

Psuedo Entanglement entropy in 2D CFTs

何松

Center for Theoretical Physics, School of physics, Jilin University

吉林大学•物理学院•理论物理中心

Based on arXiv: 2206.11818, 2209.07308, 2301.04891

Collaborators: Wu-zhong Guo (Hua-Zhong U. Sci. Tech. 郭武中) Jie Yang (Beijing Normal U. 杨洁) Yu-Xuan Zhang (Jilin U. 张字轩) Zhi-Xuan Zhao (Beijing Normal U. 赵子轩)

2023/03/29, Joint HEP-TH Seminar

Outline

- □ Introduction of EE and Psuedo entanglement entropy
- **D** Psuedo Renyi entropy in 2D CFT
- **1.Replic trick and setup**
- 2. Psuedo Renyi entropy of locally excited states
- **□**Reality conditions for Psuedo Renyi entropy
- **D**Summary

What is Pseudo entropy?

Def. Of EE in discrete systems

Divide a quantum system into two parts A and B.

Fine grained Entropy

Definition of EE in QFT:

In QFTs, the EE is defined geometrically (called geometric entropy).

Definition of Transition matrix in QFT:

$$\mathcal{T}^{\psi|\varphi} \equiv \frac{|\psi\rangle \langle \varphi}{\langle \varphi|\psi\rangle}$$

Properties:

 $\operatorname{Tr} \mathcal{T}^{\psi|\varphi} = 1$

$$\left(\mathcal{T}^{\psi|\varphi}\right)^n = \mathcal{T}^{\psi|\varphi}, \quad \forall n \in \mathbb{N}^+$$

 $\operatorname{Tr}\left(\mathcal{T}^{\psi|\varphi}\right)^n = 1$
 $\mathcal{T}^{\psi|\varphi} = \left(\mathcal{T}^{\varphi|\psi}\right)^{\dagger}$

Reduced Transition matrix:

$$\mathcal{T}_A^{\psi|\varphi} = \operatorname{Tr}_B\left(\mathcal{T}^{\psi|\varphi}\right)$$

T. Takayanagi et al '20

2 : Basic properties of Pseudo-(Rényi) Entropy

1) If either $|\psi\rangle$ or $|\varphi\rangle$ is product state, then $S^{(n)}(\mathcal{T}_{A}^{\psi|\varphi}) = 0$. $(\mathcal{T}_{A}^{\psi|\varphi} \equiv \operatorname{tr}_{\bar{A}}[\mathcal{T}^{\psi|\varphi}])$ $\bar{A}: \text{ complement of } A$ 2) $S^{(n)}(\mathcal{T}_{A}^{\psi|\varphi}) = S^{(n)}(\mathcal{T}_{\bar{A}}^{\psi|\varphi})$

3)
$$S^{(n)}(\mathcal{T}_{A}^{\psi|\varphi}) = [S^{(n)}(\mathcal{T}_{A}^{\varphi|\psi})]^{*}$$

4) $\mathcal{T}_A^{\psi|\varphi}$ is non-Hermitian in general, pseudo-entropy can be complex-valued.

A Subadditivity and Strong Subadditivity are violated in general!

Introduction: Pseudo-(Rényi) entropy

We can also define the corresponding "pseudo-Rényi entropy (PRE)" with respect to T. Takayanagi et al '20

$$PRE: \quad S_A^{(n)} = \frac{1}{1-n} \log \operatorname{Tr}[(\mathcal{T}_A^{\psi_1 | \psi_2})^n]_{n \in \mathbb{R}^+ \setminus \{1\}}$$

$$\lim_{n \to 1} S_A^{(n)} = S_A \checkmark$$

PE and PRE are normally complex!

3 : Interpretation from Holography

[Nakata, Takayanagi, Taki, Tamaoka, Wei'2020] In AdS/CFT correspondence, pseudo-entropy is dual to **area of minimal surfaces** in

time-dependent Euclidean asymptotically AdS (aAdS) spaces

③: Interpretation from **Quantum Entanglement**

[Bennett, Bernstein, Popescu, Schumacher'1995]

Entanglement entropy = **# of distillable EPR pairs** under **LOCC**

3 : Interpretation from Quantum Entanglement

[Nakata, Takayanagi, Taki, Tamaoka, Wei'2020]

Pseudo-entropy = (#) of distillable EPR pairs under LOCC+Post Selection

PE:
$$S(\mathcal{T}_A^{\psi|\varphi}) = \lim_{M \to \infty} \frac{\langle N \rangle}{M}$$

3 : Interpretation from Quantum Entanglement

Pseudo entropy of locally excited states in 2D CFTs

PRE of 2D CFTs in real time (Our focus)

What happens if we think about the pseudo-(Rényi) entropy in real-time?

We consider $\mathcal{T}_{A}^{\psi_{1}|\psi_{2}}(t) = \frac{e^{-iHt}|\psi_{1}\rangle\langle\psi_{2}|e^{iHt}}{\langle\psi_{2}|\psi_{1}\rangle}$ $\mathcal{S}_{A}^{(n)}(t) = \frac{1}{1-n}\log\operatorname{Tr}[(\mathcal{T}_{A}^{\psi_{1}|\psi_{2}}(t))^{n}]$

PRE of 2D CFTs in real time

PRE for locally excited state: Replica trick

For n = 2, $n_1 = n_2 = 1$, $\Delta S_A^{(2)}$ is reduced to 4-point functions on Σ_2 .

We further assume $O_1 = O_2 = O$ to simplify the results

$$\Delta S_A^{(2)} = -\log \frac{\left\langle \mathcal{O}^{\dagger(2)}(\tau_2, x_2) \mathcal{O}^{(2)}(-\tau_1, x_1) \mathcal{O}^{\dagger(1)}(\tau_2, x_2) \mathcal{O}^{(1)}(-\tau_1, x_1) \right\rangle_{\Sigma_2}}{\left\langle \mathcal{O}^{\dagger}(\tau_2, x_2) \mathcal{O}(-\tau_1, x_1) \right\rangle_{\Sigma_1}^2}$$

Note1: Conformal map between Σ_2 and Σ_1

$$z = \left(\frac{w}{w-L}\right)^{1/n}, \quad (A = [0, L]),$$

 $z = w^{1/n}, \quad (A = [0, +\infty))$

Note2: Analytic continuation of t

 $\tau_1 = \epsilon + it, \quad \tau_2 = \epsilon - it$

$$\Delta S_A^{(2)} = -\log \frac{\langle \mathcal{O}^{\dagger(2)}(\tau_2, x_2) \mathcal{O}^{(2)}(-\tau_1, x_1) \mathcal{O}^{\dagger(1)}(\tau_2, x_2) \mathcal{O}^{(1)}(-\tau_1, x_1) \rangle_{\Sigma_2}}{\langle \mathcal{O}^{\dagger}(\tau_2, x_2) \mathcal{O}(-\tau_1, x_1) \rangle_{\Sigma_1}^2}$$

$$z = \left(\frac{w}{w-L}\right)^{1/n}, \quad (A = [0, L]), \quad (w_3, \bar{w}_3)_{\text{sheet } 2} = (w_1, \bar{w}_1)_{\text{sheet } 1} = (x_1 - i\tau_1, x_1 + i\tau_1)$$

$$z = w^{1/n}, \quad (A = [0, +\infty)) \quad (w_4, \bar{w}_4)_{\text{sheet } 2} = (w_2, \bar{w}_2)_{\text{sheet } 1} = (x_2 + i\tau_2, x_2 - i\tau_2)$$

$$\langle \phi_1(\vec{x}_1)\phi_2(\vec{x}_2)\phi_3(\vec{x}_3)\phi_4(\vec{x}_4) \rangle = f(\eta, \bar{\eta}) \prod_{i < j}^4 z_{ij}^{\frac{h}{3} - h_i - h_j} \overline{z_{ij}^{\frac{h}{3} - \bar{h}_i - \bar{h}_j}}$$

$$(\eta, \bar{\eta}) = \left(\frac{z_{12}z_{34}}{z_{13}z_{24}}, \frac{\bar{z}_{12}\bar{z}_{34}}{\bar{z}_{13}\bar{z}_{24}}\right)$$

$$\Delta S_A^{(2)} = -\log \frac{\langle \mathcal{O}^{\dagger(2)}(\tau_2, x_2) \mathcal{O}^{(2)}(-\tau_1, x_1) \mathcal{O}^{\dagger(1)}(\tau_2, x_2) \mathcal{O}^{(1)}(-\tau_1, x_1) \rangle_{\Sigma_2}}{\langle \mathcal{O}^{\dagger}(\tau_2, x_2) \mathcal{O}(-\tau_1, x_1) \rangle_{\Sigma_1}^2}$$

$$z = \left(\frac{w}{w - L}\right)^{\frac{1}{2}}, \quad A = [0, L]$$

$$\langle \mathcal{O}^{\dagger}(z_2, \bar{z}_2) \mathcal{O}(z_1, \bar{z}_1) \rangle_{\Sigma_1} = \frac{c_{12}}{|z_{12}|^{4\Delta_{\mathcal{O}}}}$$

$$\langle \mathcal{O}^{\dagger(2)}(\tau_2, x_2) \mathcal{O}^{(2)}(-\tau_1, x_1) \mathcal{O}^{\dagger(1)}(\tau_2, x_2) \mathcal{O}^{(1)}(-\tau_1, x_1) \rangle_{\Sigma_2} = |16z_1^2 z_2^2|^{-4\Delta_{\mathcal{O}}} G(\eta, \bar{\eta})$$

$$\Delta S_A^{(2)} = \log \frac{c_{12}^2}{|\eta(1 - \eta)|^{4\Delta_{\mathcal{O}}} \cdot G(\eta, \bar{\eta})}$$

 $A = [0,\infty).$

Table 1: Early time and late time behaviors of $(\eta, \bar{\eta})$ for the subsyster

$(\eta, ar\eta)$	$x_1 x_2 > 0$	$x_1 x_2 < 0$	
Late time $(t \to \infty)$	(1, 0)	(1, 0)	
Early time $(t \to 0)$	$(\frac{1}{2} + a, \frac{1}{2} + a)$ $a = \frac{x_1 + x_2}{4\sqrt{x_1 x_2}}$	$x_1 > 0 > x_2$ $\left(\frac{1}{2} + a, \frac{1}{2} - a\right)$	

Late time limit $(A = [0, \infty))$: **Quantum dimension of** \mathcal{O} Rational CFTs: $\Delta S^{(2)} \sim \begin{cases} 0, \\ t \to 0 \&\& x_1 \sim x_2, \end{cases}$

ational CFTs:
$$\Delta S_A^{(2)} \simeq \begin{cases} \log d_{\mathcal{O}}, & t \to \infty. \end{cases}$$
 S. He et al' 14

Large-*c* CFTs:
$$\operatorname{Re}\left[\Delta S_A^{(2)}\right] = 4\Delta_{\mathcal{O}}\log\frac{4t}{\sqrt{(x_1 - x_2)^2 + 4\epsilon^2}}$$

P. Caputa et al' 15

Full-time evolution: $\mathcal{O} = (e^{\frac{i}{2}\phi} + e^{-\frac{i}{2}\phi})$ -excitation in free scalar

When $A = [0, \infty)$, the late time limit of $\log d_O$ is true for any order

Reality condition of Pseudo entropy

4 : Brief Summary

Non-Negative Pseudo-Entropy Requirement

For HPE, the holographic calculation requires $\mathcal{T}_A^{\psi|\varphi}$ to generate non-negative $S(\mathcal{T}_A^{\psi|\varphi})$.

The proof of QI interpretation for PE is valid when $\mathcal{T}_A^{\psi|\varphi}$ is semi-positive definite.

5 : Our focus and motivation

Our motivation

To find the sufficient and necessary condition for the transition matrix $\mathcal{T}^{\psi|\varphi}$ such that $S^{(n)}(\mathcal{T}^{\psi|\varphi}_A) \geq 0$?

6 : **Resort to Pseudo-Hermiticity due to matrix algebra**

What is Pseudo-Hermiticity

An operator M is said to be η -pseudo-Hermitian if there exists a Hermitian invertible operator η such that $M^{\dagger} = \eta M \eta^{-1}$.

 \star If $\eta = I$, the pseudo-Hermitian condition reduces to the Hermitian condition.

Pseudo-Hemiticity: A generalization of Hermiticity.

7 : **Basic Properties of Pseudo-Hermiticity**

Property 2:

Hint: Construct η **using biorthonormal bases**

Suppose that O is diagonalizable, then O is η -pseudo-Hermitian *iff* the eigenvalues of O come in real numbers or complex conjugate pairs

[Mostafazadeh'2001]

1 : Summary of Our Results

We find the blue subset which gives non-negative Pseudo-Rényi entropies

★All density matrices belong to the blue subset!

(2) : Mind Mapping of the Construction

n-th Pseudo-Rényi entropy:
$$S_A^{(n)} = \frac{1}{1-n} \log \operatorname{tr}[(\mathcal{T}_A^{\psi|\varphi})^n]$$

(3) : Find $\mathcal{T}^{\psi|\varphi}$ that generates pseudo-Hermitian $\mathcal{T}^{\psi|\varphi}_A$

Theorem 1:

T can be written as $T = T_1 + iT_2$, where T_1 and T_2 are **both** η -pseudo-Hermitian

with $\eta = \eta_A \otimes \eta_{\bar{A}}$. Further, T_2 satisfies $tr_{\bar{A}(A)}[T_2] = 0$.

[He, Guo, Zhang'2022]

(Simple proof in the next slide)

(3) : Find $\mathcal{T}^{\psi|arphi}$ that generates pseudo-Hermitian $\mathcal{T}^{\psi|arphi}_A$

Theorem 1

 $X_{A(\bar{A})}$ is $\eta_{A(\bar{A})}$ -pseudo-Hermitian, *iff* X can be written as $X = X_1 + iX_2$, where

 X_1 and X_2 are **both** η -pseudo-Hermitian with $\eta = \eta_A \otimes \eta_{\bar{A}}$. Further, X_2 satisfies

 $tr_{\bar{A}(A)}[X_2] = 0.$

Proof:

$$\begin{split} tr_{\bar{A}}[X_2] = & tr_{\bar{A}} \left[\frac{X - \eta^{-1} X^{\dagger} \eta}{2} \right] \\ = & \frac{1}{2} \left(X_A - \eta_A^{-1} tr_{\bar{A}} [\eta_{\bar{A}}^{-1} X^{\dagger} \eta_{\bar{A}}] \eta_A \right) \\ = & \frac{1}{2} \left(X_A - \eta_A^{-1} X_A^{\dagger} \eta_A \right) = 0 \quad \longleftarrow \text{ pseudo-Hermitian} \end{split}$$

4 : Constructions

Chart of equivalence relation

n-th Pseudo-Rényi entropy: $S_A^{(n)} = \frac{1}{1-n} \log \operatorname{tr}[(\mathcal{T}_A^{\psi|\varphi})^n]$

4 : Barriers

n-th Pseudo-Rényi entropy: $S_A^{(n)} = \frac{1}{1-n} \log \operatorname{tr}[(\mathcal{T}_A^{\psi|\varphi})^n]$

5 : The Sufficient Condition

Chart of equivalence relation

5 : Find the Sufficient Condition

5 : Find the Sufficient Condition

5 : The Sufficient Condition

Theorem 2:

Suppose $\mathcal{T}^{\psi|\varphi}$ is η -pseudo-Hermitian with $\eta = \eta_A \otimes \eta_{\bar{A}}$:

If η_A is positive or negative and $\eta_{\bar{A}}$ is positive or negative too, then

the eigenvalues of $\mathcal{T}_{A(\bar{A})}^{\psi|\varphi}$ are non-negative.

[He, Guo,Zhang'2022]

Hint of the Proof:

$$\begin{split} \eta_{A}^{1/2}\mathcal{T}_{A}^{\psi|\varphi}\eta_{A}^{-1/2} = & \eta_{A}^{1/2}\tilde{\mathcal{T}}_{A}^{\psi|\varphi}\eta_{A}^{1/2} \\ & \left(\tilde{\mathcal{T}}_{A}^{\psi|\varphi} = \frac{\operatorname{tr}_{\bar{A}}\left(\eta_{\bar{A}}^{1/2}|\psi\rangle\langle\psi|\eta_{\bar{A}}^{1/2}\right)}{\langle\psi|\eta|\psi\rangle}\right)^{\mathsf{Always Positive semi-definite!}} \end{split}$$

5 : The Sufficient Conditions

Part 5: Summary

Summary

- Obtain Psuedo Renyi entropy of pair of locally excited states in 2D CFT.
- **D** Late time of PRE is log quantum dimension (Universal)
- **Construct the sufficient condition for PRE**
- PRE for more generic locally excited states, Please refer to our work.
- □How to extend the reality condition for Type III & Type II algebra, PRE in SYK, etc, ...

Thanks for your attention