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Introduction

An integrable model is a Hamiltonian system with the equality
between the number of degrees of freedom and the number of
integrals of motion.

o Affine Toda field theory is an integrable field theory with infinite
conserved quantities.

o Affine Toda field equations (EoMs) are non-linear differential
equations that can be separated into two linear problems.

@ The linear problems in matrix form can be converted into
higher-order (pseudo) ordinary differential equations.

@ It is possible to diagonalize the linear problem, where the
diagonal elements turn to be classical conserved densities.
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Introduction

The classical conserved densities for the Agl) Toda field theory

b(z) = ng)
ey = ET@-T2)
b(2) = 55 (~5T'(2F ~ 6T(2)u"(2) + T(2) + 2T(2)")

The WKB solutions for the Agl)—type ordinary differential equation
(€202 + uy(z) — p(z))ip(z, €) = 0 with ¢(z,¢) = exp( [* dz P(z,€))

(2) = \/
( ) In Po,
PO w(z) 3P
P . ,
2(2) = 16p7 T 2P, +(i6p2)
_ w(z) 3P(;2 Lg
Ps(2) = =0:(=% =" + 16pr ~ gp3):
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Affine Toda field equations

The action of § affine Toda field theory in 2d complex plane:
5= /d2 50:0-Ge0+ (7 ) Zexp B+ 8) +exp (Bao - 9)] }. (1)

Its equation of motion: the g affine Toda field equation is

0:0,¢9(z, Z) < >[Z Qj exp Ba, ¢) + ag exp (Bozo . ¢)] =0. (2

r
v s .
= Zai ¢i(z, 2), B : a coupling constant,

y R m: a mass parameter.
aj(a}) : roots(coroots) of g,
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Affine Toda field equations

The affine Toda field equations can be separated into two Lax operators:

L=0.+B>_ 0:¢i(z,2)H + mAA, -
i=1

L =0;+ e PR diti(ma=1IA) e Eict 0iH:,

A: a spectral parameter,
N=>T gEyand AN=3%"7 (E_,,
Eo;, E_o;, Hi=a) -H (i=0,...,r): the Chevalley generators

The flatness condition B
[£,L£]=0 (4)

is the integrability condition of the linear problem

LV =LV=0 (5)
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Affine Toda field equations

One can take the conformal transformation
z=w(z), Z-w(E), ¢—d=¢—p'log(d;wdzw),  (6)
then the affine Toda field equations will be modified into
050;¢9(z,z) — [Z ajexp (ai- @) + p(2)B(Z)coexp (a0 - ¢)] =0 (7)
i=1

with p(z) = (0,w)",  p(Z) = (9:w)". The modified Lax operators are

Lin=0;+) 0:6i(2,2)H; + A(D_ Ea; + P(2)Eap);
i=1 i=1 (8)
Lm=0z+ X\ "te %M (p(2)E,, +ZE_
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A(rl) affine Toda field equations

Let us focus on the holomorphic part: £,,W = 0 and take Z for a constant

82(;51 A 7/}1
(az¢2 - az¢1) A w2
9, + - .| =0
(azd)r - 82(25,_1) >\ 1/#
Ap(2) =02, Yri1

We can find the higher order ODE for 41 (z, Z) by eliminating other components.

(_)\)_h(az_az¢r)(8z+az¢r_8z¢r71) e (az+az¢2_az(bl)(az‘f'az(bl)ql}l = P(Z)wl

with the Coxeter number h = r + 1.

From the spectral determinant of the solution 1, it is possible to construct
integrable Q-system/ T-systerm, which implies a nontrivial correspondence
between quantum/classical affine Toda field theory.

T = — — Sl
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Generalized to other affine Lie algebras

The ordinary differential equations obtained in [Ito, Locke (2015)]
AD (=N TD; — 0:¢0)(0: — Drpr—1 + B2 01)
(02 + 0:01)1(z2, €) = p(2)¥(z,€)
AD o ATCTI(D, — 0.41) - (0 — Doy + Duhr—1)(O: + Doy — Do)
- (0 + 0:1)0 +24/p(2)0:/p(2)1 = 0
BN 0 NT(8; — 0:¢1) -+ (02 — 2026, + 0z r—1)02(D; + 20:, — Dopr—1)
(02 + D201 — 4/ P(2)0:/p(2)1) = 0
D@ ATCT(D, — B,¢1) - (02 — 2000 + Orpy—1)D:(: + 20260 — Dzpr—1)
c (02 + O:00) — 4p(2)0; ' p(2)y = 0
DM AT, — O,¢1) - (8, — Doy — Dopr—1 + Drhr—2)Os "
(02 + D2pr + Dopror — Bzpr—2) - - (8z + Bopr )0 — 4\/p(2)021/P(2)1) = O
@ The ordinary differential equations can be solved with the conventional WKB
method for AV, AP | B,

@ There exists a 9, * operator for Dfi)l, Dfl), where the method can not be applied.
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A(rl) affine Toda field equations

The linear problem for Ag) type turns out to be diagonalizable [Drinfeld,
Sokolov (1984)]

0o
Ldiag =0, + >\Adiag + Z Aiili(z)/\ci;g
i=0
I(z,e71))

= 0, + Muiag + I(z, e F0)) :
2mir

1(z,e™T )

1(z,\)
(9)

where /(z, \) is the classical conserved densities 0;/; + 0,.4; = 0. However, there
was no efficient way to find /(z, \). We provide the WKB method to realize it.
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A(rl) affine Toda field equations

To apply the WKB method, we will replace the spectral parameter A with
WKB order parameter € (Planck constant)

Lom=e0;+€Y 0:0i(2)Hi+ Y Ea, + p(2)Eay- (10)

i=1 i=1

The higher-order ODE (11) now becomes

[(—)"(0: =0:0/(2)) - (9, +8,02(2) =0, 61(2))(9: +0:61(2)) — p(2)]¢1(2, €) = O

(11)
X ~ €1 implies the relations between classical IM and ODE.
One can apply the WKB ansatz to solve it.
1 V4
wi(z.) = el [ dzP(z.0) (12)
€

The equation satisfied by P(z,¢€) is called the Riccati equation.
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The diagonalization approach

We will diagonalize the Lax operator L, with the WKB method.

L=, +€¢Y 0:6i(2)H;i+ > En, + p(2)Ea,. (13)

i=1 i=1
One can view it as a covariant derivative with connection:

r

Az) = €d:0i(2)Hi + Y _ Ea; + p(2)Eag (14)

i=1 i=1

Then the gauge transformation is given by

Gaut[A(2)] = Tfl(z)A(z) T(z)+ eTﬁl(z)ﬁz T(2). (15)
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The diagonalization approach

The transformation matrix T can be decomposed into
T(Z) =TgTg_1...T3ToT1. (]_6)

d is the representation dimension and T;(z) are d x d matrices satisfying

1, if a=b,
Ti(2)ab = § gin(z,€), if a=i, b#i, 1<b<d,
0, otherwise.

The decomposition means we diagonalize the connection row by row from
the bottom to the top. For instance

1
Tqg= 1

1
8d1 8d2 ' 8dd-1 1
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The diagonalization approach

The final diagonalized connection Agiag(z) is given by
Adiag(2z) = Gaur, o Gaur, ... Gaur,_, o Gaur,_, o Gaur,[A(z)]. (17)

For each step of the gauge transformation Gaur,, we fix gj p(z) such that
the connection A'(z) satisfies

Ay =0, 1<j<d, j#i. (18)

There are finally d — 1 constraints to diagonalize the i-th row in A(z) and
fix the diagonal elements perturbatively. For instance, the connection after
first gauge transformation:

1
Alz) = o

1
Gaur,[Aly1 Gaur,[Alg2 -+ Gaur,[Alggs—1 Gaur,[Algq
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@ The diagonalization of A" and A
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The diagonalization of Agl)

The holomorphic part of the modified Lax operator in Agl) is of the form

L= €0, +ed,p(z)H + E, + p(2)E—q (19)

=(54) em(2) e (32).

We decompose the transformation matrix: T(z) = T1 T, by

HD = pteg 1) T@=(g &) e

T»(z) is determined to diagonalize the second row

&1 +€¢’ 1
G A = ’ . 21
aur,[A(2)] ( —2eg21¢' +egy — g1+ P —g1—€d (21)

It gives the condition for g»1(z):

with

o o

851(2.€) +2eg21(2,€)¢'(2,2) — egz1(2,€) — p(2) = 0. (22)
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(1)

The diagonalization of A;

Diagonal element f(z,€) := —gn,1(z, €) — €¢/(z) satisfies Riccati equation

f2(z,€) + ef'(z,€) — €un(z) — p(z) = 0. (23)
u(z) = ¢'(2)? — ¢"(z) is the classical energy-momentum tensor in
sine-Gordon theory, where the subscript denotes the spin.

The second gauge transformation T1(z) gives

—f(z,€) 1—2g12(z,€)f(z,¢) ) (24)

Gaur, o Gaur,[A(z)] = ( 0 f(z,€)

We do not need to extract the diagonalization condition from the first row
since g1 is independent of the diagonal elements.
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(1)

The diagonalization of A;

Let us substitute f(z,€) = Y 2y €'fi(z) into the Riccati equation. The
first four orders of diagonal elements +f(z, €) are listed below

f(z) = v/p(2). _h(2) = —/p(@)
fi() = —50:Inf, CA(D) = fil2) + B In,

§ w9 .
5e) = gop + 3+ Hlggp) B = ().

w(z) 3R> fy w(z) 37 f
E)’(Z) = Z( 4f(')2 - 167%4 87f('J3)7 —fé(Z) = fé(Z) - Z( 2)%2 8f4 47)%3)

Therefore, the diagonal elements can be summarized as
—f(z,—€)+d 0
Aaagle) = TET)TIO 0, (25)

where d(x) denotes total derivatives.
The traceless condition implies f;11(z) are all total derivatives.
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(1)

The diagonalization of A;

Let us pay attention back to f(z,€) and the Riccati equation
f2(z,€) + ef'(z,€) — €up(z) — p(z) = 0.

What about the relations between f(z,¢) and the WKB solutions P(z, €)
to the Agl) ordinary differential equation

(€202 + 029(2) — *(9:9)* — p(2))¥(z,¢) = 0 (26)

Substitute the WKB ansatz ¢1(z,¢) = exp(% [? dz P(z,€)), one can
obtain the Riccati equation

P?(z,€) + eP'(z,¢€) — €up(z) — p(z) = 0. (27)

There exists an equivalence between the diagonal elements and the WKB

solutions
f(z,e) = P(z,€) (28)
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(1)

The diagonalization of A;

Let us also compare f(z, €) with the conserved density /(z, ). Due to the
existence of € in front of 9,, fy(z) is actually the -1st term corresponding
to the AMgiag term. Besides this, fj(z) ~ l;i_1(z).

Ediag = 82 + )\Adiag + Z )\_i/i(z)/\a;;g
i=0

oo (29)
= €0; + fol\ang + »_ € Fi(2)Agl,
i=1
One may worry about the total derivatives d(x) in
—f(z,—€) + d(* 0
Adiag(z) = ( ( (6)) ) f(z,€) > ) (30)

The diagonal elements are uniquely determined up to total derivatives.

One can act Tgiag = diag{exp(ti(z,€)), ... ,exp(tq(x,€))}, [Adiag(2)]ii will
receive a 0,tj(z) shift.
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(1)

The diagonalization of A,

The equality f(z,e) = P(z,€) can be generalized into Agl) types.

There are two scalar fields: ¢1(z) and ¢2(z). The modified Lax operator is

2 2
Lom=cd.+ > e0:0i(z,2)Hi + > Eq, + p(2)Ea, (31)

i=1 i=1

Perform the diagonalization by T = T3T,T;5.
The gauge transformation by T3 leads to

QA 1 0
Gaur;[A(2)] = 83,1 g32 +e(¢h — @) 1 )
Gaur;[A(2)]51  Gaur[A(2)]32  —g32 —€dh

where

Gaur,[A(2)]31 = —g31 (832 + € (P71 + ¢3)) + €831 + P,
Gaur,[A(2)]32 = €g32 (¢1 — 26) + €g35 — g?iz — 83,1
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The diagonalization of Agl)

Set f(z, 6) =—832— €(z)I2, Gal.l'r3 [A(Z)]371 = GauT3 [A(Z)]3,2 = 0 gives
3 4 3eff’ — Eurf + ' — Suz —p=0. (32)
After the second gauge transformation 7o,

€dl + g1 1 8.3
Gaur,,[A(z)] = | Gaur,1,[A(2)]21  &32 + €(dh — ¢)) — 821 Gaur,7,[A(2)]23
0 0 f
where

Gaur,7,[A(2)]2,1 = —2€82,10) + 82105 + €851 — G531 + 832821 + 83,1

(33)
Gaur,7,[A(2)]23 = —€g2,301 + 2eg230 + €833 + 2832823 — £2,1823 + 1.
Set h(z,€) = go1 + €¢}, Gaurt,1,[A(2)]2,1 = 0 leads to the equation
W+ fh+ 2 — el + ef — €up = 0. (34)
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(1)

The diagonalization of A,

up(z) and wu3(z) are classical energy-momentum tensor and W field in
ALY affine Toda field theory with

u(2) = ¢5(2)2 — $h(2)84(2) + P4(2)? — &1 (2) — B4 (2),
us(2) = 204(2) 05 (2) — $1(2)5(2) — B4(2)d4(2)% + 64(2)?85(2) — 65 (2).

The Riccati equation satisfied by f(z, €) can also be obtained from
Y(z,€) = exp(L [ dz P(z,¢€)) and

(76)3(82 - azgz)l)(az - 82(152 + az(bl)(az + 3z¢2)¢ + P(Z)ﬂ’ =0. (35)

This is the adjoint ordinary differential equation of
[(—€)"(0:=022(2)) (0402 02(2) =0z 61(2) ) (9:+0z(2)) —p(2)¥1(2. €) = 0.

The adjoint means 9, — —0;, and ¢; — ¢p_;.
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(1)

The diagonalization of A;

Expand f =307 fre” and h =3 hne". The first four terms are

fi(z) = p3, ho(z) = e~ %' fy,
f
()= —¢. hi(2) = fi(2) + 20:(In ),
_ R w(2) fo o
fz( ) 6f2 + 3,:0 +8Z(2fl-)2)7 h2(Z) =e?3 f2(Z),
__w(@) | Rw(@) . K w(2) _ 1y
Ma) =3 + 3 o Tap Gy ) ME =t (6 A35)

The diagonal connection is summarized as

e T f(z,e 5 €)+d(x) _ 0 0
Adiag(2) = 0 e~ Ff(z,eTe)+d(x) 0 |. (36)
0 0 f(z,€)

The traceless condition implies f143;(z) are total derivatives.
We also observe that f142;(z) are also total derivatives when u = 0.
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The canonical Lax operator

up and u3 can be obtained from the generalized Miura transformation
2 .
(az - aZQZ)l)(az - az¢2 + azﬁbl)(az + 82(252) = ag - Z U3,,-({9; (37)
i=0

The equivalence between the following two Lax operators is proved in
[Drinfeld, Sokolov (1984)]

2 2
Lom=e0;+ Y €d:0i(z,2)Hi + Y Ea, + p(2)Eaq
i=1 i=1
2

2
Lean = €0, + Z 6i—i_lul-&—i(z)ei-&—l,l + Z Eai + p(Z)an
i=1 i=1

The same Ricaati equation and diagonal elements will be given after
applying the same diagonalization approach.

Ito, Zhu (Tokyo Tech) ODE/IM correspondence May 19, 2023@BIMSA 28 /42



Contents

© Generalized to other affine Lie algebras

Ito, Zhu (Tokyo Tech) ODE/IM correspondence May 19, 2023@BIMSA



Generalized to other affine Lie algebras

The diagonalized Lax operators for other affine Lie algebras are also
predicted in [Drinfeld, Sokolov (1984)]

Lo=0,+ M+ H(z,\)

with
H(z,X) =Y A" ()A D for BM, DR, AT
i=0
H(z,A) = Y A () AT L N NG jy2)F, for DY
i=0 i=0

@ AL — A-@IEDHR itk sufficiently large k for B, A | and D™

@ /;, J; turn out to be conserved densities.
@ There is an extra matrix F commuting with A, which generates J; in Dﬁl)

@ The terms proportional to A= are missing (up to total derivatives).
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Generalized to other affine Lie algebras

We follow the same diagonalization steps to obtain Agjag(z). First, the
modified Lax operator for an affine Lie algebra §:

Lm=e€D;+eY 0:0i(2)Hi+ > Ea, + p(2)Eay.

=1 =1

Denote f(z,€) as the bottom component of diagonal elements of Agjag(2)

with the WKB ansatz

P(z,e) = exp(% /Z dz f(z,€))
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Generalized to other affine Lie algebras

The diagonalization can be generalized to other affine Lie algebras.

2mi ir

AY . Diag{e=F f(z,eF €) + d(x), ..., e~ F f(z,e 7 €) + d(x), f(z,€)}
Agr) , : Diag{h(z,€) + d(x),e”

2mi 2mi(h—1) 2mi(h

f(z, e )+ d(*),...,e7 B f(z,e hil)e)—l—d(*),f(z,e):

Il“

2mi 2mi(2r—1) 2mi(2r—1

M . Diag{d(x),e™ a f(z ehe)+d(x),....,eT  n  f(z,e 7 )e)+d(*),f(z, €)}

2ri _2mi(2rt1) 2mi(2r+1)

Dfi)l-n.ag{e-*f( Te)+d(*),.,.,e P f(ze h€) +d(x), f(z,€)}
—2mi(r—1) 2mi(r—

VA d(x)ene (2, e T ) + d(x), €T VK (2, —€) + d(-

=\i

Dﬁl): Diag{e h i f(z e’

2 2mi(2r—1) 2mi(2r—1)

K(z,¢), e 5 fz,e F €)+d(x),...,e" h  flz,e  h€)+d(x), f(z,e)}

@ f(z,¢) satisfy the Riccati equation from the ordinary differential equations
with WKB ansatz for A%V, AQ) B,

@ f(z,¢€) should also lead to the solutions to the pseudo differential equations
for Dfi)l, DY,

@ f110i(z) are all total derivatives in the affine Lie algebras except Agl).

@ K(z,¢€) is another conserved density corresponding to matrix F in Lg.
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Generalized to other affine Lie algebras

The adjoint ordinary differential equations satisfied by f(z,€) are

AN 2 (=€) — 0201)(0: — Dz + Dehr)
(02 + 0200 )12, €) = p(2)¥(z,€)
AR 2@, — 8,¢0) - (8, — Buthr + Dothr—1) (D2 + Ooh — Bachr1)
(8, + 0.01) — 24/p(2)8./p(2)Y = 0
BY : €(0: — 0zpr) - - (02 — 20200 + Dzr—1)D:(0z + 2020 — Dzpr—1)
--(az+az¢1 )y — 4v/p(2)0:/p(2)y) = 0
D% 6(2’”)(32 1) -+ (02 — 20:¢r + 0z¢r-1)02(0z + 20:¢r — Oz¢pr—1)
(2 +6z¢1)¢ 4p(2)0; 'p(z) =0
DY €2 (0, — D,¢1) - (02 — Ouhr — Dor—1 + Doy —2)O: "
(02 + D2pr + Dopro1 — Bzpr—2) - - (8z + Bopr )0 — 4/ p(2)021/P(2)1) = O

@ The Dfl)—type ODE is reduced to Bfl_)l type for 0,¢r + Oz¢pr—1 — O2¢pr—2 = 0...

Ito, Zhu (Tokyo Tech) ODE/IM correspondence May 19, 2023@BIMSA 33 /42



@ Continuity equations from the KdV hierarchies
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Continuity equations from the KdV hierarchies

Recall the Agl) Toda field equations in terms of x and t

(—€)"(Ox — O0x1)(Ox — Oz + Ox1) -+~ (Ox + Dxr U (x, €) = p(x)(x, €)

The left-hand side is the corresponding scalar Lax operator for the
modified KdV hierarchies with linear problem Li(x) = Ap(x)

Lscalar = (8x - 6X¢1) te (8x + 8x¢2 - ax¢1)(ax + aX¢r)>

Both the Lie algebraic and the scalar Lax operators satisfy the Lax
equation for parameters t; (i = 1,2,...) with t; = t.

ai.“,'L = [Ai’ L]

with A; = (LLf;)Jr, where (A)4+ denotes the non-negative part in Jy of the
differential operator A.
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Continuity equations from the KdV hierarchies

Act 0¢, on Li(x) = Ap(x), one can obtain (L — X)(9y1 — Aiyp) =0,
which implies, for some function g(t;)

O ¥ (x) — Aih(x) = g(ti)i(x).
Substitute the WKB expansion 9(x, €) = exp(% [ dx P(x,€))
O, P(x,€) — Oxai(x) =0,
The integrable hierarchies defined by £ with A(x) = >, Ai(x)(AN) ™" is
0L = [A, L],
After the diagonalization Lgisg = TLT L Ot Ldiag = [A, Liag)
Ocf; + 0x A} = 0.
It implies the equality f(x,€) = P(x,€) up to total derivatives.
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Conserved density vs. WKB solution

The classical conserved densities for the sine-Gordon equations

b(z) = ng)7
Ih(z) = w7 (39)
Io(z) = 312( 5T/(2)2 ~ 6T(2)u"(2) + TW(z) + 2T(2)?),

The WKB solutions for the Agl)—type ordinary differential equation

fo(z) = V/p(2),
fl(z):*%azlnf()a
R OWE (40)

- @)’

w(z) 32
f3( ): —0; (_ 4f2 + ].60f4 B ﬁ)

f P
2(2) = 1622 + 2
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Conserved density vs. WKB solution

Recall the appearance of p(z): the conformal transformation z — w(z)

dw = /p(2)dz, b2(w(z)) = %[ u(z) + 4pﬂll6;25pl} (41)

After the conformal transformation,

fo(w) =1,
hw) = 20, (42)
1?4(W) _ aalﬁQ(W) — ﬁ%(w)

8 )
They are nothing but the commonly conserved densities. In conclusions,
the quantum period I1; and conserved charges Q; are related as follows:

N, = %dz fi(z) = fdz Vp(2)fi(2) ]{d"" fi(w) = Q. (43)
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Summary and future work

Summary
o A WKB method is found to diagonalize the linear problem. The
diagonal elements are the WKB solutions to the adjoint higher-order
(pseudo) ordinary differential equations.
@ There is a relation via the conformal transformation between the
conserved densities and the WKB solutions.
Futhre work
@ It is possible to take exact WKB analysis on the conserved densities
f(z,e€).
@ Apply the diagonalization results to the quantum SW curve in the
Argyres-Douglas theory.
e Combine the diagonalization approach with T T-deformation.
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Thank you for watching.
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