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Artificial Intelligence

Artificial intelligence is the science of making ma-
chines do things that would require intelligence if done
by humans.

Marvin Minsky
In Physics:
® phase classification of condensed matter systems
® construction of string vacua for phenomenology/cosmology
e classifying signals in colliders
Neural Networks are an important framework for these analyses.

Focus exclusively on them here: “Al < Neural Network”
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Introduction
to Neural Nets

A novel methodology of thinking about physical systems

Conventional: provide an algorithm to generate solutions

e Al: provide data about what a solution is and let the Al
infer how to arrive at it.

Refinement: provide constraints on the solution instead.
® In many cases, outperforms conventional methods:

® Stockfish vs AlphaZero
® Computing metrics on Calabi Yau spaces

® Conversely: Use math phys tools to analyze Neural Nets

So what is a neural network?



The R-maTrlx
Net

Shailesh Lal Neu ral N etworks

Introduction

toNewral Nets  An Artificial Neuron
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Figure: A single neuron: O = f (w - X+ b)

w and b are tunable parameters: weights & biases
f is a typically non-linear function: activation function

The activation allows neural nets to learn non-linear functions.
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Neural Networks
A neural network is a set of neurons arranged in layers.

input layer | hidden layers | output layer

lower layer upper layer

The output of each layer is fed to the next layer.
This yields a hierarchical structure:
layers process previous layer's output into the next layer's input.
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Nl Nets This neural network is a series of functional transformations.

® Take the inputs x and construct

2D = w4 5D 2D = 4 (4D

The z,gl) are the outputs of layer 1.

e Similarly for layer 2

2 2)_(1 2 2 2
o® = @20 1 5P, D = 4 (a2

® |terate this structure over all layers and collect the output
Yk = f{w,b} (X) :

By tuning w, b we can change the output function.
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Universal Approximation

Extreme example: the non-linearity is a step function.

Note

1+ Lanh(kz) = (1 +e72) !

-4

: limit of the tanh function.
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Universal Approximation

Idea: approximate target function by a histogram of N bins.

—

000 025 050

Fx)=fh(x)=Ff, x€lx-1,x5], j=12,...,N
Larger N = better approximation.
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This can be realized through the step function
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to Neural Nets
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] h . X e (s , S
define: f5, 5, n = h(fs, — £5,) = {0 : othérxlivisze)
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Introduction

e e A single layer of neurons can approximate any function.

A Siamese
Segue
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Neural
Networks &
The
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Results

(a) Single Layer Network (b) Sawtooth Function

Depth is crucial to learning heirarchical structures efficiently.
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The classic framework is supervised learning
e start with a set of known input/output pairs {(x;, i)}
e determine {w, b} of the neural network so that

yww (xi)=yi ¥V x.

A typical network has ~ 10° parameters. huge search space
® Suppose each parameter can take 10 values.
e N such parameters = 10V possible solutions.

The only way forward is to search locally for {w, b}.
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Introduction We search locally via Gradient Based Optimization

to Neural Nets

¢ Define a loss function £ (w, b)

w, NZ }/NN XI )2

e Initialize {w, b} at w,

® Step iteratively in the direction of steepest descent
Wjt1 = wj ~ =V L (w)) .

e Stop when £(w) = 0.
Conceptually this is no different to fitting by least squares.

BUT

universal approximation lets us scan in a huge function space.
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Introduction With four parameters | can fit an elephant, and
to Neural Nets . . . . .
with five | can make him wiggle his trunk.

A Siamese
Segue
QuETEND John von Neumann
Integrability
Neural
Networks & 100
The
Yang-Baxter B0
Equation
B0
Results "
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“Drawing an elephant with four complex parameters”, Mayer, Khairy, Howard, AmJPhys 78, 648 (2010)
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toNeural Nets - A more complicated model has more parameters, tends to learn
spurious features in the data: Overfitting

Training Vs. Test Set Error

Test Set

Optimum Model Complexity

Error

Training Set

Model Complexity

(a) Polynomial fitting noisy data
with degree 1, 2, 300. (b) Overfitting vs Model Complexity

Conversely, tends to perform poorly when evaluated on unseen
data: Test data.
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Introduction

to Neral Nets 1 he trained model should perform equally well on unseen data.
® Partition data into disjoint Train/Validation/Test sets
® Train the model by optimizing parameters on the Train set

® Check the model performance is comparable on the Val set

08{ — mam S 0425
validation f— /\/V_/—,fw
07 0.400 A

AT
0375 (

/f
0275 /

o ©

madel accuracy
°
madel accuracy

Gomoo
-]
8 & 2

— train
alidation

—

0250

[ 1 20 0 40 50 0 1 20 ] 0 50
epoch epoch

(a) This is okay (b) Overfitting

Finally, evaluate trained model on test set.
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Use neural networks to tackle quantum integrability.

What is the data? Generalize supervised learning.

Provide the constraints that the solution must satisfy.

eg. R(u): f(RxRxR)=0.

Use neural networks to scan across function space.

e Determine the target function by gradient descent.

It is helpful to regard loss functions in a new light.
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inoduction  To get intuition about the effect of a loss function we consider
what would happen at its optimum.

The mean square error cost function:
L(wW) =" (¥n— ynn (xn, w))?
n

Minimized at:
Lw)=0 < ywmw)=y, ¥V n

Training this network is equivalent to searching for functions
that obey the constraints

f(xpw)=y, VYV n.

Loss functions = constraints on the target function.
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Origins: Signature verification for Bank cheques
fgmese ® 3 hundreds of thousands of classes (i.e. customers)
® A signature has to be identified to the correct user
Problems
® Many classes, only 1-2 example signatures for each class.
e New customers always being added. Retrain classifier?
Instead train Siamese Network
® compare signature on record with signature given
® if the two signatures are similar, process the cheque

.. a constraint on the prediction function

Siamese Nets for Signature Verification Bromley, Bentz, Bottou, Guyon, LeCun,

Moore, Sackinger, Shah



The R-maTrlx
Net

Shailesh Lal

Introduction
to Neural Nets

A Siamese
Segue

Quantum
Integrability

Neural
Networks &
The
Yang-Baxter
Equation

Results

Machine Learning Similarity
Idea: Draw inspiration and analogy from how humans learn.
® a toddler learning animals needs only 1-2 example images

(a) Cats (b) Dogs

® New images will be identified as dogs and cats depending
on which image they are the most similar too.

Fei-Fei Li
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Machine Learning Similarity

Hence identify dogs and cats by extrapolating from a tiny set
of examples

In essence the toddler learns the equivalence relations
I~T1II, II~1IV, but ILIIIIlIV.

This is now known to be an exceptionally robust framework.
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Siamese Neural Networks

A machine learning framework to quantify similarity.

e Learn a map from Data to R
® Points x,, x, are similar = close together in R4

® Points x,, x, are dissimilar = far apart in R?
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Recasting classification as Similarity

Classification: organize N elements into k classes
Similarity: Let x; € C1 and x» € Co

® x; ~x if C1 =00
® x; wxy if Cy #Co
Recasting Data for similarity: create pairs (x1, x2)
® Label (x1,x) with y =1 if x; ~ x2
® Label (x1,x) with y = 0 if x3 = x

Hence, organize NG, elements into two classes

= Data looks much bigger!
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The loss function for Siamese Nets encodes similarity

A Siamese

Segue It is evaluated on pairs of data
Input: pairs (x1, x2) Output: y
X1 ~ X : xq1 similar to x» 1
X1 » Xp : x1 hot similar to xo 0

The Loss function is the contrastive loss
E(w)= Z y d? (x1,x2) 4 (1 — y) max (1 —d? (X1,X2),0)
(x1,%2)

Here
dy, (x1,%2) = (dw (x1) — dw (x2)) 2,

-"is the usual dot product.
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A Serese Intuition for the Contrastive Loss = When is it zero?
o o y=0 =d2(x,x)>1
e y=1 =d2(x,x)=0
Hence ¢,, must be such that
® |f x; ~ xo, i.e. y =1, ¢, maps them close together
® If x;1 % xp, i.e. y =0, ¢, maps them far apart
As a result, under this map
® Dataset breaks up into disjoint clusters
® Each cluster is made up of similar data

Importantly we can infer properties of new data by seeing
which cluster it is mapped to.
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Summary of Neural Networks

Neural networks are a powerful framework capable of
expressing complex relationships in data.

Universal Approximation properties: tuning neural network
parameters = exhaustive scan across functions.

Loss functions encode properties of the target function.
This can involve enumerating input output pairs.

Equally well, more abstract properties can be encoded.
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Quantum Integrability

Consider a periodic spin chain on 3 sites. The Hilbert space is
V=V1®V,® Vs, Vi~V =C2.

The Hamiltonian is a sum of nearest-neighbour interactions

3
H = Z Hiiy1.
i=1
For example
3
H=Y Y rsisty
i=1 «

a={x,y,z} and 5 are Pauli matrices.
This is the XYZ model. When J, = J, we get the XXZ model.
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These systems are characterized by an R-matrix R(u)

Quantum ® holomorphic in u

e ® R(0) = P, the permutation matrix.
o P%R(u)\uzo = H, the Hamiltonian.
® Higher charges Q3,Qy, ... also encoded in R (u)
* {H,Q3,Qa4,...} all commute with each other.

® Hence, an infinite number of conserved charges.

The R-matrix solves the Yang-Baxter equation

Rij(u = v)Ri(u)Rix(v) = R(v)Rix(u)Rij(u — v)
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Questions

How can we construct integrable systems from scratch?
® Assume the R matrix is holomorphic, local.
® The target Hamiltonian is known.
® Construct the R matrix from the Yang-Baxter Equation?

Q: what if only constraints on Hamiltonian are given?
Q: find integrable systems nearby a given starting system?
Q: finding classes of integrable systems?

Neural Networks are promising tools for these questions.
® span a large function space

® constraints can be supplied using loss functions.
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As a concrete example, consider a family of integrable models

al 0 0

o 0 b1 C1
H= 0 (@) b2
0 0 O

0 Re 0 0 0
0 {0 Ry R2 O
o| & FW=10 g, Rn o0
2 0 0 0 R

where a) = a; or ap = by + bp — a1 and a,b,c € C.

Structurally

Roo,33 ~ e™(cosh u + sinh u)
Ri120 ~ e? sinh u

b
Ri221 ~ e™

de Leeuw, Pribytok, Ryan

We will experiment on this system to showcase our approach.
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A Neural Network Solver

An R matrix comprises of functions R (u)

® holomorphic over the complex plane

1 000
* [R;j(0)] = 8 (1) é 8 =P: locality.
0 001

® PLR(u)|ymo = H : Hamiltonian.
® solves the Yang-Baxter equation.

We determine the functions R;; from these constraints.
® partly built into neural network architecture

® partly implemented by loss functions
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A Neural Network Solver

Strategy: Learning holomorphic functions training with real u.
Restrict to the real interval u € Q = (—1,1)

Choose a holomorphic activation function, e.g. tanh
Decompose:  Rjj (u) = ajj (u) + i bjj (u)

By construction R;; will be holomorphic.

Note: ajj and bj; are Re(Rjj) and Im(R;j) on the real line only.
Each aj; and b;; is modeled by an individual neural network.

These neural networks = R matrix and loss functions imposed.
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A Neural Network Solver

Overall, the structure looks like:

This is strongly reminiscent of the Siamese Network.
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Constraining the Hamiltonian

There are two ways of constraining the Hamiltonian

® by value: a3 =08, L=]a; —0.8|.

@® by condition: a3 = ax, L =la; — ay| .
Note: it is also possible to repel away by imposing a; # 0.8,
However: in practice, difficult to control. Used sparingly.

We can also impose additional constraints such as Hermiticity.

[Z:Z’H,-J-—HIH
ij
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S Weset p=1m/3and m=0.6

A Siamese
Segue
Quantum
Integrability Yang Baxter
Neural 1072 —— Hermiticity |
Networks & —— Regularity
The —— Hamiltonian
Yang-Baxter
i —4

Equation o 10 v

3 1
Results &

=)

2

S 106 vy

@

o

1078
1010 * T T
0 25 50 75 100 125 150 175 200

epoch

Figure: Evolution of the loss functions
[} = -
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There is a precise match.
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Exploring the Landscape

Experiment 1: XYZ from XXZ.
The XXZ model is the m = 0 limit of the XYZ model.
Q: can we discover XYZ starting from XXZ.

Framework:
@ Train the neural network with 3 and m = 0 for 50 epochs.
@® Fine-tune to 7, and m =0 in 5 epochs.
© This yields 3 XXZ models which are our starting points.
O Randomly sample 5 non-zero values of m.
@ Train for 15 epochs with those target values.

We find that we do converge to the correct XYZ models.
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Exploring the Landscape

Evolution of the Loss functions.

— warm-start

(a) Evolution of Yang-Baxter Loss  (b) Evolution of Hamiltonian Loss

The spikes correspond to resetting the target Hamiltonian.
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Experiment 2: Exploring 6-vertex models.

aa 0 0 O

. 0 b1 C1 0
H= 0 () b2 0
0 0 0 a

Results

Fall into two classes:
@ a=a
®at+a=Db+b

Aim: discover these two classes.
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Exploring the Landscape

. Exploring 6-vertex models.

@ train to an integrable Hamiltonian.

® repel away from this Hamiltonian slightly over 1 epoch.

© train again, optimizing the Yang-Baxter loss and locality.

O no target Hamiltonian is given.
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Exploring the Landscape

102

Yang Baxter Loss
i
2

107*

[ 10 20 30 40 50 60
epochs

The rise in Yang-Baxter loss occurs when repulsion is turned on.
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Exploring the Landscape

Visualizing the Learnt Hamiltonians

t-SNE visualization of KMeans clustering for 6-vertex models

304 ® e |e ® aita=bi+b;
o ° ® ar=az
[ ] o
201 ®le
o o o d °
10 | - ®
. o !
: e 0 ° ° o o I
z 01 ° o ® °
".1 L] ® L4 °
& . ° ° °
—-10 A R ] . ® T
A > ® o
- e [ ]
-20 e °
° ° .
—30 1 . L]
-60 —40 -20 0 20 40 60 80
t-SNE 2

We find separation into two classes.
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Visualizing the Learnt Hamiltonians

Quantum

Integrability 1751 4@ o
]
P

Neural 150 A‘?E;

Networks & :?“

The 125 !

Yang-Baxter

;
Equation 100 i
115 %1077
esults i p—
o L 7. 74
&

We find separation into two classes.
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Summary

Neural Networks are universal approximators.

Intuitive for finding functions that obey constraints.
We can use them to solve the Yang Baxter equation.
We can recover all 2d difference form solutions.
Strategies for exploring the space of integrable theories.
TODO: finding analytic solutions.

TODO: finding new solutions (3d).

TODO: non-difference form.

and much more ...
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Results
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Integrable vs Non-Integrable

Loss functions

1071
1072
1072 i
|
107 1
1075
—— Integrable Hamiltonian Loss ! A/
10764 —— Non-Integrable Hamiltonian Loss | ‘
—— Integrable Yang Baxter Loss
—— Non-Integrable Yang Baxter Loss
1077

0 25 50 75 100 125 150 175

There is roughly an order of magnitude separation in
Yang-Baxter loss.
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