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Artificial Intelligence

Artificial intelligence is the science of making ma-
chines do things that would require intelligence if done
by humans.

Marvin Minsky

In Physics:

• phase classification of condensed matter systems

• construction of string vacua for phenomenology/cosmology

• classifying signals in colliders

Neural Networks are an important framework for these analyses.

Focus exclusively on them here: “AI ⇔ Neural Network”
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Why AI in Physics?

• A novel methodology of thinking about physical systems

• Conventional: provide an algorithm to generate solutions

• AI: provide data about what a solution is and let the AI
infer how to arrive at it.

• Refinement: provide constraints on the solution instead.
• In many cases, outperforms conventional methods:

• Stockfish vs AlphaZero
• Computing metrics on Calabi Yau spaces

• Conversely: Use math phys tools to analyze Neural Nets

So what is a neural network?
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Neural Networks

An Artificial Neuron

Figure: A single neuron: O = f (w⃗ · x⃗ + b)

w and b are tunable parameters: weights & biases

f is a typically non-linear function: activation function

The activation allows neural nets to learn non-linear functions.
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Neural Networks

A neural network is a set of neurons arranged in layers.

The output of each layer is fed to the next layer.

This yields a hierarchical structure:

layers process previous layer’s output into the next layer’s input.
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Neural Networks

This neural network is a series of functional transformations.

• Take the inputs x and construct

a
(1)
k = w

(1)
kj xj + b

(1)
j , z

(1)
k = h(1)

(
a
(1)
k

)
.

The z
(1)
k are the outputs of layer 1.

• Similarly for layer 2

a
(2)
k = w

(2)
kj z

(1)
j + b

(2)
j , z

(2)
k = h(2)

(
a
(2)
k

)
.

• Iterate this structure over all layers and collect the output

yk = f{w ,b} (x) .

By tuning w , b we can change the output function.
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Universal Approximation

Extreme example: the non-linearity is a step function.

Note: limit of the tanh function.
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Universal Approximation

Idea: approximate target function by a histogram of N bins.
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f(x)
histogram approximation

f (x) ≈ f0 (x) = f̄j , x ∈ [xj−1, xj ] , j = 1, 2, . . . ,N

Larger N ⇒ better approximation.
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Universal approximation
This can be realized through the step function

fs (x) = Θ (wx + b) , s = − b
w .
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TLU 1
TLU 1
Diff*height

define: fs1,s2,h = h (fs1 − fs2) =

{
h : x ∈ (s1, s2)
0 : otherwise
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Universal Approximation

A single layer of neurons can approximate any function.

(a) Single Layer Network (b) Sawtooth Function

Depth is crucial to learning heirarchical structures efficiently.
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Training a Neural Network

The classic framework is supervised learning

• start with a set of known input/output pairs {(xi , yi )}
• determine {w , b} of the neural network so that

yNN (xi ) ≈ yi ∀ xi .

A typical network has ≈ 106 parameters. huge search space

• Suppose each parameter can take 10 values.

• N such parameters ⇒ 10N possible solutions.

The only way forward is to search locally for {w , b}.
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Training a Neural Network

We search locally via Gradient Based Optimization

• Define a loss function L (w , b)

L (w , b) =
1

N

∑

i

(yi − yNN(xi ))
2 .

• Initialize {w , b} at wo

• Step iteratively in the direction of steepest descent

wj+1 − wj ∼ −∇wL (wj) .

• Stop when L (w) ≈ 0 .

Conceptually this is no different to fitting by least squares.

BUT

universal approximation lets us scan in a huge function space.
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Overfitting

With four parameters I can fit an elephant, and
with five I can make him wiggle his trunk.

John von Neumann

“Drawing an elephant with four complex parameters”, Mayer, Khairy, Howard, AmJPhys 78, 648 (2010)
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Overfitting

A more complicated model has more parameters, tends to learn
spurious features in the data: Overfitting

(a) Polynomial fitting noisy data

with degree 1, 2, 300. (b) Overfitting vs Model Complexity

Conversely, tends to perform poorly when evaluated on unseen
data: Test data.
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Tackling Overfitting

The trained model should perform equally well on unseen data.

• Partition data into disjoint Train/Validation/Test sets

• Train the model by optimizing parameters on the Train set

• Check the model performance is comparable on the Val set

(a) This is okay (b) Overfitting

Finally, evaluate trained model on test set.
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Today

• Use neural networks to tackle quantum integrability.

• What is the data? Generalize supervised learning.

• Provide the constraints that the solution must satisfy.

e.g. R (u) : f (R ∗ R ∗ R) = 0 .

• Use neural networks to scan across function space.

• Determine the target function by gradient descent.

• It is helpful to regard loss functions in a new light.
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Rethinking Loss Functions

To get intuition about the effect of a loss function we consider
what would happen at its optimum.

The mean square error cost function:

L (w) =
∑

n

(yn − yNN (xn,w))2

Minimized at:

L (w) = 0 ⇔ yNN (xn,w) = yn ∀ n

Training this network is equivalent to searching for functions
that obey the constraints

f (xn,w) = yn ∀ n .

Loss functions ≡ constraints on the target function.
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Siamese Neural Networks

Origins: Signature verification for Bank cheques

• ∃ hundreds of thousands of classes (i.e. customers)

• A signature has to be identified to the correct user

Problems

• Many classes, only 1-2 example signatures for each class.

• New customers always being added. Retrain classifier?

Instead train Siamese Network

• compare signature on record with signature given

• if the two signatures are similar, process the cheque

∴ a constraint on the prediction function

Siamese Nets for Signature Verification Bromley, Bentz, Bottou, Guyon, LeCun,

Moore, Säckinger, Shah
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Machine Learning Similarity
Idea: Draw inspiration and analogy from how humans learn.

• a toddler learning animals needs only 1-2 example images

(a) Cats (b) Dogs

• New images will be identified as dogs and cats depending
on which image they are the most similar too.

Fei-Fei Li
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Machine Learning Similarity

Hence identify dogs and cats by extrapolating from a tiny set
of examples

In essence the toddler learns the equivalence relations

I ∼ III , II ∼ IV , but I, III ≁ II, IV .

This is now known to be an exceptionally robust framework.
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Siamese Neural Networks

A machine learning framework to quantify similarity.

x3

x1

x2 ϕ (x)

d

(
xa, xb

)
≈ 0

ϕ

• Learn a map from Data to Rd

• Points xa, xp are similar ⇒ close together in Rd

• Points xa, xn are dissimilar ⇒ far apart in Rd
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Machine Learning Similarity

Recasting classification as Similarity

• Classification: organize N elements into k classes
• Similarity: Let x1 ∈ C1 and x2 ∈ C2

• x1 ∼ x2 if C1 = C2
• x1 ≁ x2 if C1 ̸= C2

• Recasting Data for similarity: create pairs (x1, x2)
• Label (x1, x2) with y = 1 if x1 ∼ x2
• Label (x1, x2) with y = 0 if x1 ≁ x2

• Hence, organize NC2 elements into two classes

⇒ Data looks much bigger!
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Contrastive Losses

The loss function for Siamese Nets encodes similarity

It is evaluated on pairs of data

Input: pairs (x1, x2) Output: y

x1 ∼ x2 : x1 similar to x2 1
x1 ≁ x2 : x1 not similar to x2 0

The Loss function is the contrastive loss

E (w) =
∑

(x1,x2)

y d2
w (x1, x2) + (1− y)max

(
1− d2

w (x1, x2) , 0
)

Here
d2
w (x1, x2) = (ϕw (x1)− ϕw (x2)) ·2 ,

‘·’ is the usual dot product.
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Contrastive Losses

Intuition for the Contrastive Loss ⇒ When is it zero?

• y = 0 ⇒ d2
w (x1, x2) > 1

• y = 1 ⇒ d2
w (x1, x2) = 0

Hence ϕw must be such that

• If x1 ∼ x2, i.e. y = 1, ϕw maps them close together

• If x1 ≁ x2, i.e. y = 0, ϕw maps them far apart

As a result, under this map

• Dataset breaks up into disjoint clusters

• Each cluster is made up of similar data

Importantly we can infer properties of new data by seeing
which cluster it is mapped to.
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Summary of Neural Networks

• Neural networks are a powerful framework capable of
expressing complex relationships in data.

• Universal Approximation properties: tuning neural network
parameters ⇒ exhaustive scan across functions.

• Loss functions encode properties of the target function.

• This can involve enumerating input output pairs.

• Equally well, more abstract properties can be encoded.
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Quantum Integrability

Consider a periodic spin chain on 3 sites. The Hilbert space is

V = V1 ⊗ V2 ⊗ V3 , Vi ∼ V = C2 .

The Hamiltonian is a sum of nearest-neighbour interactions

H =
3∑

i=1

Hi ,i+1 .

For example

H =
3∑

i=1

∑

α

JαSα
i S

α
i+1 ,

α = {x , y , z} and Sα
i are Pauli matrices .

This is the XYZ model. When Jx = Jy we get the XXZ model.
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Quantum Integrability

These systems are characterized by an R-matrix R(u)

• holomorphic in u

• R(0) = P, the permutation matrix.

• P d
duR(u)|u=0 = H, the Hamiltonian.

• Higher charges Q3,Q4, . . . also encoded in R (u)

• {H,Q3,Q4, . . .} all commute with each other.

• Hence, an infinite number of conserved charges.

The R-matrix solves the Yang-Baxter equation

Rij(u − v)Rik(u)Rjk(v) = Rjk(v)Rik(u)Rij(u − v)



The R-maTrIx
Net

Shailesh Lal

Introduction
to Neural Nets

A Siamese
Segue

Quantum
Integrability

Neural
Networks &
The
Yang-Baxter
Equation

Results

Questions

How can we construct integrable systems from scratch?

• Assume the R matrix is holomorphic, local.

• The target Hamiltonian is known.

• Construct the R matrix from the Yang-Baxter Equation?

Q: what if only constraints on Hamiltonian are given?

Q: find integrable systems nearby a given starting system?

Q: finding classes of integrable systems?

Neural Networks are promising tools for these questions.

• span a large function space

• constraints can be supplied using loss functions.
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Quantum Integrability

As a concrete example, consider a family of integrable models

H =




a1 0 0 0
0 b1 c1 0
0 c2 b2 0
0 0 0 a2


 ↔ R(u) =




R00 0 0 0
0 R11 R12 0
0 R21 R22 0
0 0 0 R33


 .

where a2 = a1 or a2 = b1 + b2 − a1 and a, b, c ∈ C.

Structurally

R00,33 ∼ ebu(cosh u + sinh u)

R11,22 ∼ ebu sinh u

R12,21 ∼ ebu

de Leeuw, Pribytok, Ryan

We will experiment on this system to showcase our approach.
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A Neural Network Solver

An R matrix comprises of functions Rij (u)

• holomorphic over the complex plane

• [Rij (0)] =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 ≡ P : locality.

• P d
duR(u)|u=0 = H : Hamiltonian.

• solves the Yang-Baxter equation.

We determine the functions Rij from these constraints.

• partly built into neural network architecture

• partly implemented by loss functions
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A Neural Network Solver

Strategy: Learning holomorphic functions training with real u.

Restrict to the real interval u ∈ Ω = (−1, 1)

Choose a holomorphic activation function, e.g. tanh

Decompose: Rij (u) = aij (u) + i bij (u)

By construction Rij will be holomorphic.

Note: aij and bij are Re(Rij) and Im(Rij) on the real line only.

Each aij and bij is modeled by an individual neural network.

These neural networks ⇒ R matrix and loss functions imposed.
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A Neural Network Solver

Overall, the structure looks like:

R (0) = P
P · R′ (0) = H

Ω u v

u− v

Ru

Rv

Ru−v

RR

R

LY BE

LY BE ≈ 0

This is strongly reminiscent of the Siamese Network.
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Constraining the Hamiltonian

There are two ways of constraining the Hamiltonian

1 by value: a1 = 0.8 , L = |a1 − 0.8| .
2 by condition: a1 = a2 , L = |a1 − a2| .

Note: it is also possible to repel away by imposing a1 ̸= 0.8 ,

However: in practice, difficult to control. Used sparingly.

We can also impose additional constraints such as Hermiticity.

L =
∑

ij

∣∣∣Hij − H†
ij

∣∣∣
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Training with an XYZ Target
The XYZ model has two parameters η,m.

We set η = π/3 and m = 0.6

Figure: Evolution of the loss functions
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Training with an XYZ Target

Comparing with the analytic results
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There is a precise match.
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Training with an XYZ Target

Comparing with the analytic results
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Exploring the Landscape

Experiment 1: XYZ from XXZ.

The XXZ model is the m = 0 limit of the XYZ model.

Q: can we discover XYZ starting from XXZ.

Framework:

1 Train the neural network with π
3 and m = 0 for 50 epochs.

2 Fine-tune to π
4 ,

π
6 and m = 0 in 5 epochs.

3 This yields 3 XXZ models which are our starting points.

4 Randomly sample 5 non-zero values of m .

5 Train for 15 epochs with those target values.

We find that we do converge to the correct XYZ models.
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Exploring the Landscape

Evolution of the Loss functions.

(a) Evolution of Yang-Baxter Loss (b) Evolution of Hamiltonian Loss

The spikes correspond to resetting the target Hamiltonian.
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Exploring the Landscape

Experiment 2: Exploring 6-vertex models.

H =




a1 0 0 0
0 b1 c1 0
0 c2 b2 0
0 0 0 a2




Fall into two classes:

1 a1 = a2

2 a1 + a2 = b1 + b2

Aim: discover these two classes.
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Exploring the Landscape

Strategy: Exploring 6-vertex models.

1 train to an integrable Hamiltonian.

2 repel away from this Hamiltonian slightly over 1 epoch.

3 train again, optimizing the Yang-Baxter loss and locality.

4 no target Hamiltonian is given.
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Exploring the Landscape

The rise in Yang-Baxter loss occurs when repulsion is turned on.
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Exploring the Landscape

Visualizing the Learnt Hamiltonians

60 40 20 0 20 40 60 80
t-SNE 2

30

20

10

0

10

20

30
t-S

NE
 1

t-SNE visualization of KMeans clustering for 6-vertex models
a1 + a2 = b1 + b2
a1 = a2

We find separation into two classes.
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Exploring the Landscape

Visualizing the Learnt Hamiltonians

We find separation into two classes.
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Summary

• Neural Networks are universal approximators.

• Intuitive for finding functions that obey constraints.

• We can use them to solve the Yang Baxter equation.

• We can recover all 2d difference form solutions.

• Strategies for exploring the space of integrable theories.

• TODO: finding analytic solutions.

• TODO: finding new solutions (3d).

• TODO: non-difference form.

• and much more ...
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Thank You
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Integrable vs Non-Integrable

Loss functions

There is roughly an order of magnitude separation in
Yang-Baxter loss.
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