

Psuedo Entanglement entropy in 2D CFTs
同 松

Center for Theoretical Physics, School of physics, Jilin University

吉林大学·物理学院·理论物理中心

Based on arXiv: 2206.11818, 2209.07308, 2301.04891

イリーイ公

Center for Theoretical Physics, School of physics, Jilin University

吉林大学・物理学院・理论物理中心

206.11818, 2209.07308, 2301.04891

Wu-zhong Guo (Hua-Zhong U. Sci. Tech. 郭武中)
Jie Yang (Beijing Normal U. 杨洁)
Yu-Xuan Zhang **イワ 木公**
Center for Theoretical Physics, School of physics, Jil
吉林大学・物理学院・理论物理中心
206.11818, 2209.07308, 2301.04891
Wu-zhong Guo (Hua-Zhong U. Sci. Tech. 郭武中)
Jie Yang (Beijing Normal U. 杨洁)
Yu-Xuan Zhang (Jilin U. 张宇轩)
Zh Yumber of Theoretical Physics, School of physics, Jilin University

吉林大学・物理学院・理论物理中心

206.11818, 2209.07308, 2301.04891

Wu-zhong Guo (Hua-Zhong U. Sci. Tech. 郭武中)

Jie Yang (Beijing Normal U. 杨洁)

Yu-Xuan Zhang (Jilin U. Center for Theoretical Physics, School of physics, Jilin Univ
言林大学・物理学院・理论物理中心
206.11818, 2209.07308, 2301.04891
Wu-zhong Guo (Hua-Zhong U. Sci. Tech. 郭武中)
Jie Yang (Beijing Normal U. 杨洁)
Yu-Xuan Zhang (Jilin U. 张宇轩)
Zhi Collaborators: Wu-zhong Guo (Hua-Zhong U. Sci. Tech. 郭武中)

2023/03/29, Joint HEP-TH Seminar

Outline

- Dutline
□ Introduction of EE and Psuedo entanglement entropy
□ Psuedo Renyi entropy in 2D CFT Dutline
□ Introduction of EE and Psuedo entanglement entre
□ Psuedo Renyi entropy in 2D CFT
1. Replic trick and setup Dutline
□ Introduction of EE and Psuedo entanglement entropy
□ Psuedo Renyi entropy in 2D CFT
1. Replic trick and setup
2. Psuedo Renyi entropy of locally excited states
□Reality conditions for Psuedo Renyi entropy **□** Introduction of EE and Psuedo entanglement entropy

□ Psuedo Renyi entropy in 2D CFT

1. Replic trick and setup

2. Psuedo Renyi entropy of locally excited states

□ Reality conditions for Psuedo Renyi entropy

□ Summ
- 2. Dutline

 Introduction of EE and Psuedo ent

 Psuedo Renyi entropy in 2D CFT

1. Replic trick and setup

2. Psuedo Renyi entropy of locally exci
-
-
-
- **OSummary**

What is Pseudo entropy?

Def. Of EE in discrete systems

Divide a quantum system into two parts A and B.

Fine grained Entropy

Definition of EE in QFT:

In QFTs, the EE is defined geometrically (called geometric entropy).

Definition of Transition matrix in QFT:

$$
\mathcal{T}^{\psi|\varphi}\equiv\frac{|\psi\rangle\,\langle\varphi|}{\langle\varphi|\psi\rangle}
$$

Properties:

 $\mathrm{Tr}\,\mathcal{T}^{\psi|\varphi}=1$

$$
\left(\mathcal{T}^{\psi|\varphi}\right)^n = \mathcal{T}^{\psi|\varphi}, \quad \forall n \in \mathbb{N}^+
$$

$$
\operatorname{Tr}\left(\mathcal{T}^{\psi|\varphi}\right)^n = 1
$$

$$
\mathcal{T}^{\psi|\varphi} = \left(\mathcal{T}^{\varphi|\psi}\right)^\dagger
$$

Reduced Transition matrix:

$$
\mathcal{T}_A^{\psi|\varphi}=\mathrm{Tr}_B\left(\mathcal{T}^{\psi|\varphi}\right)
$$

: Basic properties of Pseudo-(Rényi) Entropy

- 1) If either $|\psi\rangle$ or $|\varphi\rangle$ is product state, then $S^{(n)}(\mathcal{T}_A^{\psi|\varphi}) = 0$. $(\mathcal{T}_A^{\psi|\varphi} \equiv \text{tr}_{\bar{A}}[\mathcal{T}^{\psi|\varphi}])$ \overline{A} : complement of A Like EE 2) $S^{(n)}(\mathcal{T}_{A}^{\psi|\varphi})$
- 3) $S^{(n)}(\mathcal{T}_A^{\psi|\varphi}) = [S^{(n)}(\mathcal{T}_A^{\varphi|\psi})]^*$
- 4) $\mathcal{T}_A^{\psi|\varphi}$ is non-Hermitian in general, pseudo-entropy can be complex-valued.

Subadditivity and Strong Subadditivity are violated in general!

Introduction: Pseudo-(Rényi) entropy

 \mathbf{r} \mathbf{r}

$$
\mathcal{T}_A^{\psi_1|\psi_2} \qquad \text{PRE:} \qquad S_A^{(n)} = \frac{1}{1-n} \log \text{Tr}[(\mathcal{T}_A^{\psi_1|\psi_2})^n] \qquad \lim_{n \in \mathbb{R}^+ \setminus \{1\}} S_A^{(n)} = S_A \quad \checkmark
$$

$$
\lim_{n\to 1} S_A^{(n)} = S_A \quad \blacktriangleright
$$

PE and PRE are normally complex!

③ : Interpretation from Holography

In AdS/CFT correspondence, pseudo-entropy is dual to **area of minimal surfaces** in [Nakata, Takayanagi, Taki, Tamaoka, Wei'2020]

<u>③ : Interpretation from Quantum Entanglement</u>
 Entanglement entropy = # of distillable EPR pairs under LOCC

[Bennett, Bernstein,Popescu, Schumacher'1995]

Entanglement entropy $=$ # of distillable EPR pairs under LOCC

3 : Interpretation from Quantum Entanglement

Exeudo-entropy = $\langle \# \rangle$ of distillable EPR pairs under LOCC+H

[Nakata, Takayanagi, Taki, Tamaoka, Wei'2020]

$$
\mathrm{PE:}\n\begin{aligned}\nS(\mathcal{T}_A^{\psi|\varphi}) &= \lim_{M \to \infty} \frac{\langle N \rangle}{M}\n\end{aligned}
$$

Pseudo entropy of locally excited states in 2D CFTs

PRE of 2D CFTs in real time (Our focus)

What happens if we think about the **pseudo-(Rényi) entropy** in real-time?

We consider $\mathcal{T}_A^{\psi_1|\psi_2}(t)=\frac{\mathrm{e}^{-iHt}|\psi_1\rangle\langle\psi_2|\mathrm{e}^{iHt}}{\langle\psi_2|\psi_1\rangle}$ $S_A^{(n)}(t) = \frac{1}{1-n} \log \text{Tr}[(\mathcal{T}_A^{\psi_1|\psi_2}(t))^n]$

PRE of 2D CFTs in real time

PRE for locally excited state: Replica trick

For $n = 2$, $n_1 = n_2 = 1$, $\Delta S_A^{(2)}$ is reduced to 4-point functions on Σ_2 .

We further assume $\mathcal{O}_1 = \mathcal{O}_2 = \mathcal{O}$ to simplify the results

$$
\Delta S_A^{(2)} = -\log \frac{\langle \mathcal{O}^{\dagger (2)}(\tau_2, x_2) \mathcal{O}^{(2)}(-\tau_1, x_1) \mathcal{O}^{\dagger (1)}(\tau_2, x_2) \mathcal{O}^{(1)}(-\tau_1, x_1) \rangle_{\Sigma_2}}{\langle \mathcal{O}^{\dagger}(\tau_2, x_2) \mathcal{O}(-\tau_1, x_1) \rangle_{\Sigma_1}^2}
$$

Note1: Conformal map between Σ_2 and Σ_1

$$
z = \left(\frac{w}{w - L}\right)^{1/n}, \quad (A = [0, L]),
$$

$$
z = w^{1/n}, \qquad (A = [0, +\infty))
$$

Note2: Analytic continuation of t

 $\tau_1 = \epsilon + it, \quad \tau_2 = \epsilon - it$

$$
z = \left(\frac{w}{w - L}\right)^{1/n}, \quad (A = [0, L]), \quad (w_3, \bar{w}_3)_{\text{sheet 2}} = (w_1, \bar{w}_1)_{\text{sheet 1}} = (x_1 - i\tau_1, x_1 + i\tau_1)
$$
\n
$$
z = \left(\frac{w}{w - L}\right)^{1/n}, \quad (A = [0, L]), \quad (w_3, \bar{w}_3)_{\text{sheet 2}} = (w_1, \bar{w}_1)_{\text{sheet 1}} = (x_1 - i\tau_1, x_1 + i\tau_1)
$$
\n
$$
z = w^{1/n}, \quad (A = [0, +\infty)) \quad (w_4, \bar{w}_4)_{\text{sheet 2}} = (w_2, \bar{w}_2)_{\text{sheet 1}} = (x_2 + i\tau_2, x_2 - i\tau_2)
$$
\n
$$
\phi_1(\vec{x}_1)\phi_2(\vec{x}_2)\phi_3(\vec{x}_3)\phi_4(\vec{x}_4) = f(\eta, \bar{\eta}) \prod_{i < j}^4 z_{ij}^{\frac{h}{3} - h_i - h_j} \bar{z}_{ij}^{\frac{\bar{h}}{3} - \bar{h}_i - \bar{h}_j}
$$
\n
$$
(\eta, \bar{\eta}) = \left(\frac{z_{12}z_{34}}{z_{13}z_{24}}, \frac{\bar{z}_{12}\bar{z}_{34}}{z_{13}\bar{z}_{24}}\right)
$$

 λ

$$
\Delta S_A^{(2)} = \log \frac{\langle \mathcal{O}^{\dagger(2)}(\tau_2, x_2) \mathcal{O}^{(2)}(-\tau_1, x_1) \mathcal{O}^{\dagger(1)}(\tau_2, x_2) \mathcal{O}^{(1)}(-\tau_1, x_1) \rangle_{\Sigma_2}}{\langle \mathcal{O}^{\dagger}(\tau_2, x_2) \mathcal{O}(-\tau_1, x_1) \rangle_{\Sigma_1}^2}
$$
\n
$$
z = \left(\frac{w}{w - L}\right)^{\frac{1}{2}}, \quad A = [0, L]
$$
\n
$$
\langle \mathcal{O}^{\dagger}(z_2, \bar{z}_2) \mathcal{O}(z_1, \bar{z}_1) \rangle_{\Sigma_1} = \frac{c_{12}}{|z_{12}|^{4\Delta_{\mathcal{O}}}}
$$
\n
$$
\langle \mathcal{O}^{\dagger(2)}(\tau_2, x_2) \mathcal{O}^{(2)}(-\tau_1, x_1) \mathcal{O}^{\dagger(1)}(\tau_2, x_2) \mathcal{O}^{(1)}(-\tau_1, x_1) \rangle_{\Sigma_2} = |16z_1^2 z_2^2|^{-4\Delta_{\mathcal{O}}} G(\eta, \bar{\eta})
$$
\n
$$
\Delta S_A^{(2)} = \log \frac{c_{12}^2}{|\eta(1 - \eta)|^{4\Delta_{\mathcal{O}}} \cdot G(\eta, \bar{\eta})}
$$

 \bigcirc_{2,n_2}^\dagger

 $\star_{\mathcal{O}_{1,1}}$

 $A=[0,\infty).$

Table 1: Early time and late time behaviors of $(\eta, \bar{\eta})$ for the subsyster

$(\eta,\bar{\eta})$	$x_1x_2 > 0$	$x_1x_2 < 0$	
Late time $(t \to \infty)$	(1,0)	(1,0)	
Early time $(t \to 0)$	$(\frac{1}{2}+a,\frac{1}{2}+a)$ $a = \frac{x_1 + x_2}{4\sqrt{x_1 x_2}}$	$x_1 > 0 > x_2$ $\left(\frac{1}{2} + a, \frac{1}{2} - a \right) \left(\frac{1}{2} - a, \frac{1}{2} + a \right)$	$x_2 > 0 > x_1$

Late time limit $(A = [0, \infty))$: \rightarrow Quantum dimension of O Rational CFTs: $\Delta S_A^{(2)} \simeq \begin{cases} 0, & t \to 0 \text{ \& } x_1 \sim x_2, \\ \log d_{\mathcal{O}} , & t \to \infty. \end{cases}$ S. He et al' 14

P. Caputa et al' 15 S. He et al' 14

Large-c CFTs:
$$
\operatorname{Re}[\Delta S_A^{(2)}] = 4\Delta_{\mathcal{O}} \log \frac{4t}{\sqrt{(x_1 - x_2)^2 + 4\epsilon^2}}
$$

Full-time evolution: $\left|\mathcal{O}=(e^{\frac{t}{2}\phi}+e^{-\frac{t}{2}\phi})\right|$ -excitation in free scalar

When $A = [0, \infty)$, the late time limit of logd₀ is true for any order

Reality condition of Pseudo entropy

④ : Brief Summary

For HPE, the holographic calculation requires $\mathcal{T}_A^{\psi|\psi}$ to generate non-negative $S(\mathcal{T}_A^{\psi|\psi})$. **The proof of QI interpretation for PE is valid when** $\mathcal{T}_A^{\psi|\varphi}$ **is semi-positive definite.**
The proof of **QI** interpretation for PE is valid when $\mathcal{T}_A^{\psi|\varphi}$ is semi-positive definite.

⑤ : Our focus and motivation

Our motivation

To find the sufficient and necessary condition for the **transition matrix** $\mathcal{T}^{\psi|\varphi}$ such that $S^{(n)}(\mathcal{T}_A^{\psi|\varphi}) \geq 0$?

(6): Resort to Pseudo-Hermiticity due to matrix algebra
 What is Pseudo-Hermiticity

What is Pseudo-Hermiticity

An operator M is said to be η -pseudo-Hermitian if there exists a Hermitian invertible operator η such that

[Mostafazadeh'2001]

 \star If $\eta = \mathbb{I}$, the pseudo-Hermitian condition reduces to the Hermitian condition.

Pseudo-Hemiticity: A generalization of Hermiticity.

Property 2:

Hint: Construct η using biorthonormal bases

Suppose that O is diagonalizable, then O is η -pseudo-Hermitian if f the

eigenvalues of O come in real numbers or complex conjugate pairs

[Mostafazadeh'2001]

We find the **blue subset** which gives non-negative Pseudo-Rényi entropies

 \star All density matrices belong to the blue subset!

: Mind Mapping of the Construction

$$
n\text{-th Pseudo-Rényi entropy: } S_A^{(n)} = \frac{1}{1-n} \log \text{tr}[(\mathcal{T}_A^{\psi|\varphi})^n]
$$

$\mathfrak{D}:\text{Find }\mathcal{T}^{\psi|\varphi}$ that generates **pseudo-Hermitian** $\mathcal{T}_{A}^{\psi|\varphi}$

T can be written as $T = T_1 + iT_2$, where T_1 and T_2 are **both** η **-pseudo-Hermitian**

with $\eta = \eta_A \otimes \eta_{\bar{A}}$. Further, T_2 satisfies $tr_{\bar{A}(A)}[T_2] = 0$.

[He, Guo, Zhang'2022]

(Simple proof in the next slide)

$\textcircled{3}:$ Find $\mathcal{T}^{\psi|\varphi}$ that generates **pseudo-Hermitian** $\mathcal{T}_{A}^{\psi|\varphi}$

Theorem 1

 $X_{A(\bar{A})}$ is $\eta_{A(\bar{A})}$ -pseudo-Hermitian, if f X can be written as $X = X_1 + iX_2$, where

 X_1 and X_2 are **both** η **-pseudo-Hermitian** with $\eta = \eta_A \otimes \eta_{\bar{A}}$. Further, X_2 satisfies

 $tr_{\bar{A}(A)}[X_2] = 0.$

 $Proof:$

$$
tr_{\bar{A}}[X_2] = tr_{\bar{A}}\left[\frac{X - \eta^{-1}X^{\dagger}\eta}{2}\right]
$$

= $\frac{1}{2}\left(X_A - \eta_A^{-1}tr_{\bar{A}}[\eta_{\bar{A}}^{-1}X^{\dagger}\eta_{\bar{A}}]\eta_A\right)$
= $\frac{1}{2}\left(X_A - \eta_A^{-1}X_A^{\dagger}\eta_A\right) = 0$ (pseudo-Hermitian)

: Constructions

Chart of equivalence relation

n-th Pseudo-Rényi entropy: $S_A^{(n)} = \frac{1}{1-n} \log tr[(\mathcal{T}_A^{\psi|\varphi})^n]$

④ : Barriers

n-th Pseudo-Rényi entropy: $S_A^{(n)} = \frac{1}{1-n} \log tr[(\mathcal{T}_A^{\psi|\varphi})^n]$

⑤ : The Sufficient Condition

Chart of equivalence relation

⑤ : Find the Sufficient Condition

⑤ : Find the Sufficient Condition

⑤ : The Sufficient Condition

Theorem 2:

Suppose $\mathcal{T}^{\psi|\varphi}$ is η -pseudo-Hermitian with $\eta = \eta_A \otimes \eta_{\overline{A}}$:

If η_A is positive or negative and $\eta_{\overline{A}}$ is positive or negative too, then

the eigenvalues of $\mathcal{T}_{A(\bar{A})}^{\psi|\varphi}$ are non-negative.

[He, Guo,Zhang'2022]

Hint of the Proof:

$$
\eta_A^{1/2} \mathcal{T}_A^{\psi|\varphi} \eta_A^{-1/2} = \boxed{\eta_A^{1/2} \widetilde{\mathcal{T}}_A^{\psi|\varphi} \eta_A^{1/2}}
$$
\n
$$
\left(\tilde{\mathcal{T}}_A^{\psi|\varphi} = \frac{\text{tr}_{\bar{A}}\left(\eta_{\bar{A}}^{1/2}|\psi\rangle\langle\psi|\eta_{\bar{A}}^{1/2}\right)}{\langle\psi|\eta|\psi\rangle}\right)
$$
 Always Positive semi-definite!

: The Sufficient Conditions

Part 5: Summary

Summary

- Obtain Psuedo Renyi entropy of pair of locally excited states in 2D CFT.
- Late time of PRE is log quantum dimension (Universal)
- \Box Construct the sufficient condition for PRE
- \Box PRE for more generic locally excited states, Please refer to our work.
- \Box How to extend the reality condition for Type III & Type II algebra, PRE in SYK, etc, …

Thanks for your attention