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T T deformation: double trace

® The T T-deformation describes a one-parameter family of
quantum field theories via the differential equation

ol o = -1
— = TT, TT:==(T%T,5—(T2)? 1
5o =57 [ @xTT, ST T — (T2 (1)
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® The T T-deformation describes a one-parameter family of
quantum field theories via the differential equation
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® Despite being irrelevant, the T T-deformation features many
interesting properties: Integrability and solvability, S-matrix,
modular invariance, holography. Other interesting features
include connections to two-dimensional gravity and string
theory, correlation functions and entanglement entropy and
generalizations to higher and dimensions.
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T T deformation: double trace

® The T T-deformation describes a one-parameter family of
quantum field theories via the differential equation
ol =

- 1
— = 3XTT, TT:=—(T®T,5—(T%)? 1
5o =57 [ T, ST T — (T2 (1)

® Despite being irrelevant, the T T-deformation features many
interesting properties: Integrability and solvability, S-matrix,
modular invariance, holography. Other interesting features
include connections to two-dimensional gravity and string
theory, correlation functions and entanglement entropy and
generalizations to higher and dimensions.

® By definition, (1) is a double-trace deformation that can be
applied to any quantum field theory with a well-defined stress
tensor.
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T T deformation: single trace

® A single-trace version of the deformation can be defined for
theories obtained from the product of QFTs, and in particular,
to symmetric product orbifold CFTs.
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T T deformation: single trace

® A single-trace version of the deformation can be defined for
theories obtained from the product of QFTs, and in particular,
to symmetric product orbifold CFTs.

® A symmetric product orbifold CFT, denoted by
symN Mg := (Mq)N /Sy, consists of N copies of seed CFT
M supplemented by the condition that all states are
invariant under the symmetric group Sy. The central charge
of this theory is ¢ = Ngp.
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T T deformation: single trace

® A single-trace version of the deformation can be defined for
theories obtained from the product of QFTs, and in particular,
to symmetric product orbifold CFTs.

® A symmetric product orbifold CFT, denoted by
symN Mg := (Mq)N /Sy, consists of N copies of seed CFT
M supplemented by the condition that all states are
invariant under the symmetric group Sy. The central charge
of this theory is ¢ = Ngp.

® The single-trace T T deformation of sym"” M, yields another
symmetric product orbifold symN./\/lu, whose seed theory M,
is the T T deformation of the seed CFT M. In other words,
under the single-trace deformation each copy of the seed CFT
is deformed by the T T operator in that copy.
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® Double-trace T T-deformed CFTs have been argued to be
dual to semiclassical Einstein gravity with a negative
cosmological constant, with the metric satisfying Dirichlet
boundary conditions on a cutoff surface or, equivalently,
mixed boundary conditions at the asymptotic boundary.
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® Double-trace T T-deformed CFTs have been argued to be
dual to semiclassical Einstein gravity with a negative
cosmological constant, with the metric satisfying Dirichlet
boundary conditions on a cutoff surface or, equivalently,
mixed boundary conditions at the asymptotic boundary.

® On the other hand, single-trace T T-deformed CFTs have
been argued to be dual to the long string sector of string
theory on three-dimensional linear dilaton and
TsT-transformed backgrounds.
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@ Partition function of T T-deformed CFT and modular invariance

On the universal behavior of TTbar-deformed CFTs 7 /39



Partition function of T T-deformed CFT and modular invariance
0e0000000000000

e Let us consider a T T-deformed CFT quantized on a cylinder
of size 2. The spectrum of the deformed theory can be
written as

E) = —5-(1 = I+ 3EQ) + 42T0P).  J(u) = J(0)

where E(u) = E (1) + Er(p) is the deformed energy and
J(p) = EL(p) — Er(p) is the deformed angular momentum.
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e Let us consider a T T-deformed CFT quantized on a cylinder
of size 2. The spectrum of the deformed theory can be
written as

1

E() = —5, (1~ V1 +4pE(0) +442J(0)%),  J(p) = J(0)

where E(u) = E (1) + Er(p) is the deformed energy and

J(p) = EL(p) — Er(p) is the deformed angular momentum.
® When i < 0 the spectrum becomes complex for large values

of the undeformed energy E(0). When p > 0, the energy of

the vacuum obtained by letting E(0) = —c/12,J(0) =0 is

complex when pc > 3.
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e Let us consider a T T-deformed CFT quantized on a cylinder
of size 2. The spectrum of the deformed theory can be
written as

E) = —5-(1 = I+ 3EQ) + 42T0P).  J(u) = J(0)

where E(u) = E (1) + Er(p) is the deformed energy and
J(p) = EL(p) — Er(p) is the deformed angular momentum.
® When i < 0 the spectrum becomes complex for large values
of the undeformed energy E(0). When p > 0, the energy of
the vacuum obtained by letting E(0) = —c/12,J(0) =0 is
complex when pc > 3.
® We will assume that the deformation parameter satisfies
0 < &5 <1 to avoid complex spectrum.
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Partition function: double trace

The partition function of a T T-deformed CFT on a torus is
defined in terms of the deformed spectrum by

Z(T, T; ‘u) = Tr (qEL(M)E’ER(H)> = Z d(E[_, ER)eQT""TEL(N)—QW"%ER(H)
Ei Er

= / dE, dErp(Ey, Eg)e2™EL() =277 Er(n)
(3)

where 7 is the modular parameter and g = e*™'". d(E,, Eg) is the
degeneracy of the spectrum and p(Ej, ER) is the spectrum density
in the average meaning.
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Modular invariance

® The partition function satisfies the following differential
equation

0uZ = = |(r = 7)0:00 — 0, — 0000, + L-0,| z ()
-7

i T

which is a direct consequence of the differential equation
obeyed by the deformed spectrum.
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Modular invariance

® The partition function satisfies the following differential
equation
1 _ 2u
OZ = — [(1—=7)0:07 — (07 — 07)0y + ——=0u| Z (4)
i T—T
which is a direct consequence of the differential equation
obeyed by the deformed spectrum.
® Crucially, the partition function is invariant under modular
transformations in the sense that

ar+b at+b n

:Z T*
(c7'+d7c7"+d’|c7'+d|2) (.75 1) (5)
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® Note that the deformation parameter 1 does not change
under modular transformations. Rather, it is the dimensionless
deformation parameter u/R? that changes, and the
transformation of 1 in (5) comes entirely from the change of
the spatial circle, R — |cT + d|R.
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® Note that the deformation parameter 1 does not change
under modular transformations. Rather, it is the dimensionless
deformation parameter u/R? that changes, and the
transformation of 1 in (5) comes entirely from the change of
the spatial circle, R — |cT + d|R.

® The modular S transformation 7 — —1/7, together with the
bound 0 < pc/3 < 1 imply that

1
2 5 HC 6
= = e ©)

where Ty is the Hagedorn temperature.
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Partition function: single trace

® The partition function of single trace T T-deformed CFT
SymN/\/l# is defined by

Zu(r, 73 1) = Tr (50050 (7)
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Partition function: single trace

® The partition function of single trace T T-deformed CFT
SymN/\/l# is defined by

Zu(r, 73 1) = Tr (50050 (7

® For symmetric obifold CFT sym™ My, a primary field is
described by some representative of an orbit of Sy acting on
the n-tuples (¢; - - - ¢n) of primaries ¢; of M, together with
a pair of commuting permutations x, y € Sy describing how
the sheets are permuted when going around the cycle of a
canonical homology basis.

On the universal behavior of TTbar-deformed CFTs



Partition function of T T-deformed CFT and modular invariance
000000800000 000

® Therefore, x, y determines an N-sheeted covering of the torus
which is usually not connected. Its connected components are
in one-to-one correspondence with the orbits £ € O(x, y)
where O(x,y) is the set of orbits of the subgroup generated
by x and y. Each such connected component is itself a torus
with modular parameter 7¢.
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® Therefore, x, y determines an N-sheeted covering of the torus
which is usually not connected. Its connected components are
in one-to-one correspondence with the orbits £ € O(x, y)
where O(x,y) is the set of orbits of the subgroup generated
by x and y. Each such connected component is itself a torus
with modular parameter 7¢.

® As a result, the partition function for sym™ M is given
by(Bantay, 97)

ZN(Ta Z Z (8)

xy yx £€0(x,y)
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® |t is difficult to apply the analogous method to determine the
partition function of symNMu since we have an additional
parameter 1 and we do not know what ¢ is. If e = p, then
it corresponds to the double trace deformation.
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® |t is difficult to apply the analogous method to determine the
partition function of symNMu since we have an additional
parameter 1 and we do not know what ¢ is. If e = p, then
it corresponds to the double trace deformation.

e Kutasov etal derives the partition function of single trace
T T-deformed CFTs but it is based on the string theory by
summing over the spectrum of winding strings on a linear
dilaton background. So a purely field theoretical derivation is
still lacked.
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® |t is difficult to apply the analogous method to determine the
partition function of symNMu since we have an additional
parameter 1 and we do not know what ¢ is. If e = p, then
it corresponds to the double trace deformation.

e Kutasov etal derives the partition function of single trace
T T-deformed CFTs but it is based on the string theory by
summing over the spectrum of winding strings on a linear
dilaton background. So a purely field theoretical derivation is
still lacked.

® Since the partition function of the seed theory M, is modular
invariant, it is natural to expect the partition function of
symNMu to be modular invariant as well. We will use this
property to derive the partition function in the following.
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Untwisted sector

® In analogy with CFT, the spectrum of symNMu consists of
untwisted states obtained from the symmetrized product of N
copies of the seed theory, as well as twisted states.
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Untwisted sector

® In analogy with CFT, the spectrum of symNMu consists of
untwisted states obtained from the symmetrized product of N
copies of the seed theory, as well as twisted states.

® A typical untwisted state ® takes the form
® = Sym(@p16") 9)

where n labels different copies of the symmetric product and
in labels the state on the nth copy.
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For example, when N = 3, the untwisted states are
() = ¢ @ ¢ @ ¢l
O = Sym(¢!) @ ¢ @ ¢U)), i (10)
(i = Sym(@) @ oV @ 1), i) # k
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For example, when N = 3, the untwisted states are
() = ¢ @ ¢ @ ¢l
O = Sym(¢!) @ ¢ @ ¢U)), i (10)
(i = Sym(@) @ oV @ 1), i) # k

The contribution of each of these kinds of states to the partition
function of sym?’/\/lu is

Oy : Z9(r, 7 ) = Z(37, 37 )
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For example, when N = 3, the untwisted states are
D)) = o @ ) @ ¢l
(i) = Sym(6" @ ¢V @ ¢U)), i # (10)
(i = Sym(@) @ oV @ 1), i) # k
The contribution of each of these kinds of states to the partition
function of sym?’/\/lu is

Oy : Z9(r, 7 ) = Z(37, 37 )

ijk) " ZW (1,7 p) =

(11)
In total, the contribution of the untwisted states to the partition
function is simply given by

_ 1 _ _ _ _
Zuntwisted (7—7 T ,u) = g [Z(Ta T /1’)3 + 32(27_7 27—; ,U)Z(7—7 T ,U,) + 22(37—7 37
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For arbitrary values of N, the partition function for the untwisted
sector can then be written as

N

1

Zuntwisted (T, T3 ) = Z TN o H Z(nr, n7; )k (13)
fhrom gy L= 7kt 50y

where {ki,--- , ky} labels the conjugacy classes of Sy with k,
number of Zy-cycles in each conjugacy class, i.e. the conjugacy
class is [g] = (1)%1(2)k2 ... (N)*¥. The k, numbers are constrained
to satisfy

> nky=N (14)

The denominator in (13) is the order of the centralizer subgroup of
a permutation g in the conjugacy class.
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The untwiseted partition function is not modular invariant because
of each Z(n7,n7T; ) term. In particular, although Z(n7, nT; ) is
invariant under 7 : 7 — 7 + 1 transformation, it fails to be
invariant under S : 7 — —1/7 transformations since

“2(5E)

0
n n

S~Z(nT,nT;M):Z<—n 2B )

AT
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The untwiseted partition function is not modular invariant because
of each Z(n7,n7T; ) term. In particular, although Z(n7, nT; ) is
invariant under 7 : 7 — 7 + 1 transformation, it fails to be
invariant under S : 7 — —1/7 transformations since

N L R W A
S Z(nT,nT,u)—Z< = T,|T|2) Z(n’n’n2> (15)

In order to preserve the modular invariance, we need to add the
contribution from the twisted sector. The twisted partition
function can be determined by making each of Z(nt, n7; )
modular invariant by adding the modular image of (15).
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When n is prime, it is not difficult to show that

S-T‘”"”-Z(I ju)zTa+kn_Z<I f.u) (16)

n’ n’ n? n’ n’ n?

with a, @ € [1,n — 1] and satisfies & = kn + 1. As a result, the
following linear combination of modular images of Z(nt, n7; ) is
modular invariant

B n! THa T+a p
Z(nT,nT; 1) +ZZ , s (17)

? a2
n n n
a=0
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For any positive integer n, the sum of modular images of
Z(nT,nT; u) is given by

y—1 _
_ nT + a7y nT
(Th2) (7)) =D Z( R

Yln a=0

+ ay u)
P 18
2 TP (18)

T] is called the generalized Hecke operator.
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For any positive integer n, the sum of modular images of
Z(nT,nT; u) is given by

(T 2)(r, 7 ZZZ(M—FOﬂ nT +ay. u) (18)

2
Yln a=0 (A

T] is called the generalized Hecke operator.As a result, the
modular invariant partition function of symNM“ is given by

N

) — 1 / —. ke
Zn(T, T p) = Z WH(TnZ)(ﬂT,M) (19)
(K, ky} Lln=1 n* p=1
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For any positive integer n, the sum of modular images of
Z(nT,nT; u) is given by

(T 2)(r. 7 ZZZ(M—FO@ nr;ay 5) (18)

Yln a=0

T] is called the generalized Hecke operator.As a result, the
modular invariant partition function of symNM“ is given by

N

1
Zn(r,7ip) = Y 7,(/(']__[(77;2)(7'7?;#),(" (19)
(k- kN}H =1 1" Kn* p—1

We can write the generating functional of Zy which sometimes is
called the grand canonical partition function as

X n
p _
W R PALART)
N=0 n=1
(20)
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The spectrum of twisted states

Using the definition of the partition function of the seed theory, the
nth Hecke transformed partition function T,’,Z can be expanded as

_ -5 E
(Th2)(r.7im) = D3 3 yd(E, Er)g 7 B Dgy

fy|n a=0 ELyER
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The spectrum of twisted states

Using the definition of the partition function of the seed theory, the
nth Hecke transformed partition function T,’,Z can be expanded as

_ 5 E
(T/ 7_ 7_ ,LL ZZ Z 'Yd EL;ER ( ) 2 L( 2)63’(0)
fy|n a= OEL,ER

For v = n, above equation implies that for each state with E; r(u)
in the seed M, there are n twisted states with energies

n 1
E{'% = ELR(n/n") (21)

)
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The spectrum of twisted states

Using the definition of the partition function of the seed theory, the
nth Hecke transformed partition function T, Z can be expanded as

_ 5 E
(T/ 7_ 7_ ,LL ZZ Z 'Yd EL;ER ( ) 2 L( 2)63’(0)
fy|n a= OEL,ER

For v = n, above equation implies that for each state with E; r(u)
in the seed M, there are n twisted states with energies

E\} = —ELR(u/n ) (21)

They are related to the spectrum of the twisted states of the
undeformed symmetric orbifold via

n n 2M n n
ELR(0) = ER(w) + L EL (WER” () (22)

This matches the spectrum of perturbative strings on
TsT-transformed backgrounds.
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© Universality of the partition function and spectrum at large ¢
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Modular invariance and universality

® Modular invariance is an equality between the partition
function at high and low temperature. For the undeformed
CFTs, this can help us approximate the high temperature
partition function by its vacuum contribution. Working out
the entropy, one gets the Cardy formula which holds in the
Cardy limit with c fixed and E; g — 0.
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Modular invariance and universality

® Modular invariance is an equality between the partition
function at high and low temperature. For the undeformed
CFTs, this can help us approximate the high temperature
partition function by its vacuum contribution. Working out
the entropy, one gets the Cardy formula which holds in the
Cardy limit with c fixed and E; g — 0.

e Similar analysis has been performed for the T T-deformed
CFTs and the entropy exhibits the Hagedorn behavior for high
energy states.
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Modular invariance and universality

® Modular invariance is an equality between the partition
function at high and low temperature. For the undeformed
CFTs, this can help us approximate the high temperature
partition function by its vacuum contribution. Working out
the entropy, one gets the Cardy formula which holds in the
Cardy limit with c fixed and E; g — 0.

e Similar analysis has been performed for the T T-deformed
CFTs and the entropy exhibits the Hagedorn behavior for high
energy states.

® For a holographic CFT, the Cardy formula is expected to hold
in a semiclassical limit where ¢ — oo and E; g ~ c. This
motivates Hartman, Keller and Stoica to extend the range of
validity of the Cardy formula where they showed that if the
spectrum for light state is sparse, then the Cardy formula
holds for large ¢ at any temperature.
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Partition function of T T-deformed CFT at large ¢

® We would like to apply HKS's analysis to the T T-deformed
CFT to study its universal behavior at large c¢. The crucial
point is to find a proper sparseness condition such that the
partition function is dominated by the vacuum state.
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Partition function of T T-deformed CFT at large ¢

® We would like to apply HKS's analysis to the T T-deformed
CFT to study its universal behavior at large c¢. The crucial
point is to find a proper sparseness condition such that the
partition function is dominated by the vacuum state.

® |n order to estimate the partition function and extract the
density of states, it is convenient to consider the Lorentzian
torus that is obtained by setting (7,7) = (i1, —iffr), where
BL,r are two independent and strictly positive real numbers.
Then the S invariance reads

Z(Bu, Br) = Tr (e HE2mRER ) — Z(3) ) (23)

where BIL,R =1/BLr.
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We start by considering the simplest case where 5 = fr =5 > 1
and define the light and heavy states as

Li={Eu(w) + Er(p) < €}, H = {EL(t) + Er(p) > ¢} (24)
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We start by considering the simplest case where 5 = fr =5 > 1
and define the light and heavy states as

Li={Eu(w) + Er(p) < €}, H = {EL(t) + Er(p) > ¢} (24)

Then we can show 3'E(y') — BE(u) < 0 for heavy states
E(p) > €. Then we have

Z[H] := Trpye >™E < aZ'[H),0 < a < 1 (25)
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We start by considering the simplest case where 5 = fr =5 > 1
and define the light and heavy states as

Li={Eu(w) + Er(p) < €}, H = {EL(t) + Er(p) > ¢} (24)

Then we can show 3'E(y') — BE(u) < 0 for heavy states
E(p) > €. Then we have

Z[H] := Trpye >™E < aZ'[H),0 < a < 1 (25)
This, together with the modular invariance
Z[L] + Z[H] = Z'[L] + Z'[H] implies that the partition function is

dominated by the contribution of the light states

log Z[L] < log Z(B; 1) < log Z[L] — log(1 — «) (26)
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To have the vacuum dominance, we only need to let the
contribution from vacuum dominates over light states. It is not
difficult to show that the sparseness condition reads

log p(E, Er) < 27[E (1) + ER(1) — Evac(p)],  Er(p) + Er(p) < e
(27)
where E,ac(p) is the vacuum energy of the deformed CFT
1—+/1—puc/3
Evac(M) = - 9 / (28)
7
Consequently, under above sparseness condition for the light
states, we have
log Z(B; ) ~ —2mBEvac(pt), B > 1 (29)
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Although the vacuum dominance (29) holds for 5, = fr = > 1,
it is ready to extend it to the region 3, p > 1.
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Although the vacuum dominance (29) holds for 5, = fr = > 1,
it is ready to extend it to the region 3, r > 1.To do this, we note

that
p(EL, ER) < Z(ﬁL’BR)62WBLEL(N)+2WBRER(.“) (30)

This is because the partition function is greater than the
contribution of any single state.
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Although the vacuum dominance (29) holds for 5, = fr = > 1,
it is ready to extend it to the region 3, r > 1.To do this, we note
that

p(EL, Er) < Z(BL, Br)e*™ LBl +2mPRER ) (30)

This is because the partition function is greater than the
contribution of any single state. When 3, = fr = 8 > 1, using

the previous result for log Z and optimizing over (3, we get
p< eQW(EL(M)‘FER(N)_EvaC(M)_
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Although the vacuum dominance (29) holds for 5, = fr = > 1,
it is ready to extend it to the region 3, r > 1.To do this, we note
that

p(EL, Er) < Z(BL, Br)e*™ LBl +2mPRER ) (30)

This is because the partition function is greater than the
contribution of any single state. When 3, = fr = 8 > 1, using
the previous result for log Z and optimizing over (3, we get

p < e2™(EL()+Er(1)~Fuwc(i) Then the partition function is bounded

by
Z(BL, Bri p) = /P(EL, ER)e—27r/3LEL—27r,8RER < o e T (BLtBRr)Evac(n)
(31)

where o is some numerical constant. Consequently, vacuum
dominance holds in this case, i.e.

log Z(BL, Bript) = —m(BL + Br)Evac(it), BLr >1  (32)
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In order to extend the range of validity further, we need to impose
a stronger sparseness condition.
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In order to extend the range of validity further, we need to impose
a stronger sparseness condition.In this case, the light states are
defined in analogy with HKS by

Er(pn) <0, or Eg(p) <0 (33)

In contrast, the heavy states satisfy E; g(u) > 0.
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In order to extend the range of validity further, we need to impose
a stronger sparseness condition.In this case, the light states are
defined in analogy with HKS by

Er(pn) <0, or Eg(p) <0 (33)

In contrast, the heavy states satisfy E; g(x) > 0. The appropriate
sparseness condition is given by

log p(Ev, Er) < 4W\/ (60~ 3 Eacli) ) (Bt~ 5 Eucli))
(34)
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Partition function of T T-deformed CFT at large ¢

® Using induction method, we can prove that the partition
function is found to be universal
1

7_)Evac(/i/)} ) ‘7—’2 #1

1

log Z ~ max {ﬂ'i(’i‘ — 7)Evac(p), —mi(= —
-

(35)
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Partition function of T T-deformed CFT at large ¢

® Using induction method, we can prove that the partition
function is found to be universal
. _ 11
log Z ~ max {ﬂ'l(’i‘ — 7)Evac(p), —WI(; — 7_)E\,ac(//)} T2 #1
(35)
® The logarithm of the asymptotic density of states which is the
entropy is given by the T T analog of the Cardy formula

S(EL, Er) ~ 27r(\/§EL(1 +2uER) + \/EER(l +2uEL))
(36)

with the range of validity being
E E E, 2
1+2p(EL + ER) ~ 4(1 + 2pEvac(p)
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Universality in single-trace T T-deformed CFTs

® Previous discussion about the universality is only for
double-trace deformation. In the following, we consider the
single-trace T T-deformed CFTs.
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Universality in single-trace T T-deformed CFTs

® Previous discussion about the universality is only for
double-trace deformation. In the following, we consider the
single-trace T T-deformed CFTs.

® For the single trace T T-deformed CFT, the large ¢ limit is
realized by the large N limit with ¢ fixed.
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Universality in single-trace T T-deformed CFTs

® Previous discussion about the universality is only for
double-trace deformation. In the following, we consider the
single-trace T T-deformed CFTs.

® For the single trace T T-deformed CFT, the large ¢ limit is
realized by the large N limit with ¢ fixed.

® A convenient quantity for the analysis is the generating
function which can be written as

2=(1-p)t J[ (1-p"(qq) #EeclgE" W gE" ()~ ELERI )

n>0,E; ,Er ( )
38

where p = (qg)Ec()/2p,
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Formally, we can write Z = (1 — p)"'R(p). On the other hand, we
have Z = ZpNZN with Zy = (qg) NEac(W/2Z It is then easy
to see that Z,, = R(1).
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Formally, we can write Z = (1 — p)~'R(p). On the other hand, we

have Z = Z/BNZN with Zy = (qE])_NEV“(“)/QZN. It is then easy
to see that Z,, = R(1). Consequently, we have

~ n (n) (n)
oZem— X it (1 - nlag)-$E g0
n>0,E; ,Er

o0
e Y S L g A E) - ) )
k
n>0,E;  Eg k=1
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Formally, we can write Z = (1 — p)"'R(p). On the other hand, we
have Z = Z/BNZN with Zy = (qg) NE=<(1)/2 7y It is then easy
to see that Z,, = R(1). Consequently, we have

~ n (n) (n)
logZ = — Z p(sj(o) log (1 — n(qa)_EEvac(N) qEL (N)aEL (N))
n>0,E; ,Er

oo
- Y ¥ 1 P30, 27k (BLHBR) Evac (1) —BLEL" (1)~ BRER" ()]
k
n>0,E; ,Eg k=1

It can be shown that the double sum converges in the large N limit
so that log Z is finite. Therefore, the partition function is
universal such that
. - 11 / 2
log Zy ~ max { wi(7 — T)NE,ac (1), —7r/(; — ;)NEVQC(M Yo |TIF £ 1
(39)
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Density of states

We see that the universality of the single-trace partition function
holds without assuming sparseness of the light states. This implies
that the density of light states is sparse as a result of the
orbifolding.
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Density of states

We see that the universality of the single-trace partition function
holds without assuming sparseness of the light states. This implies
that the density of light states is sparse as a result of the
orbifolding.

Actually, the density of light states saturates the sparseness bound
as we will show in the following.
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Density of states

We see that the universality of the single-trace partition function
holds without assuming sparseness of the light states. This implies
that the density of light states is sparse as a result of the
orbifolding.

Actually, the density of light states saturates the sparseness bound
as we will show in the following. Firstly, note that the single-trace
partition function Zy and the nth Hecke transformed partition
function T} Z can be written as

Zn(BLy Bri p) = /dELdERpN(EL, Er)e 2mALEL—2mfRER
(40)
(TAZ)(/BLaBRQ,U«) = /dELdERPT,g(EL,ER)e2“BLEL27FBRER

where the respective density py and p7; are introduced.
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The vacuum dominance of Zy implies that an upper bound on the
density of all states

log py < min{log Zy + 275, E; + 27 BrER}

NE, NE, . (41)
< 4”\/(EL - ;C)(ER - Tac) := log p*(hr, hr)

where h; g = E; g — NE,sc/2 is the energy above the vacuum.
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The vacuum dominance of Zy implies that an upper bound on the
density of all states

log py < min{log Zy + 275, E; + 27 BrER}

NE\/ NEV *
< 47T\/(EL - ;C)(ER - Tac) :=log p*(hy, hr)

(41)

where h; g = E; g — NE,sc/2 is the energy above the vacuum.
While for the high energy states, their density is approximated by
the entropy

c 2 c 2
logp =~ 27 [\/GEL(I + NMER) + \/GER(l + /\AILEL)] = Sn
(42)
Ei (1) Er (1) N?EZ, (1)
1+ 28 (B (n)+Er(p)) — 4(14+2pEvac(p)

which is valid for
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Recall that we have the following identity

(S) N B 00 &n /
Z p"Zyn = exp Z - (T,Z) (43)
N=0 n=1
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Recall that we have the following identity

S 0z = exp (Z ’j,"<rgz>> (43)
N=0 n=1

Expanding the right hand side and comparing the coefficient of p",
we get

N
1
pn(he, hr) > Z;PT,,’(hLahR) (44)

for non vacuum states.
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Recall that we have the following identity

S 0z = exp (Z ’j,"<rgz>> (43)
N=0 n=1

Expanding the right hand side and comparing the coefficient of p"

we get
N

1
n(hi,hg) =D —pri(he, hr) (44)
n=1
for non vacuum states.Since T} Z is also modular invariant, it
features vacuum dominance and we have

log p1; &~ Sn(he, hR) (45)

3
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Recall that we have the following identity

S 0z = exp (Z ’j,"<rgz>> (43)
N=0 n=1

Expanding the right hand side and comparing the coefficient of p",
we get

N
1
pn(he, hr) > Z;PT,,’(hLahR) (44)

n=1
for non vacuum states.Since T} Z is also modular invariant, it
features vacuum dominance and we have

log p; ~ Sp(he, hr) (45)

Interestingly, S,(hy, hg) reaches its maximal value when
n = n.(hr, hg) such that the maximal value happens to be the
upper bound on log py. Then we have

*
log py > log pr;_ = log p*(he, hr) (40)
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The condition n.(hr, hg) < N is shown to be equivalent to the low
energy regime which is complementary to the high energy regime
where the entropy formula applies.
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The condition n.(hr, hg) < N is shown to be equivalent to the low
energy regime which is complementary to the high energy regime
where the entropy formula applies. This implies that p* is both the
upper and lower bound at the same time for low energy states and
hence it is saturated.
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The condition n.(hr, hg) < N is shown to be equivalent to the low
energy regime which is complementary to the high energy regime
where the entropy formula applies. This implies that p* is both the
upper and lower bound at the same time for low energy states and
hence it is saturated.In conclusion, for states with

E () Er(1) N2E\?ac(p') H H
TF 22 (B 0+ En()) — T2 Evse (1) the state density is

approximated to be

NEVaC NEVaC
log p(Er, ER) =~ 4”\/(EL - )(Er — 5

) (47)
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The condition n.(hr, hg) < N is shown to be equivalent to the low
energy regime which is complementary to the high energy regime
where the entropy formula applies. This implies that p* is both the
upper and lower bound at the same time for low energy states and
hence it is saturated.In conclusion, for states with

E () Er(1) N? Evac(p') H H
TF 22 (B 0+ En()) — T2 Evse (1) the state density is

approximated to be

NEVaC NEVQC
log p(EL, ER) = 4”\/(EL - )(Er — 5 ) (47)
while for states with Er (1) Er(1) > NEL () , the state

14+ 3 (EL(u)+Er(p)) ~ A0H20Euac(k)
density is given by the entropy

(48)

_ 2p c 2p
logp =27 [\/ E (1+ NER) \/6ER(1+ NEL)
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e We study universal properties of the torus partition function
of T T-deformed CFTs under the assumption of modular
invariance for both double-trace and single-trace versions.
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e We study universal properties of the torus partition function
of T T-deformed CFTs under the assumption of modular
invariance for both double-trace and single-trace versions.

® In the double-trace case, we specify sparseness conditions for
the light states for which the partition function is dominated
by the vacuum. Using modular invariance, this implies a
universal density of high energy states, in analogy with the
behavior of holographic CFTs.
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e We study universal properties of the torus partition function
of T T-deformed CFTs under the assumption of modular
invariance for both double-trace and single-trace versions.

® In the double-trace case, we specify sparseness conditions for
the light states for which the partition function is dominated
by the vacuum. Using modular invariance, this implies a
universal density of high energy states, in analogy with the
behavior of holographic CFTs.

® For the single-trace case, we use the modular invariance to
determined the partition function which matched holographic
calculations in previous literature.
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e We study universal properties of the torus partition function
of T T-deformed CFTs under the assumption of modular
invariance for both double-trace and single-trace versions.

® In the double-trace case, we specify sparseness conditions for
the light states for which the partition function is dominated
by the vacuum. Using modular invariance, this implies a
universal density of high energy states, in analogy with the
behavior of holographic CFTs.

® For the single-trace case, we use the modular invariance to
determined the partition function which matched holographic
calculations in previous literature.

® The density of states in the single-trace deformed theory is
universal when ¢ ~ N — oc.
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® Using modular covariance, the partition function for
single-trace J T-deformed partition function can be similarly
determined which matches with the result in string theory.
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® Using modular covariance, the partition function for
single-trace J T-deformed partition function can be similarly
determined which matches with the result in string theory.

® String theory analysis implies that for the general single-trace
TT + JT + JT-deformed CFT, its partition function is
defined in an analogous way to the T T case with the
generalized Hecke operator given by

(T’Z)(T T\ Uy U5 o, f s 1)
> e Z (M AT v np g M ) (49)
However, for such general case, the partition function has no
good modular property. It would be interesting to derive this
result in the field theory side.
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Thanks for your attention!
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