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Introduction



Bootstrap (BHigH/BHZ)

Pull Yourself Up By Your Bootstraps

The term is sometimes attributed to a story in Rudolf Erich Raspe's The
Surprising Adventures of Baron Munchausen, but in that story Baron
Munchausen pulls himself (and his horse) out of a swamp by his hair
(specifically, his pigtail), not by his bootstraps — and no explicit reference



Bootstrap physics _

CEORENBECEIEYY

e “Nature is as it is because this is the only el

possible nature consistent with itself.” % -%
--Geoffrey Chew

e " ..the bootstrap mechanism. it never
really worked as a calculation scheme,
but was extremely attractive
philosophically, because it made do with :/'
very little, just the fundamental -
assumptions, without introducing things § y 4
that we really could not know about.” I\
--Steven Weinberg
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e Quantum “void” is not empty
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QCD vacuum fluctuations

by Derek Leinweber

Vacuum stability is a nontrivial fact !



“THRER

A vacuum state should be stable
despite quantum fluctuations

A useful principle for Bootstrap
more general than unitarity



2D minimal model
CFT



Conformal bootstrap

* Solve conformal field theory with

1. Conformal symmetry

conformal = angle-preserving N
~ local rescaling+ rotation

2. Consistency of operator algebra: OPE associativity

1 !

1\ / 4 \4
s-channel 2 dp———— o = Y |o t-channel
2 / \ : -

o

crossing equation for 4pt function




2D Conformal Field Theory

e |In 2D, conformal symmetry is infinite dimensional

C

Ly, L] = (n —m)Lpyym + En(n2 — 1)8n4m,0

Virasoro algebra (holomorphic/anti-holomorphic)

* However, these equations are still underdetermined !
(due to infinitely many free parameters)

 We need additional constraints to close the system

e Schrddinger eq.+ boundary conditions (quantization condition)
-> pbound states



2D minimal models

 Highest weight state

 VVerma module (“Virasoro conformal multiplet”)

Table 7.1. Lowest states of a Verma module.

[ p)

01

l 1 L_lh)

2 2 L%.] h): L-—-Zlh)

3 3 L2 lh), L\L_,lh), L_;]h)

4 5 L% h), L2 L slh), L. \L_slh), L?,|h), L_4lh)




2D minimal models

* |Inner product Hermitian conjugate: L' = L_,,

ex (h|LyL_nlh) = (h| (L—nLn +2nLy + -l-licn(rz2 — 1)) |h)

= [2nh + -l—licn(rz2 — Dhth)

e Kac determinant

det MY = oy H [h — hm(C)]p(l—rs)

rs > 1

|: level
rs <

Gram matrix My = (ilf)



2D minimal models

e Roots of the Kac determinant

~ [m+1)r~ms)? -1 . 6
hrs(m) = dm(m + 1) c=1 m(m + 1)

zero-norm state at level- rs

e |f the zero-norm state is orthogonal to all states

Va, .
-> quotient representation Vi, g = % ’
A strs

null state at level- rs (quantization condition)




2D minimal models

e OPE truncation

k=r,+ra—1 [=5)451—1

Prs1) X Prysz) = Z Z Pk.0)

k=1+{r) —r;] I=1+|s)—s1}
k+r)4r;=1 mod 2 [+s5)4+s3=1 mod 2

example
¢(1.2) X ¢(r,s) = ¢(r,.s-1) " ¢(r,s+1)

d2,1) X Pprs) = Pr—15) + DPr+1.5)

* |f the central charge c is generic
-> generalized minimal models Zamolodchikov, 2005
operator algebra is still infinite-dimensional



2D minimal models

 For central charge

— 7')2
_p {7)
pp

c =1

one finds the periodicity relation

Ar—l—p stp! = A, ., (difference is a null state)

e QOperator algebra is truncated & finite-dimensional

. . . . 1
. . . . hr,s — hO -+ Zaz(ai + az_)

.. . 8 is the Cartesian distance

0 */5.‘\ . For rational slope po._. +p'a+ = ()




2D minimal models

For central charge

Sy
_ {7)
pp

operator algebra is truncated and finite-dimensional
due to the periodicity relation

¢ = |

(p, p’) examples

(5, 2) = Yang-Lee edge singularity Cardy

(4, 3) = Ising BPZ

(5, 4) = tricritical Ising Friedan-Qiu-Shenker
(6, 5) = three-state Potts Dotsenko



2D minimal models

— )2
C=l—6g_€_)__

operator algebra is truncated and pp
finite-dimensional due to the periodicity relation

h2 'E h2

* For central charge

e Unitary minimal models
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c=1

e Landau-Ginzburg effective action (diagonal, p=m)

V,(®) = 2D L= f d*z {%(8@)2+V(¢)]

multi-critical Ising fixed point



2D minimal models

For central charge (p . p!)2

| c=1-6
operator algebra is truncated and pp’
finite-dimensional due to periodicity relation

Multi-critical Yang'l—ee fixed point Lencsés-Miscioscia-Mussardo-Takacs, 2022
/
p=2, p =3+2n
deformation of multi-critical Ising model by imaginary magnetic field

Landau-Ginzburg effective action

1
Lo = 5%105»#’0_'_ ,y/p2—|—1/n

Non-unitary due to imaginary coupling constant



2D minimal models

RG flows between minimal models

# relevant fields

M(4,5)

Unitary Non-unitary

3 +
Tetracritical M(5,6) M(2,9)

! !
Tricritical M(4,5) M(2, 7)>

! | /
Critical M(3,4) — M(2,5)

Lencsés-Miscioscia-Mussardo-Takacs, 2023



2D minimal models

e Belavin-Polyakov-Zamolodchikov differential equation

e Example: null state at level-2

3
{z:_2 s 1)1:31] B(D)X) =

More explicitly

N hi
I;[Z_lz,. 31*'(2_21.)2] 2(2,,+1)3Zz] (#2,1)(2)¢1(21)¢2(22) - -



2D minimal models

e The null state condition
1. Fix the scaling dimensions, central charge
2. Restrict the possible intermediate states in OPE

3. Lead to differential equations for correlation functions



The null bootstrap
1. Hamiltonian



Hamiltonian Bootstrap

 Hamiltonian eigenstates

<V/E‘0H|V/E> — E<V/E|O|V/E> — <V/E‘H0|V/E>

 Bootstrap??

given an explicit Hamiltonian
determine the observables using consistency relations
without knowing the wave functions

* Classify and solve the representations of operator algebra
state = linear functional = representation (GNS construction)



Hamiltonian Bootstrap

e For quartic anharmonic oscillator Han-Hartnoll-Kruthoff, 2020
H = p* + x* + gx*
e EXxpectation values are not arbitrary
4tE(x" 1) + 1t — 1) (¢t — 2){x"73) E is energy
= 4+ 1)(x 1) — dg(t +2)(6"4) = 0

* Probability is non-negative

(OTOY >0, V O=

K
c;x'
=0

l



Positivity constraints

e Positive semidefinite matrix Han-Hartnoll-Kruthoft, 2020
K
Mi' — <XZ+J> (OT0) 20, V O= Zcixi
J =0
0.310:—
0.305 o
& 1 K=7
=
0.300 K =8
K =9
0.295
136 138 140 142 144



Beyond Hermitian?

More QM bootstrap based on positivity

Berenstein-Hulsey, Bhattacharya-Das-Das-Jha-Kundu, Aikawa-Morita-Yoshimura,
Tchoumakov-Florens, Du-Huang-Zeng, Lawrence, Bai, Nakayama, Khan-Agarwal-Tripathy-
Jain, Blacker-Bhattacharyya-Banerjee, Nancarrow-Yin, Lin, ...

Can we solve the QM bootstrap without using positivity?

Why? Non-Hermitian physics is also rich and interesting

Yang-Lee edge singularity, Gribov’s Reggeon field theory, open system,
ultracold atoms, non-Hermitian band theory (exceptional points/lines,
non-Hermitian skin effect) ...

PT symmetric non-Hermitian theory has a real spectrum
Bender-Boettcher, 1998



* Solve the energy spectrum

How to bootstrap without
positivity?
e Harmonic oscillator H — pz 4 $2

<WE|OH|V/E> — E(WE|O|WE> — <WE|HO|V/E>

v
<¢test‘(H — Ek)‘¢k> — <Otest(H — Ek)Lk>E =0

* Energy spectrum Ek — F + 2

e Lowering operator [,_, = (55 T ip)n

 Underdetermined system: E is a free parameter



Stability

e Stability: energy should be bounded from below

* Ground state should be annihilated by lowering operator

* Highest weight representation of operator algebra



Null state condition

e A null state should have zero-norm

<WE‘OH‘V/E> — E(‘//E‘O‘WE> — <WE‘HO‘1//E>

\ 4

(z —ip)™ (@ +ip)") e = (1) g [[reg(E — 2k — 1)

 The null state condition gives

E, =2n+1withn=0,1,2,---

 Not using any positivity constraint



Operator algebra perspective
of the null bootstrap

Below, we will set A to one. Mathematically, a representation of an abstract operator
algebra can be induced by a state

p: A—=C, (1.2)

which is a linear functional mapping the elements of the operator algebra to complex num-
bers. Then one may construct the space of states as a representation of A on H

m: A— End(H), (1.3)
and show the existence of a vector ¢, € H with
p(A) = (WplAlYp) := (Yp, m(A) Py) (1.4)
for all A € A. Typically, H is a quotient vector space
H:=A/N, (1.5)

where N is a left ideal in A, corresponding to the subspace of null states. The null sub-
space plays a crucial role in the null bootstrap program [32], which aims to classify physical
solutions and extracts concrete predictions by the null states. From the algebraic perspec-
tive, this can be viewed as a classification program based on the ideals in operator algebra.



The positive bootstrap vs The null bootstrap

T <¢‘¢>boundary =0

definite l Hermitian Hamiltonian
Region

(Yl) <0

Region inconsistent with positivity

|¢>boundary =0

Null constraints for the bootstrap

(Wl = 22, (Pldn)(@nl¥) = 32, [(dnlh)]? =0



N minimization
* Finite-dimensional search space

 QOverdetermined system
more null constraints than free parameters

e Measure the violation of the null state condition

1 9K

L
= \ )3 minl Ob,.

least square



N minimization
In conformal bootstrap
Truncation approach (Gliozzi, 2013, PRL)
Minimize the errors in the crossing constraints (Li, 2017)

Al minimization: reinforcement learning

Kantor-Niarchos-Papageorgakis, 2021
(PRL, Editors’ suggestion)

Stochastic minimization: Monte Carlo method

Laio-Valenzuela-Serone, 2022



Quartic theory
with n minimization

PN = ST ST g 2™ (ip)"|¢05)
m=0 n=0
L L—m

W =3 by (YE|z™ (ip)"
m=0 n=0

0.15¢

0.10

0.05f

L=K+2

E

N

<X

—-0.4

— -0.6

-1.2
-1.4
-1.6

-1.8

K

2



High precision results

AEF| K=1 K=2 K=3 K=4
_ _3 -3 —10 —12
n=0|-1x10"% —2x107% -4 x 107" -7 x 10 EQ = 1.39235164153029...
n=1 3x107% —3x107° 2x10*
n=2 5x107% 6 x 107"
n = 3 1x10°°

A K=1 K=2 K=3 K=4
n=0 |—1x1072%2 —-1x107% 2x107% 1x10~

n = 1x1072 —1x10%1x10"1
n=>2 —3x107% 6x10°®
n=3 2 x 1078

AQ|lz™n)YM| m=1 m=2 m=3 m=4
n=1M=1[4x10"° 1x107°
n=2M=2 3x1077 1x 10
n=1M=3|[1x10"" 2 x 10711




Beyond Hermitian

e Hamiltonian eigenstates satisfy consistency relations

<V/E‘OH‘WE> — E(WE‘Oh/’E) — <V/E‘HO‘WE>

e |nner product

1. Hermitian Hamiltonian

<W1|V/2>H — fdx[l/ﬁ (x) "y (x)

2. Non-Hermitian Hamiltonian ( PT symmetric)

<l/f1‘l//2>737 — Cfdx[y/l(—x)]*y/z(x)



Non-Hermitian PT theory

o Yang—Lee edge singularity Yang-Lee, Kortman-Griffiths, Fisher, Cardy, ...
7 = e Ph = ¢t0
1

Sryiinsvlin v

T>T, T="1T, T <T,

distribution of the Yang-Lee zeros for the Ising partition function

* PT symmetry
H = p® — (iz)"

real and bounded spectrum *
Bender-Boettcher, 1998 T 2 3 4

Energy

[ L B 1 B Ly = 28,00%0 + (h—ih)p + iy + . ..



Non-Hermitian cubic theory

e Hamiltonian H = p2 -+ 7:(133

e Results

AE) K=1 K=29 K=3
n=04x10"% —8x 10" 1 x 10~

n = 2x107° -3 x107°
EQ = 1.156267071988... n — —1x%x 104
A K =1 K=2 K=3
x>0 = —0.5900725330911 n=0 |—3x107% 2x107% —2x 1071
n=1 —8x107% 1x 1078
n = 2 x 107°%




The null bootstrap
2. Lagrangian



e Path integral

Dyson-Schwinger

Z[J] — /ng G—S[¢]+de:cJ(x)¢(a;)

e (Green’s function

Gn(1, ..oy 2n) = (T10(21) - - - @(Tn) })

e Quantum equation of motion

(0519]/0¢(x)) = (J(z))

 Dyson-Schwinger equations: take J derivatives and then J=0

example  (¢p(x1) 05[¢]/0¢p(x2)) = 0(x1 — 22)



Quartic theory

* Usual approach
1. A finite set of DS equations (underdetermined)
2. Set high-point connected Green’s functions to zero
3. Solve the finite system

* However, this does gives the correct answer! L(gb) — %gbél

Gy
0.7, R S S S S ERNEERRRRRREY D=0, quartic theory

06 , et Lt eetilectiieniils

00+ LTl Gy = —3G2 41

04

gz . | . °.‘:‘-::-..: G6:—12G2G4_6Gg
0.1 Toe . .. .......

| | | - L * WA o . Bender-Karapoulitidis-Klevansky, 2022
0 S 10 15 20 25 30



Quartic theory

* Usual approach
1. A finite set of DS equations (underdetermined)
2. Set high-point connected Green'’s function to zero
3. Solve the finite system

* Solution: use asymptotic behaviour at large n (# of points)

< Gon ~ 2r*"(=1)"T1(2n — 1)! (n — o)
0.7

0.6
0.5l D=0, quartic theory

04
0.3
0.2

..... Bender-Karapoulitidis-Klevansky, 2022

0.1 * . N T
0 5 10 15 20 25 30



Cubic theory

L= zi¢3

Im(G+)
- 0.4
& >
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| ~Ns7
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-0.04 -002 002 0.04
Z0.66
-04 -0.68
0 760N
7 \
06 I \
\\ \m/
v ~0;
~0.8 f

simply set to zero

Re(G1)

Re(Gy)

Bender-Karapoulitidis-Klevansky, 2022

Im(G1)

004  -0.02 0.02 0.04 Rela

-0.66

-0.68

use large-n asymptotic behaviour



Sextic

Im(G>)

Bender-Karapoulitidis-Klevansky, 2022
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Stokes sectors

e Different integration paths give different results L= 148
6
0° [ " 1. (0°, 180°)
2. (—60°, —120°)
_e 3. (60°,120°)

Bender-Klevansky, 2010



Null state condition

e DS equations is not sensitive to the choice of Stokes
sectors

e Add a quantization condition
1. boundary condition or asymptotic behaviour
2. unitarity/positivity constraints (Hermitian solution)
3. null state condition

-> determined system



Quartic theory

e Lagrangian [ — %(¢)2 4 %¢2 4 %¢4

* DS equations
(—872.1 + 1) Gn(Tl,TQ, .. ) + QGn+2(Tl,Tl,Tl,7'2, . )

n
— 25(7‘1 = 7i) Gn—2(T2, -+, Tie1, Tig 1, - - )
=2

* |ndependent parameters in the equal-time limit

Fn = 877}2G2(7'1,7'2)|7_1_)7_2_|_0+ — <¢(7_) dn¢(7)>

dT™




Quartic theory

e The composite operators are
. 1 - Fy  Fy
(@) =5, (D) =-F, (#)=-F+,

37 _ 3to 2 2y L Fa By
wh=0 wen-t+ 2L

* Null state condition (test™ null ®)) = (OZ) Oy =

null




Quartic theory

e For K=1

{1,0;,,0?

T1 9 T1

1

= | FO 9
20,0 2
This implies fp = <q§2> isarootof 243 + 412 — 1

real root at x = 0.2991; exact value (¢*) = 0.30581365



Quartic theory

(K) _ d™ (7
The null state condition for unequal time Onu” = Z m dTm
K=1
(ao—l—alam)Gg )(7'1,’7'2):0

The solution Is

GQ( )(71772)_616 1| e

—ao/al = 1.6717....
Exactenergy gap E,,, = E; — Ey = 1.62823



Quartic theory

+ Roots of the “null polynomial” ) @m "
m=0
encode the energies of the intermediate states E,, — Ep
K

GgK) (7-177-2) — Z Cm e_AEmlTl_T2|

m=1

the coefficients are associated with <n\¢\0>

K d™¢(7)
Ox(mu) = Z Am, Jr
 For a bounded-from-below spectrum,
all roots should are positive.

This selects a unigue solution to the polynomial system!



Quartic theory

e Reconstruct the 2-point function at real time

Re(G2)
0.3
: — EXxact
0.2
o1\ J N 4 N\ o —1
0.1 .
~0.2" -

~0.3



Quartic theory

e For K=6

AE = {1.628230589 . . ., 5.882239..., 10.9536..., 16.661...,
23.3...,32.5...}

Exact = {1.628230531..., 5.882226..., 10.9525..., 16.624...,
22.8..., 29.4...)

c;’? = 0.5525659561 ... and cy’> = 0.021994704 ...

Exact:  (1|¢|0) = 0.5525659593 ...
(3|6|0) = 0.021994761 . ..



Root accumulation
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Non-Hermitian cubic theory

. | (
* Lagrangian - 2 =3
L=5(9) +59¢

* DS equations %;
(
_(972_1Gn(7'1,’7'2, . ) + an{-l(Tl)Tl)TQ) .. )

n
— 25(7—1 o Ti) Gn—2(7'27 ceoyT3—19Ti41,- - - ) i
=2

e ForK=6, (dp)=-0.590072522 ... (exact value —-0.590072533.. .1

null polynomial -> intermediate spectrum
bounded-from-below spectrum -> unique solution with positive roots



Root accumulation at K=6

Symanzik rotation
5-fold symmetry

1-0.59007
1-0.59008

FIG. 2. The K = 6 solutions for the 1D non-Hermitian i¢° theory.
The red square indicates the exact value at G1 = —0.5900725.. . 1.
We find 123 roots of distance less than 10~! from this exact
value, while {44,24,12,6} of them are of distance less than
{1072,1073,107%,107°}. Inset: The 6 solutions are obtained by
iteratively discarding the most distant root from the average.

~ Re(Gq)
3



Outlook

* Null state condition as a quantization condition

Is there any connection to the resurgent WKB method
(exact quantization condition)?

 Jowards more degrees of freedom

quantum many-body systems, higher dimensions, matrix

models, ...
spin chains, QED3, QCD and hadron physics



Back to CFT

e Non-Hermitian CFT
(multi-critical) Yang-Lee edge singularity

e Complex CFT
weakly first-order transition in statistical and condensed

matter physics (deconfined quantum criticality)
gauge theory (walking)

 Beyond relativistic CFTs

Galilean C — OQ, Carrollian ¢ — 0,
anisotropic scaling, ...



Thank you!



