a map φ_μ : ε_T → E, then deg φ^{*}_μO(D_Θ) = μ ⊗ μ ∈ S²Char(T). For V = Σ_μV_μ · μ ∈ K_T(pt),

$$\deg \Theta(V) = \sum_{\mu} (\dim V_{\mu}) \mu \otimes \mu.$$

In [M. Aganagic, A. Okounkov (2016)], an ingredient for defining elliptic stable envelope is a polarization:

$$T_X = T_X^{1/2} + \hbar^{-1} (T_X^{1/2})^{\vee} \in K_T(X).$$

This structure is absent for Higgs branch of a general 3d $\mathcal{N} = 2$ gauge theory. E.g. \exists polarization $\Longrightarrow \dim T_X$ is even, which is not true for $\operatorname{Tot}(\mathcal{O}(-1)^{\oplus 2} \to \mathbb{P}^1)$.

We introduce a generalization, called **partial polarization**, which will cover the 3d $\mathcal{N} = 2$ abelian or quiver gauge theories.

Setting. We denote by X a smooth quasi-projective complex variety with a torus T action, we fix a nontrivial group homomorphism $T \to \mathbb{C}^{\times}_{\hbar}$ and a subtorus $A \subset \ker(T \to \mathbb{C}^{\times}_{\hbar})$.

Definition ([S. F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

A partial polarization on X is the following data:

• a decomposition of the tangent bundle

$$T_{\mathsf{X}} = \operatorname{Pol}_{\mathsf{X}}^{+} + \hbar^{-1} (\operatorname{Pol}_{\mathsf{X}}^{+})^{\vee} + \operatorname{Pol}_{\mathsf{X}}^{-} + \hbar (\operatorname{Pol}_{\mathsf{X}}^{-})^{\vee} + \mathcal{E} \in K_{\mathsf{T}}(\mathsf{X}),$$

such that

(1)
$$\mathcal{E} = \mathcal{E}^{\vee}$$
 in $K_{\mathsf{T}}(\mathsf{X})$,

(2) $\Theta(\mathcal{E})$ admits a square root.

We define the opposite partial polarization to be

$$\operatorname{Pol}_{\mathsf{X}}^{\operatorname{op}} = \operatorname{Pol}_{\mathsf{X}}^{\operatorname{op},+} + \operatorname{Pol}_{\mathsf{X}}^{\operatorname{op},-} = \hbar^{-1}(\operatorname{Pol}_{\mathsf{X}}^{+})^{\vee} + \hbar(\operatorname{Pol}_{\mathsf{X}}^{-})^{\vee}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In practice, the existence of $\sqrt{\Theta(\mathcal{E})}$ is subtle. We give one criterion as follows:

Lemma ([S. F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

Let G be a reductive group whose derived subgroup [G,G] is simply connected and every simple constituent is of type A, C, D, E_6 , or G_2 . Let \mathcal{P} be a T-equivariant principal G-bundle on X, then $\Theta(\mathrm{adj}(\mathcal{P}))$ has a square root in $\operatorname{Pic}(\mathrm{Ell}_T(X))$.

Remark. When $G = GL_n$, the existence of $\sqrt{\Theta(\operatorname{adj}(\mathcal{P}))}$ follows from the "trick of diagonal" in the enumerative geometry.

Lemma ([N. Nekrasov, A. Okounkov (2014)])

Let \mathcal{L} be a line bundle on $Y \times Y$ such that $(12)^*\mathcal{L} \cong \mathcal{L}$, where (12) permutes two copies of Y, then $\Delta^*\mathcal{L}$ admits a square root.

Back to the case when $G = \operatorname{GL}_n$, $\operatorname{adj}(\mathcal{P}) \cong \operatorname{End}(\mathcal{V})$ for a T-equivariant vector bundle \mathcal{V} . Notice that $\Theta(\mathcal{V} \otimes \mathcal{V}^{\vee})$ is isomorphic to pullback $\Delta^* \Theta(\mathcal{V}_1 \boxtimes \mathcal{V}_2^{\vee})$ along the diagonal morphism

 $\Delta: \mathrm{Ell}_{\mathsf{T}}(\mathsf{X}) \hookrightarrow \mathrm{Ell}_{\mathsf{T}}(\mathsf{X}) \times \mathrm{Ell}_{\mathsf{T}}(\mathsf{X})$

Moreover,

$$(12)^* \Theta(\mathcal{V}_1 \boxtimes \mathcal{V}_2^{\vee}) \cong \Theta(\mathcal{V}_1^{\vee} \boxtimes \mathcal{V}_2) \cong \Theta(\mathcal{V}_1 \boxtimes \mathcal{V}_2^{\vee})$$

Thus $\Theta(\mathcal{V} \otimes \mathcal{V}^{\vee})^{1/2}$ exists.

Example. Suppose $G = G_{\text{ev}} \times G_{\text{odd}}$, $\mathcal{R} \in \text{Rep}(G)$ and $\mu_{\text{ev}} : \mathcal{R} \oplus \mathcal{R}^{\vee} \to \mathfrak{g}_{\text{ev}}$ is the moment map for G_{ev} . Assume moreover that G_{odd} is the reductive group whose derived subgroup $[G_{\text{odd}}, G_{\text{odd}}]$ is simply connected and every simple constituent is of type A, C, D, E_6, or G_2 . Then $\mathsf{X} := \mu_{\text{ev}}^{-1}(0)^{\zeta-ss}/G$ is a partially-polarized variety with

$$\begin{aligned} \operatorname{Pol}_{\mathsf{X}} &= \operatorname{Pol}_{\mathsf{X}}^{+} = \mathcal{R} - \operatorname{adj}(\mathcal{P}_{\operatorname{ev}}), \\ T_{\mathsf{X}} &= \operatorname{Pol}_{\mathsf{X}} + \hbar^{-1} \operatorname{Pol}_{\mathsf{X}}^{\vee} - \operatorname{adj}(\mathcal{P}_{\operatorname{odd}}) \end{aligned}$$

• $\mathcal{P}_{\mathrm{ev}} \times \mathcal{P}_{\mathrm{odd}}$ is the principal $G_{\mathrm{ev}} \times G_{\mathrm{odd}}$ bundle $\mu_{\mathrm{ev}}^{-1}(0)^{\zeta-ss} \to X$. • \mathcal{R} is the bundle associated to the representation \mathcal{R} .

Let Q be a quiver with decomposition of nodes $Q_0 = Q_0^{\text{ev}} \sqcup Q_0^{\text{odd}}$. In this case $\mathsf{T} = \mathsf{A} \times \mathbb{C}_{\hbar}^{\times}$, where $\mathsf{A} = T_W$ is the maximal torus of the flavour group.

We further decompose
$$Q_0 = Q_0^+ \sqcup Q_0^-$$
, and set $c_i = \begin{cases} 1, & i \in Q_0^+, \\ -1, & i \in Q_0^-. \end{cases}$

We define the action of $\mathbb{C}^{\times}_{\hbar}$ on the doubled quiver \overline{Q} by

	x_a	\widetilde{x}_a	α_i	$\widetilde{\alpha}_i$
$\mathbb{C}^{\times}_{\hbar}$ -weight	0	$-c_{h(a)}$	0	$-c_i$

Assumption. We assume that if $t(a) \in Q_0^{ev}$, then $c_{h(a)} = c_{t(a)}$.

In this setting,

$$\operatorname{Pol}_{\mathcal{M}}^{+} := \sum_{i \in Q_{0}^{+}} \mathcal{W}_{i} \mathcal{V}_{i}^{\vee} + \sum_{h(a) \in Q_{0}^{+}} \mathcal{V}_{h(a)} \mathcal{V}_{t(a)}^{\vee} - \sum_{j \in Q_{0}^{\operatorname{ev},+}} \mathcal{V}_{j} \mathcal{V}_{j}^{\vee},$$
$$\operatorname{Pol}_{\mathcal{M}}^{-} := \sum_{i \in Q_{0}^{-}} \mathcal{W}_{i} \mathcal{V}_{i}^{\vee} + \sum_{h(a) \in Q_{0}^{-}} \mathcal{V}_{h(a)} \mathcal{V}_{t(a)}^{\vee} - \sum_{j \in Q_{0}^{\operatorname{ev},-}} \mathcal{V}_{j} \mathcal{V}_{j}^{\vee},$$

is a partial polarization on $\mathcal{M}^{\zeta}(\mathbf{v},\mathbf{w})\text{,}$ and we have

$$T_{\mathcal{M}^{\zeta}(\mathbf{v},\mathbf{w})} = \operatorname{Pol}_{\mathcal{M}}^{+} + \hbar^{-1}(\operatorname{Pol}_{\mathcal{M}}^{+})^{\vee} + \operatorname{Pol}_{\mathcal{M}}^{-} + \hbar(\operatorname{Pol}_{\mathcal{M}}^{-})^{\vee} - \sum_{i \in Q_{0}^{\operatorname{odd}}} \mathcal{V}_{i}\mathcal{V}_{i}^{\vee},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Let $\operatorname{Cochar}(A)$ be the cocharacter lattice of A, and we denote

$$\mathfrak{a}_{\mathbb{R}} := \operatorname{Cochar}(\mathsf{A}) \otimes_{\mathbb{Z}} \mathbb{R} \subset \operatorname{Lie}(\mathsf{A}).$$

We define

- **Roots** of the pair (X, A) = set of weights {α} appearing in the normal bundle to X^A.
- A chamber = a connected component of the complement of hyperplanes cut out by roots, i.e.

$$\mathfrak{a}_{\mathbb{R}} \setminus \bigcup_{\alpha \in \text{roots}} \alpha^{\perp} = \bigsqcup_{i} \mathfrak{C}_{i}.$$

Let C be a chamber, then we say that a root α is attracting (resp. repelling) if α is positive (resp. negative) on C.

We define attracting subvariety

$$\mathsf{Attr}_{\mathfrak{C}}(\mathcal{F}) := \{ x \in \mathsf{X} \mid \lim_{t \to 0} \sigma(t) \cdot x \in \mathcal{F} \},\$$

for some $\sigma \in \mathfrak{C} \cap \operatorname{Cochar}(\mathsf{A})$.

- Attr_{\mathfrak{C}}(\mathcal{F}) does not depend on the choice of σ .
- Attr_c(\mathcal{F}) is the exponential of attracting part of the normal bundle $N^+_{\mathbf{X}/\mathcal{F}}$.

Define the union $\operatorname{Attr}_{\mathfrak{C}} := \coprod_{\mathcal{F}} \operatorname{Attr}_{\mathfrak{C}}(\mathcal{F})$, it admits an immersion

$$\mathsf{Attr}_{\mathfrak{C}} \hookrightarrow \mathsf{X} \times \mathsf{X}^\mathsf{A}, \quad x \mapsto (x, \lim_{t \to 0} \sigma(t) \cdot x).$$

• Attr $_{\mathfrak{C}}$ is not closed in $X \times X^A$.

We define ${\rm Attr}^f_{\mathfrak C}$ to be the set of pairs (x,y) that belongs to a chain of closures of attracting A-orbits.

• Attr^{*f*} is closed in $X \times X^A$.

We define a partial order \leq on the set of connected components of X^A by

$$\mathcal{F}_j \cap \overline{\operatorname{Attr}_{\mathfrak{C}}(\mathcal{F}_i)} \neq \emptyset \Longrightarrow \mathcal{F}_j \preceq \mathcal{F}_i.$$

We define closed subvarieties $Attr^<_{\mathfrak{C}} \subset Attr^\leq_{\mathfrak{C}} \subset X \times X^A$ by

$$\begin{split} \mathsf{Attr}_{\mathfrak{C}}^{<} &:= \bigcup_{\mathcal{F}_{j} \prec \mathcal{F}_{i}} \mathsf{Attr}_{\mathfrak{C}}(\mathcal{F}_{j}) \times \mathcal{F}_{i}, \\ \mathsf{Attr}_{\mathfrak{C}}^{\leq} &:= \bigcup_{\mathcal{F}_{j} \preceq \mathcal{F}_{i}} \mathsf{Attr}_{\mathfrak{C}}(\mathcal{F}_{j}) \times \mathcal{F}_{i}. \end{split}$$

• Note that $\operatorname{Attr}_{\mathfrak{C}}^f \cap (\operatorname{Attr}_{\mathfrak{C}}^{\leq} \setminus \operatorname{Attr}_{\mathfrak{C}}^{\leq}) = \operatorname{Attr}_{\mathfrak{C}}.$

Consider $X = \mathcal{M}^{\zeta_{-}}(\mathbf{v}, \mathbf{w})$ for a quiver Q with dimension vectors (\mathbf{v}, \mathbf{w}) and the stability condition ζ_{-} . Let $A = \mathbb{C}_{a}^{\times} \curvearrowright W$ such that $W = W^{(1)} \oplus aW^{(2)}$ (dimension decomposes as $\mathbf{w} = \mathbf{w}^{(1)} + \mathbf{w}^{(2)}$), then

$$\mathsf{X}^{\mathsf{A}} = \bigsqcup_{\mathbf{v}^{(1)} + \mathbf{v}^{(2)} = \mathbf{v}} \mathcal{M}^{\zeta}(\mathbf{v}^{(1)}, \mathbf{w}^{(1)}) \times \mathcal{M}^{\zeta}(\mathbf{v}^{(2)}, \mathbf{w}^{(2)}).$$

Then for all $\mathbf{u} \in \mathbb{N}^{Q_0}$,

$$\begin{split} \mathcal{M}^{\zeta}(\mathbf{v}^{(1)},\mathbf{w}^{(1)}) \times \mathcal{M}^{\zeta}(\mathbf{v}^{(2)},\mathbf{w}^{(2)}) \preceq \\ \mathcal{M}^{\zeta}(\mathbf{v}^{(1)}+\mathbf{u},\mathbf{w}^{(1)}) \times \mathcal{M}^{\zeta}(\mathbf{v}^{(2)}-\mathbf{u},\mathbf{w}^{(2)}), \end{split}$$

The restriction of partial polarization Pol_X to X^A decomposes according to the chamber $\mathfrak C$ as

$$\operatorname{Pol}_{\mathsf{X}}|_{\mathsf{X}^{\mathsf{A}}} = \operatorname{Pol}_{\mathsf{X}}|_{\mathsf{X}^{\mathsf{A}},>0} + \operatorname{Pol}_{\mathsf{X}}|_{\mathsf{X}^{\mathsf{A}},\operatorname{fixed}} + \operatorname{Pol}_{\mathsf{X}}|_{\mathsf{X}^{\mathsf{A}},<0}.$$

Definition

We define the index bundle

$$\mathsf{ind} = \mathrm{Pol}_{\mathsf{X}}^+|_{\mathsf{X}^\mathsf{A},>0} - \mathrm{Pol}_{\mathsf{X}}^-|_{\mathsf{X}^\mathsf{A},>0} \in K_\mathsf{T}(\mathsf{X}^\mathsf{A}),$$

Lemma ([S. F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

 $\operatorname{Pol}_X|_{X^A,\operatorname{fixed}}$ is a partial polarization on X^A .

Definition ([A. Okounkov (2020)])

A line bundle ${\mathcal L}$ on ${\rm Ell}_T(X)$ is called attractive for a given chamber ${\mathfrak C}$ if

$$\deg_{\mathsf{A}} \mathcal{L} = \deg_{\mathsf{A}} \Theta(N^{-}_{\mathsf{X}/\mathsf{X}^{\mathsf{A}}}),$$

where $\deg_A \mathcal{L}$ is the degree of the restriction of \mathcal{L} to the fiber along the projection $\operatorname{Ell}_T(X^A) \to \operatorname{Ell}_{T/A}(X^A).$

- Each fiber of $\operatorname{Ell}_T(X^A) \to \operatorname{Ell}_{T/A}(X^A)$ is isomorphic to $\mathcal{E}_A.$
- The deg_A takes value in $H^0(X^A, S^2Char(A))$.

Consider a partial polarization $\operatorname{Pol}_X = \operatorname{Pol}_X^+ + \operatorname{Pol}_X^-$ with

$$T_{\mathsf{X}} = \operatorname{Pol}_{\mathsf{X}}^{+} + \hbar^{-1} (\operatorname{Pol}_{\mathsf{X}}^{+})^{\vee} + \operatorname{Pol}_{\mathsf{X}}^{-} + \hbar (\operatorname{Pol}_{\mathsf{X}}^{-})^{\vee} + \mathcal{E}$$

From now on we fix a square root for $\Theta(\mathcal{E})$.

Definition

Define a line bundle on $\operatorname{Ell}_{\mathsf{T}}(\mathsf{X})$:

$$\mathcal{S}_{\mathsf{X}} := \Theta(\operatorname{Pol}_{\mathsf{X}}) \otimes \Theta(\mathcal{E})^{\otimes \frac{1}{2}}$$

Proposition ([S. F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

 \mathbb{S}_X is an attractive line bundle for every chamber $\mathfrak{C} \subset \mathfrak{a}_{\mathbb{R}}$.

For a line bundle \mathcal{L} on $\operatorname{Ell}_{\mathsf{T}}(\mathsf{X})$, define twisted dual $\mathcal{L}^{\triangledown} := \mathcal{L}^{\vee} \otimes \Theta(T_{\mathsf{X}})$. Then

$$\mathbb{S}_{\mathsf{X}}^{\nabla} \cong \Theta(\operatorname{Pol}_{\mathsf{X}}^{\operatorname{op}}) \otimes \Theta(\mathcal{E})^{\otimes \frac{1}{2}}$$

therefore $\mathcal{S}_X^{\triangledown}$ is the attractive line bundle associated to the opposite partial polarization.

We define

$$S_{X,A} := i^* S_X \otimes \Theta(-N^-_{X/X^A}), \quad i : \operatorname{Ell}_{\mathsf{T}}(\mathsf{X}^A) \to \operatorname{Ell}_{\mathsf{T}}(\mathsf{X})$$

On the other hand, we also have the line bundle \mathbb{S}_{X^A} defined using the restriction of the partial polarization $\mathrm{Pol}_{X^A}.$ Then we have:

$$S_{X,A} \otimes \mathcal{U} \cong S_{X^A} \otimes \Theta(\hbar)^{-\mathrm{rk} \operatorname{ind}} \otimes \tau(-\hbar \operatorname{det} \operatorname{ind})^* \mathcal{U}.$$

 $\operatorname{\mathcal{U}}$ and $\tau(\cdots)$ will be explained soon.

Assumption. We assume that Pic(X) is finitely generated as an abelian group, and we fix a set of generators $\{\mathcal{L}_i^\circ\}_{i=1}^r$, which induces

$$\mathsf{K} = (\mathbb{C}^{\times})^r \twoheadrightarrow \operatorname{Pic}(\mathsf{X}) \otimes_{\mathbb{Z}} \mathbb{C}^{\times}.$$

K is called the Kähler torus.

• For quiver variety $\mathcal{M}^{\zeta}(\mathbf{v}, \mathbf{w})$, K can be chosen to be $(\mathbb{C}^{\times})^{Q_0}$.

We choose an equivariant lift $\mathcal{L}_i \in \operatorname{Pic}_{\mathsf{T}}(\mathsf{X})$ for each \mathcal{L}_i° , then get Chern classes $c_i : \operatorname{Ell}_{\mathsf{T}}(\mathsf{X}) \to \mathbb{E}$. We define

 $\mathfrak{U}(\mathcal{L}_i, z_i) := (c_i \times 1)^* \mathfrak{U}_{\mathsf{Poincaré}}, \quad c_i \times 1 : \mathrm{Ell}_\mathsf{T}(\mathsf{X}) \times \mathcal{E}_{z_i} \to \mathbb{E} \times \mathcal{E}_{z_i},$

where we identify $\mathbb{E} \cong \mathcal{E}_{z_i}^{\vee}$, and $\mathcal{U}_{\mathsf{Poincaré}}$ is the universal line bundle on $\mathbb{E} \times \mathbb{E}^{\vee}$.

Definition ([M. Aganagic, A. Okounkov (2016)])

We define the extended equivariant elliptic cohomology

 $\mathsf{E}_{\mathsf{T}}(X) := \operatorname{Ell}_{\mathsf{T}}(X) \times \mathfrak{E}_{\mathsf{K}}$

which is a scheme over

$$\mathcal{B}_{\mathsf{T},\mathsf{X}} := \mathcal{E}_{\mathsf{T}} \times \mathcal{E}_{\mathsf{K}}.$$

And we define a line bundle on $E_T(X)$:

$$\mathfrak{U} := \bigotimes_{i=1}^{r} \mathfrak{U}(\mathcal{L}_i, z_i).$$

・ロト・西・・田・・田・ 白・ シック

For a homomorphism between abelian varieties $g: \mathcal{E}_T \to \mathcal{E}_K$, we associate an automorphism $\tau(g): \mathcal{B}_{T,X} \cong \mathcal{B}_{T,X}$ by

$$(t,z) \mapsto (t,z+g(t)).$$

We use the same notation $\tau(g) : E_T(X) \cong E_T(X)$.

- $\tau(g)$ does not affect $\operatorname{Ell}_{\mathsf{T}}(\mathsf{X})$, it only shift the Kähler parameters.
- The line bundle τ(g)*U ⊗ U⁻¹ is trivial along ε_K direction, i.e. it is the pullback of a line bundle from Ell_T(X).
- The line bundle $\tau(g)^* \mathcal{U} \otimes \mathcal{U}^{-1}$ depends linearly on g, i.e.

$$\frac{\tau(g_1)^*\mathcal{U}}{\mathcal{U}}\otimes\frac{\tau(g_2)^*\mathcal{U}}{\mathcal{U}}\cong\frac{\tau(g_1\cdot g_2)^*\mathcal{U}}{\mathcal{U}}$$

An example is as follows: for a pair

 $\mu \in \operatorname{Char}(\mathsf{T}) = \operatorname{Hom}(\mathcal{E}_{\mathsf{T}}, \mathbb{E}), \quad \lambda \in \operatorname{Cochar}(\mathsf{K}) = \operatorname{Hom}(\mathbb{E}, \mathcal{E}_{\mathsf{K}}),$

 $\lambda \mu \in \operatorname{Hom}(\mathcal{E}_{\mathsf{T}}, \mathcal{E}_{\mathsf{K}})$, so we have $\tau(\lambda \mu)$.

It is known [M. Aganagic, A. Okounkov (2016)] that there is a meromorphic section

$$rac{artheta(\lambda\cdot\mu)}{artheta(\lambda)artheta(\mu)}$$

of the line bundle $\tau(\lambda\mu)^*\mathcal{U}\otimes\mathcal{U}^{-1}$ on $\operatorname{Ell}_{\mathsf{T}}(\mathsf{X})$, here $\lambda\cdot\mu$ is the coordinate multiplication.

For a line bundle ${\mathcal L}$ on ${\rm Ell}_T(X),$ denote

$$\mathcal{L}_{\mathsf{A}} := i^* \mathcal{L} \otimes \Theta(-N^-_{\mathsf{X}/\mathsf{X}^{\mathsf{A}}}), \quad i : \operatorname{Ell}_{\mathsf{T}}(\mathsf{X}^{\mathsf{A}}) \to \operatorname{Ell}_{\mathsf{T}}(\mathsf{X})$$

Theorem ([A. Okounkov (2020)])

If \mathcal{L} is an attractive line bundle for the chamber \mathfrak{C} , then there exists a **unique** meromorphic section

$$\mathbf{Stab}_{\mathfrak{C},\mathbb{S}_{\mathsf{X}}} \in \Gamma(\mathsf{E}_{\mathsf{T}}(\mathsf{X} \times \mathsf{X}^{\mathsf{A}}) \backslash \mathbf{\Delta}, \mathcal{L} \otimes \mathfrak{U} \boxtimes (\mathcal{L}_{\mathsf{A}} \otimes \mathfrak{U})^{\nabla}),$$

such that

- *it is supported on* $Attr_{\mathfrak{C}}^{f}$
- 2) its restriction to the complement of $Attr_{\mathfrak{C}}^{\leq}$ is given by $[Attr_{\mathfrak{C}}]$.

Here $\Delta \subset \mathcal{B}_{\mathsf{T},\mathsf{K}}$ is the locus where $\mathbf{Stab}_{\mathfrak{C},\mathfrak{S}_{\mathsf{X}}}$ has poles.

Theorem ([S. F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

If X is partially-polarized, then for every chamber $\mathfrak{C},$ there exists a unique meromorphic section

$$\mathbf{Stab}_{\mathfrak{C}, \mathfrak{S}_{\mathsf{X}}} \in \Gamma(\mathsf{E}_{\mathsf{T}}(\mathsf{X} \times \mathsf{X}^{\mathsf{A}}) \backslash \boldsymbol{\Delta}, \mathfrak{S}_{\mathsf{X}} \otimes \mathfrak{U} \boxtimes (\mathfrak{S}_{\mathsf{X}, \mathsf{A}} \otimes \mathfrak{U})^{\nabla}),$$

such that

- it is supported on $\operatorname{Attr}^f_{\mathfrak{C}}$
- $\text{ (its restriction to the complement of } \mathsf{Attr}_{\mathfrak{C}}^< \text{ is given by } (-1)^{\mathrm{rk ind}}[\mathsf{Attr}_{\mathfrak{C}}].$

 $\mathbf{Stab}_{\mathfrak{C},\mathbb{S}_X}$ gives rise to a map between sheaves

$$\mathbf{Stab}_{\mathfrak{C},\mathbb{S}_{\mathsf{X}}}:\mathbb{S}_{\mathsf{X},\mathsf{A}}\otimes \mathfrak{U} \to \mathbb{S}_{\mathsf{X}}\otimes \mathfrak{U}$$

on $\mathcal{B}_{\mathsf{T},\mathsf{X}} \setminus \Delta$, such that

(1) The support of $\mathbf{Stab}_{\mathfrak{C},\mathbb{S}_X}$ is triangular with respect to \prec , i.e.

 $\mathbf{Stab}_{\mathfrak{C},\mathfrak{S}_{\mathsf{X}}}|_{\mathcal{F}_{j}\times\mathcal{F}_{i}}=0$

for a pair of connected components of X^A such that $\mathcal{F}_j \not\preceq \mathcal{F}_i$. (2) The diagonal

$$\mathbf{Stab}_{\mathfrak{C},\mathbb{S}_{\mathsf{X}}}|_{\mathcal{F}_{i}\times\mathcal{F}_{i}} = (-1)^{\mathrm{rk}\;\mathrm{ind}}\vartheta(N_{\mathsf{X}/\mathcal{F}_{i}}^{-})$$

Consider a torus $G = G_{ev} \times G_{odd} \curvearrowright \mathcal{R} \oplus \mathcal{R}^{\vee}$. There is a Cartesian diagram

$$\mu^{-1}(0)^{\zeta-ss}/G \longrightarrow \mu_{\text{ev}}^{-1}(0)^{\zeta-ss}/G$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\{0\} \longrightarrow \mathfrak{g}_{\text{ev}}^{\perp}$$

- $T = A \times \mathbb{C}^{\times}_{\hbar} = ((\mathbb{C}^{\times})^{\mathrm{rk}\mathcal{R}}/G) \times \mathbb{C}^{\times}_{\hbar}$, where $\mathbb{C}^{\times}_{\hbar} \curvearrowright \mathcal{R} \oplus \mathcal{R}^{\vee}$ by $\mathcal{R} \oplus \hbar^{-1}\mathcal{R}^{\vee}$.
- $X := \mu_{ev}^{-1}(0)^{\zeta-ss}/G$ is a T-equivariant smooth deformation of $X_0 := \mu^{-1}(0)^{\zeta-ss}/G$ over the base $\mathfrak{g}_{ev}^{\perp}$
- The inclusion $X_0 \hookrightarrow X$ induces $\operatorname{Ell}_T(X_0) \cong \operatorname{Ell}_T(X)$. And $S_X \cong S_{X_0}$.
- Components of $X_0^A \stackrel{1:1}{\longleftrightarrow}$ components of X^A .

•
$$\mathbf{Stab}_{\mathfrak{C},\mathfrak{S}_{\mathsf{X}}} = \mathbf{Stab}_{\mathfrak{C},\mathfrak{S}_{\mathsf{X}_0}}$$

Example: A_1 Quiver

Consider an A_1 quiver Q with one odd node. Take $\mathbf{v}=N,\mathbf{w}=L,$ and $\zeta=\zeta_-,$ then

- $\mathcal{M}^{\zeta}(N,L)$ is nonempty if and only if $N\leq L$
- If nonempty then

$$\mathcal{M}^{\zeta}(N,L) \cong \operatorname{Tot}(\mathcal{V}^{\oplus L} \to \operatorname{Gr}(N,L)),$$

where \mathcal{V} is the tautological bundle of rank N.

- In this case $A = (\mathbb{C}^{\times})^{L}$ and $T = A \times \mathbb{C}_{\hbar}^{\times}$. A acts on both the base and the fiber of $\operatorname{Tot}(\mathcal{V}^{\oplus L} \to \operatorname{Gr}(N, L))$, and $\mathbb{C}_{\hbar}^{\times}$ scales the fiber with weight \hbar^{-1} .
- Connected components of A-fixed points are labelled by order-preserving embedding $p: \{1, \cdots, N\} \hookrightarrow \{1, \cdots, L\}$.
- Denote by $\{m_1, \cdots, m_L\}$ the coordinates on $\mathrm{Lie}(\mathsf{A})_{\mathbb{R}}$, then we choose the chamber

$$\mathfrak{C} = \{m_1 < \cdots < m_L\}$$

Example: A_1 Quiver

Equivariant parameters:

1 gauge group
$$\operatorname{GL}_N$$
: $oldsymbol{s} = \{s_a\}_{a=1}^N$

(2) flavour torus A:
$$\boldsymbol{x} = \{x_i\}_{i=1}^L$$

Kähler torus $K = \mathbb{C}^{\times}$, with Kähler parameter z.

The natural inclusion $\mu_{\text{ev}}^{-1}(0)^{\zeta-ss}/G \hookrightarrow [\mathcal{R} \oplus \mathcal{R}^{\vee}/G]$ induces a map

$$\operatorname{Ell}_{\mathsf{T}}(\mathsf{X}) \to \operatorname{Ell}_{\mathsf{T}}([\mathcal{R} \oplus \mathcal{R}^{\vee}/G]) \cong \mathcal{E}_{\mathsf{T}} \times \mathcal{E}_G.$$

- S_X is actually defined on $\mathcal{E}_T \times \mathcal{E}_G$.
- Every component \mathcal{F}_p of X^A is a vector space, thus

$$\operatorname{Ell}_{\mathsf{T}}(\mathsf{X} \times \mathcal{F}_p) \cong \operatorname{Ell}_{\mathsf{T}}(\mathsf{X})$$

Then the elliptic stable envelope is

$$\mathbf{Stab}_{\mathfrak{C}, \mathbb{S}_{\mathsf{X}}}|_{\mathsf{X} \times \mathcal{F}_{p}} = \mathsf{Sym}_{S_{N}} \left[\left(\prod_{a=1}^{N} \mathbf{f}_{p(a)}(s_{a}, \boldsymbol{x}, \hbar, z) \right) \cdot \left(\prod_{a>b} \frac{1}{\vartheta(s_{a}s_{b}^{-1})} \right) \right],$$

• Sym_{S_N} = summation over permutations $\{s_a\} \mapsto \{s_{\sigma(a)}\}_{\sigma \in S_N}$

• $\mathbf{f}_m(s, \boldsymbol{x}, \hbar, z)$ is the following function

$$\mathbf{f}_m(s, \boldsymbol{x}, \hbar, z) := \frac{\vartheta(sx_m \hbar^{m-L} z)}{\vartheta(\hbar^{m-L} z)} \prod_{i < m} \vartheta(sx_i) \prod_{j > m} \vartheta(sx_j \hbar),$$

Fix a partial polarization and write $\mathbf{Stab}_{\mathfrak{C}} = \mathbf{Stab}_{\mathfrak{C}, \mathbb{S}_X}$.

Definition

Let $\mathfrak{C}_1, \mathfrak{C}_2$ be two chambers in $\operatorname{Lie}(\mathsf{A})$, then we define the R-matrix

$$\mathbf{R}_{\mathfrak{C}_2 \leftarrow \mathfrak{C}_1} := \mathbf{Stab}_{\mathfrak{C}_2}^{-1} \circ \mathbf{Stab}_{\mathfrak{C}_1}.$$

This is a map from $S_{X^A} \otimes \tau(-\hbar \det \operatorname{ind}_1)^* \mathcal{U}$ to $S_{X^A} \otimes \tau(-\hbar \det \operatorname{ind}_2)^* \mathcal{U}$, where ind_1 and ind_2 are index bundles for the chambers \mathfrak{C}_1 and \mathfrak{C}_2 respectively.

It follows from definition that

$$\mathbf{R}_{\mathfrak{C}_3\leftarrow\mathfrak{C}_2}\mathbf{R}_{\mathfrak{C}_2\leftarrow\mathfrak{C}_1}=\mathbf{R}_{\mathfrak{C}_3\leftarrow\mathfrak{C}_1}.$$

Let $\mathfrak{C}'\subset\mathfrak{C}$ be a face, and let $A'\subset A$ be the subtorus associated to the span of \mathfrak{C}' in $\mathrm{Lie}(A).$ Then

- $\mathfrak{C}/\mathfrak{C}'$ is a chamber of A/A'.
- There is a partial polarization ${\rm Pol}_X|_{X^{A'},{\rm fixed}}$ on $X^{A'},$ so we get attractive lien bundle $\mathbb{S}_{X^{A'}}.$
- So we have stable envelope on $X^{A'}$:

$$\mathbf{Stab}_{\mathfrak{C}/\mathfrak{C}',X^{A'}}: \mathbb{S}_{X^{A'},A}\otimes \mathfrak{U} \to \mathbb{S}_{X^{A'}}\otimes \mathfrak{U}$$

• (Triangle Lemma)

 $\mathbf{Stab}_{\mathfrak{C}}(z) = \mathbf{Stab}_{\mathfrak{C}'}(z) \circ \mathbf{Stab}_{\mathfrak{C}/\mathfrak{C}'}(z - \hbar \det \mathsf{ind}_{\mathsf{X}^{\mathsf{A}'}}).$

If $\mathfrak{C}' = \mathfrak{C}_1 \cap \mathfrak{C}_2$ is of codimension one, then we say \mathfrak{C}_1 and \mathfrak{C}_2 are separated by the wall \mathfrak{C}' , and define the **wall R-matrix**

$$\mathbf{R}_{\mathrm{wall}} := \mathbf{R}_{\mathfrak{C}_2/\mathfrak{C}' \leftarrow \mathfrak{C}_1/\mathfrak{C}'}.$$

 \mathbf{R}_{wall} only involves one equivariant parameter coming from A/A'.

Example. Suppose that $A = (\mathbb{C}^{\times})^3$ and let m_1, m_2, m_3 be coordinates on $\text{Lie}(A)_{\mathbb{R}}$. Consider two chambers:

 $\mathfrak{C}_{123} = \{ m_1 < m_2 < m_3 \}, \quad \mathfrak{C}_{321} = \{ m_3 < m_2 < m_1 \}.$

There are two paths that connects \mathfrak{C}_{123} and \mathfrak{C}_{321} :

Expansion of $\mathbf{R}_{\mathfrak{C}_{321} \leftarrow \mathfrak{C}_{123}}$ in two ways:

The Triangle Lemma implies:

$$\begin{aligned} \mathbf{R}_{12}(z - \hbar \det \mathsf{ind}_{3(12)}) \mathbf{R}_{13}(z - \hbar \det \mathsf{ind}_{(13)2}) \mathbf{R}_{23}(z - \hbar \det \mathsf{ind}_{1(23)}) &= \\ \mathbf{R}_{23}(z - \hbar \det \mathsf{ind}_{(23)1}) \mathbf{R}_{13}(z - \hbar \det \mathsf{ind}_{2(13)}) \mathbf{R}_{12}(z - \hbar \det \mathsf{ind}_{(12)3}), \end{aligned}$$

where \mathbf{R}_{ij} is the *ij*-wall R-matrix, and the subscript of ind means the wall and chamber for which the index bundle is taken, for example, 3(12) means the chamber $\{m_3 < m_1 = m_2\}$.

We get the dynamical Yang-Baxter equation.

Quiver R-Matrix

Let Q be a quiver with decomposition of nodes $Q_0 = Q_0^{\text{ev}} \sqcup Q_0^{\text{odd}}$.

• We choose $\zeta = \zeta_{-}$.

We further decompose $Q_0 = Q_0^+ \sqcup Q_0^-$, and set $c_i = \begin{cases} 1, & i \in Q_0^+, \\ -1, & i \in Q_0^-. \end{cases}$ We define the action of $\mathbb{C}_{\hbar}^{\times}$ on the doubled quiver \overline{Q} by

	x_a	\widetilde{x}_a	α_i	\widetilde{lpha}_i
$\mathbb{C}^{\times}_{\hbar}$ -weight	0	$-c_{h(a)}$	0	$-c_i$

We take $A = (\mathbb{C}^{\times})^3 \frown W$ such that W decomposes into eigenspaces

$$W = u_1 W^{(1)} + u_2 W^{(2)} + u_3 W^{(3)}$$

Quiver R-Matrix

Define the signed adjacency matrix of \boldsymbol{Q}

$$Q_{ij} = c_j \cdot \#(a \in Q_1 : h(a) = j, t(a) = i),$$

and define diagonal matrices:

$$\mathsf{D}_{ii} = c_i, \quad \mathsf{P}_{ii} = \begin{cases} c_i, & i \in Q_0^{\mathrm{ev}}, \\ 0, & i \in Q_0^{\mathrm{odd}}. \end{cases}$$

Definition

Define the quiver R-matrix

$$\mathbf{R}^Q(\boldsymbol{z}) := \mathbf{R}_{\text{wall}}(\boldsymbol{z} + \hbar(\mathsf{P} - \mathsf{Q}^{ ext{t}})\mathbf{v}),$$

where $z := \{z_i\}_{i \in Q_0}$ are the Kähler parameters corresponding to the ample line bundles $(\det V_i)^{-1}$.

Let $\mu := \mathsf{D}\mathbf{w} - \mathsf{C}\mathbf{v}$ where

$$\mathsf{C} = 2\mathsf{P} - \mathsf{Q} - \mathsf{Q}^{\mathsf{t}}.$$

Then the dynamical YBE reads:

$$\mathbf{R}^{Q}_{12}(\boldsymbol{z})\mathbf{R}^{Q}_{13}(\boldsymbol{z}-\hbar\boldsymbol{\mu}^{(2)})\mathbf{R}^{Q}_{23}(\boldsymbol{z}) = \mathbf{R}^{Q}_{23}(\boldsymbol{z}-\hbar\boldsymbol{\mu}^{(1)})\mathbf{R}^{Q}_{13}(\boldsymbol{z})\mathbf{R}^{Q}_{12}(\boldsymbol{z}-\hbar\boldsymbol{\mu}^{(3)}).$$

Here we have suppressed the equivariant parameters (spectral parameters), $\mathbf{R}_{ij}^Q(\boldsymbol{z})$ should be $\mathbf{R}_{ij}^Q(u_j - u_i, \boldsymbol{z})$

Example: $\mathfrak{sl}(1|1)$

Consider a quiver Q with one odd node.

- Choose $\zeta = \zeta_{-}$.
- Choose $c_1 = 1$.
- Choose the framing dimensions $\mathbf{w}^{(1)} = \mathbf{w}^{(2)} = \mathbf{w}^{(3)} = 1.$

Then

- () $\mathcal{M}^{\zeta}(\mathbf{w}^{(1)})$ is disjoint union of two points,
- ∂ E_T(M^ζ(w⁽¹⁾)) is a free module of rank two over E_x × E_ħ × E_z. Label the basis by

$$v_0 = [\mathcal{M}^{\zeta}(0,1)] \quad v_1 = [\mathcal{M}^{\zeta}(1,1)]$$

Example: $\mathfrak{sl}(1|1)$

The quiver R-matrix in the basis $\{v_0 \otimes v_0, v_1 \otimes v_0, v_0 \otimes v_1, v_1 \otimes v_1\}$:

$\mathbf{R}^Q(u,z) =$	1	0	0	0),
	0	$\frac{\vartheta(z)\vartheta(z\hbar^{-2})\vartheta(u)}{\vartheta(z\hbar^{-1})^2\vartheta(u\hbar^{-1})}$	$\frac{\vartheta(\hbar)\vartheta(uz\hbar^{-1})}{\vartheta(z\hbar^{-1})\vartheta(u^{-1}\hbar)}$	0	
	0	$rac{artheta(\hbar)artheta(zu^{-1}\hbar^{-1})}{artheta(z\hbar^{-1})artheta(u^{-1}\hbar)}$	$rac{artheta(u)}{artheta(u\hbar^{-1})}$	0	
	0	0	0	$\frac{\vartheta(u\hbar)}{\vartheta(u^{-1}\hbar)}$	

,

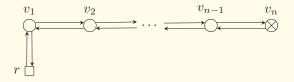
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

DYBE reads (variables written multiplicatively):

 $\mathbf{R}_{12}^{Q}(u,z)\mathbf{R}_{13}^{Q}(uw,z/\hbar)\mathbf{R}_{23}^{Q}(w,z) = \mathbf{R}_{23}^{Q}(w,z/\hbar)\mathbf{R}_{13}^{Q}(uw,z)\mathbf{R}_{12}^{Q}(u,z/\hbar),$

which is the DYBE for $\mathfrak{sl}(1|1)$ in the fundamental representation.

Consider the quiver:



▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Choose $\zeta = \zeta_-$.
- Choose $c_i = 1$ for all $i \in Q_0$.
- Choose $\mathbf{w}^{(1)} = \mathbf{w}^{(2)} = \mathbf{w}^{(3)} = (1, 0, \cdots, 0)$

Example: $\mathfrak{sl}(n|1)$

Then

- $\mathcal{M}^{\zeta}(\mathbf{w}^{(1)})$ is the disjoint union of n+1 points.
- $\textbf{@} \ \mathsf{E}_{\mathsf{T}}(\mathcal{M}^{\zeta}(\mathbf{w}^{(1)})) \text{is a free module of rank } n+1 \text{ over } \mathcal{E}_{x} \times \mathcal{E}_{\hbar} \times \mathcal{E}_{z}, \\ \text{basis labelled by } \{v_{\alpha}\}_{\alpha=0}^{n}.$
- $C_{i,j} = 2\delta_{i,j}(1 \delta_{i,n}) \delta_{i+1,j} \delta_{i-1,j}, (1 \le i, j \le n)$, which is the symmetric Cartan matrix of $\mathfrak{sl}(n|1)$.
- $\mu(v_{\alpha})$ is the weight of v_{α} in the fundamental rep of $\mathfrak{sl}(n|1)$.

pt,
$$T^* \mathbb{P}^1$$
, $\operatorname{Tot} \left(\mathcal{O}(-1)^{\oplus 2} \to \mathbb{P}^1 \right)$, \mathbb{C}^4 .

The quiver R-matrix is

$$\mathbf{R}^{Q}(u, \mathbf{z})(v_{\alpha} \otimes v_{\beta}) = \\ = \begin{cases} v_{\alpha} \otimes v_{\beta}, & \alpha = \beta < n, \\ D(u)v_{\alpha} \otimes v_{\beta}, & \alpha = \beta = n, \\ C(u)v_{\alpha} \otimes v_{\beta} + B(u, \hbar^{-\delta_{\beta,n}} \prod_{i=\alpha+1}^{\beta} z_{i})v_{\beta} \otimes v_{\alpha}, & \alpha < \beta, \\ A(u, \hbar^{-\delta_{\alpha,n}} \prod_{i=\beta+1}^{\alpha} z_{i}^{-1})v_{\beta} \otimes v_{\alpha}, & \beta < \alpha. \end{cases}$$

where

$$\begin{split} A(u,z) &= \frac{\vartheta(z\hbar)\vartheta(z\hbar^{-1})\vartheta(u)}{\vartheta(z)^2\vartheta(u\hbar^{-1})}, \qquad B(u,z) = \frac{\vartheta(\hbar)\vartheta(uz)}{\vartheta(z)\vartheta(u^{-1}\hbar)}, \\ C(u) &= \frac{\vartheta(u)}{\vartheta(u\hbar^{-1})}, \qquad D(u) = \frac{\vartheta(u\hbar)}{\vartheta(u^{-1}\hbar)}, \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

K-Theory and Cohomology Limit

In the $q \to 0$ limit, the $\mathbb{E} = \mathbb{C}^{\times}/q^{\mathbb{Z}}$ degenerates to a nodal compactification of \mathbb{C}^{\times} , and $\mathrm{Ell}_{\mathsf{T}}(\mathsf{X})$ degenerates to $K_{\mathsf{T}}(\mathsf{X}) \otimes \mathbb{C}$

- Because of half-periodicity property of ϑ -function: $\vartheta(e^{2\pi i}x) = -\vartheta(x)$, their $q \to 0$ limit is defined on the double cover of \mathbb{C}^{\times} .
- $\bullet\,$ For the limit of elliptic stable envelope, one should take $q\to 0$ limit in a twisted way:

$$\mathsf{Stab}^{\mathsf{s}}_{\mathfrak{C}} := \lim_{q \to 0} \left[(\det \operatorname{Pol}_{\mathsf{X}})^{-\frac{1}{2}} \circ \mathbf{Stab}_{\mathfrak{C}} \circ (\det \operatorname{Pol}_{\mathsf{X}^{\mathsf{A}}})^{\frac{1}{2}} \right] |_{z \mapsto zq^{\mathsf{s}}} \in K_{\mathsf{T}}(\mathsf{X} \times \mathsf{X}^{\mathsf{A}}).$$

where $s \in \operatorname{Pic}_{\mathsf{T}}(\mathsf{X}) \otimes_{\mathbb{Z}} \mathbb{R}$ is generic.

 A further reduction from the K-theory to cohomology can be defined by

 $\operatorname{Stab}_{\mathfrak{C}} := \operatorname{\mathsf{lowest}} \operatorname{\mathsf{cohomological}} \operatorname{\mathsf{degree}} \operatorname{\mathsf{term}} \operatorname{\mathsf{in}} \operatorname{ch}(\operatorname{\mathsf{Stab}}^{\mathsf{s}}_{\mathfrak{C}}),$

Assume that either

- the gauge group is abelian, or
- X is a quiver variety,

then

Proposition ([S. F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

 $\operatorname{Stab}^{s}_{\mathfrak{C}}$ is the K-theoretic stable envelope with slope s for the chamber \mathfrak{C} , and $\operatorname{Stab}_{\mathfrak{C}}$ is the cohomological stable envelope for the chamber \mathfrak{C} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In the example of A_1 quiver with an odd node,

$$\mathsf{Stab}^{\mathsf{s}}_{\mathfrak{C}}([\mathcal{F}_p]) = \hbar^{\frac{\#(i>p(a))}{2}}\mathsf{Sym}_{S_N}\left[\left(\prod_{a=1}^N \mathsf{f}_{p(a)}(s_a, \boldsymbol{x}, \hbar, \boldsymbol{s})\right) \cdot \left(\prod_{a>b} \hat{\mathbf{a}}(s_a s_b^{-1})\right)\right]$$

where $f_m(s, \boldsymbol{x}, \hbar, \mathsf{s})$ is

$$f_m(s, \boldsymbol{x}, \hbar, \mathbf{s}) := (sx_m)^{\lfloor \mathbf{s} \rfloor} \prod_{i < m} (1 - s^{-1} x_i^{-1}) \prod_{j > m} (1 - \hbar^{-1} s^{-1} x_j^{-1}),$$

and $\hat{\mathbf{a}}(w) = \frac{1}{w^{\frac{1}{2}} - w^{-\frac{1}{2}}}.$

A further reduction to cohomology gives

$$\operatorname{Stab}_{\mathfrak{C}}([\mathcal{F}_p]) = \operatorname{Sym}_{S_N}\left[\left(\prod_{a=1}^N \operatorname{f}_{p(a)}(s_a, \boldsymbol{x}, \hbar)\right) \cdot \left(\prod_{a>b} \frac{1}{s_a - s_b}\right)\right],$$

where $f_m(s, \boldsymbol{x}, \hbar)$ is the following function

$$f_m(s, \boldsymbol{x}, \hbar) := \prod_{i < m} (s + x_i) \prod_{j > m} (s + x_j + \hbar).$$

This recovers the result of [R. Rimányi and L. Rozanky (2021)].

Reduction to cohomology for the elliptic dynamical R-matrix of $\mathfrak{sl}(n|1)$ gives

$$\mathbf{R}(u) = \mathbf{P}\left(\frac{u}{u-\hbar}\Pi - \frac{\hbar}{u-\hbar}\mathbf{1}\right).$$

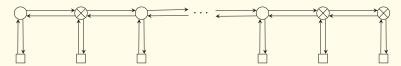
- P is the usual swapping-tensor operator: $P(v_{\alpha} \otimes v_{\beta}) = v_{\beta} \otimes v_{\alpha}$,
- Π is the super swapping-tensor operator: $\Pi(v_{\alpha} \otimes v_{\beta}) = (-1)^{|v_{\alpha}| \cdot |v_{\beta}|} v_{\beta} \otimes v_{\alpha}$

We can rewrite

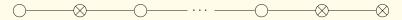
$$(u - \hbar)\Pi \mathrm{PR}(u) = u\mathbf{1} - \hbar\Pi,$$

the RHS is the rational R-matrix for the fundamental representation of $\mathfrak{sl}(n|1)$ in the literature [E. Ragoucy and G. Satta, (2007)].

Consider a finite or affine type A quiver



This reminds us of Kac-Dynkin diagram



We found that the dynamical shifts μ in DYBE are weights in a certain highest-weight module of $\widehat{\mathfrak{sl}}(m|n)$ or $\mathfrak{sl}(m|n)$.

(日) (四) (日) (日) (日)

Conjecture ([S. F. Moosavian, N. Ishtiaque, and Y. Z. (2023)])

Let Q be a finite or affine type A quiver with nodes decorated as above, and let \mathfrak{g}_Q be the Lie superalgebra associated with the corresponding Kac-Dynkin diagram. The there exist actions

 $E_{\hbar,\tau}(\mathfrak{g}_Q) \curvearrowright \mathsf{E}_{\mathsf{T}}(\mathcal{M}^{\zeta}(\mathbf{w}))$ $\mathcal{U}_{\hbar}(\hat{\mathfrak{g}}_Q) \curvearrowright K_{\mathsf{T}}(\mathcal{M}^{\zeta}(\mathbf{w}))$ $\mathsf{Y}_{\hbar}(\mathfrak{g}_Q) \curvearrowright H_{\mathsf{T}}(\mathcal{M}^{\zeta}(\mathbf{w}))$

Moreover, all the actions factor through the corresponding Maulik-Okounkov quantum groups constructed via the stable envelopes for $\mathcal{M}^{\zeta}(\mathbf{w})$.

Representation Theoretic Perspective

Theorem ([M. Yamazaki and Y.Z. In progress])

The above conjecture is true.

• We anticipate that the conjecture is still true when Q is not of type A, the corresponding algebra should be replaced by the quiver BPS algebra studied by Gelakhov-Li-Yamazaki.

• If $Q_0^{\text{odd}} = \emptyset$, then the corresponding statement is a result of A. Negut.

- Relation to integrable systems.
- Stable envelopes from 4d Chern-Simons theory.
- Output the modules of the quiver BPS algebra coming from stable envelope with the ones studied by Gelakhov-Li-Yamazaki.
- It will be nice if there is a 3d N = 2 mirror symmetry for the stable envelope, generalizing the mirror symmetry in the 3d N = 4 setting.

Thank You!

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @