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Motivation

In this talk, I will tell you that the spin chain can emerge from a two-dimensional
supersymmetric gauge theory.
But why do we need this fact?

I It is well-investigated that the Gromov-Witten theory can be regarded as a topological
sector of two-dimensional supersymmetric gauge theory (GLSMs).

I Mathematicians used the techniques of integrable systems to prove the theorems of the
Gromov-Witten theory.

I Physicists found several similarities between the supersymmetric gauge theory and the
integrable system. For example, vacuum equations of gauge theory are the same as the
Bethe-ansatz equations of the correspondence integrable system.

I Possible others ...

One of my goals in this talk is to convince you that the third point is a fact, then it explains
why the three “different subjects” are inherently related.
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Spin Chain

Many of you may be already familiar with the spin chain. It has rich important physics, but the
setup is simple.

It has N-sites, each site has a vector space V and the associated Hamiltonian as

H =
N∑

i=1

(
S+,i S−,i−1 + S−,i S+,i−1

)
+ . . .

Figure: Spin chain.
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Spin Chain

Examples. Consider a spin-1/2 system: V = {+,−}.
• XX model, H =

∑N
i=1

(
S+,i S−,i−1 + S−,i S+,i−1

)
.

• XXX model, H =
∑N

i=1

(
S+,i S−,i−1 + S−,i S+,i−1 + 2Sz,i Sz,i+1

)
.

· · ·
The k spin-up configuration corresponds to the configuration of k-magnons.
We will see that these can be mapped to the supersymmetric gauge theory. Magnons map to
the vacuum states of supersymmetric gauge theory, and the interaction S+,i S−,i−1 and
S−,i S+,i−1 map to the fundamental domainwalls · · ·
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A brief review of 2d N=(2,2) GLSMs

Some relevant (and new) points:

I Setup.
• I only focus on U(k) gauge group in this talk. Super gauge field V , its field strength Σ
with F01 to be one component field.
• A twisted superpotential W̃ = −t · trΣ, t = r − iθ, where r is FI-parameter, θ is the
usual theta angle in a gauge theory.

Σ = σ + iθ+λ̄+ − i θ̄−λ− + . . . , Σ̄ = σ̄ − i θ̄+λ+ + iθ−λ̄− + . . .

• This talk only considers fundamental matter fields Φi . For N matters, the global
symmetry is SU(N). One can break this global symmetry by turning on the so-called the
twisted masses mi = 〈Σ〉, where Σ is the superfield strength of the background gauge field
V for SU(N) global symmetry.

I Phases ' ground states in a semi-classical region. Symmetries are important.
• Lorentz symmetry: U(t;φi ,F01). Perturbative RG-flow r =

∑
i ρi log µ

Λ
.

• SUSY: U = 0.
• One-form symmetries: F01 was missed in the previous studies. It is important! See my
work ’21 on the emergent dynamical decomposition.
• If the semi-classical analysis is not trustful, then we consider the effective theory by
integrating out matters:

W̃eff = −(t + i(k − 1)π)
k∑

a=1

Σa −
∑
i,a

ρa
i Σa (log (ρa

i Σa)− 1) .
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Gr(k;N)

Gauged linear sigma model for Gr(k;N) is well-studied. See Witten ’93, Gu-Sharpe ’18. It is a
U(k) gauge theory with N fundamental fields.

I When r � 0, the semi-classical vacuum configuration is the geometry: Gr(k;N).

I When r � 0, the vacuum structure is described by a twisted effective superpotential

W̃eff = −(t + i(k − 1)π)
k∑

a=1

Σa −
∑

a

NΣa (log (Σa)− 1) .

The vacuum equations

e
∂W̃eff
∂σa = 1

give
(σa)N = q̃, q̃ = e−t−iπ(k−1), a ∈ {1, · · · , k}, σa 6= σb.

We will see the above equations are also the Bethe-ansatz equations of the N-sites XX-spin
chain.



Exact Results

In Gu-Sharpe ’18, an exact quantum theory of 2d supersymmetric gauge theory can be described

by the Landau-Ginzburg model. It is target space (C?)kN × (C)k2
/Sk with a superpotential

W =
∑

a

Σa

∑
ib

ρa
ibYib +

∑
µν

αa
µνZµν − t

+
∑

ia

exp(−Yia) +
∑
µ 6=ν

Xµν ,

where ρa
ib = δa

b, αa
µν = −δa

µ + δa
ν .

The Weyl orbifold maps weights to weights

Yi 7→ Yj

∑
a

Σaρ
a
i 7→

∑
a

Σaρ
a
i .

and roots to roots
Xµ 7→ Xν

∑
a

Σaα
a
µ 7→

∑
a

Σaα
a
ν .

.



Vacua

By computing
edW = 1,

gives
exp (−yia) = σa, xµν = −σµ + σν ,

and
(σa)N = q̃, a ∈ {1, · · · , k}, σa 6= σb.

But it contains more degrees of freedom than the one in the twisted effective superpotential

W̃eff , which will play an important role in our story.



BPS Spectrum

The reason we mention the exact result is that it includes the BPS spectrum in the dynamics.
The BPS domainwall that fluctuates from one vacuum to another one will be useful in our story.

For projective space, or a U(1) gauge theory, it was observed first by Witten ’79 that the
fundamental domainwall, which connects two adjacent vacua, has a gauge charge 1. A
candidate of this domainwall is the fundamental field φ. The mass of this domainwall is
proportional to the dynamical scale ΛN = q:

Z ≈ Λ

It has a finite mass, so, unlike the bosonic theory, 2d N = (2, 2) massive theory is not confined.
More generally, we have

Z`1`2
= W |`2

−W |`1
, ` labels the vacua.

See Hannay-Hori ’97 and Hori-Vafa ’20 for abelian theories. See also Dorey ’98 about the
connection to the BPS-spectrum in Seiberg-Witten theory. For nonabelian theories, see Gu ’22.
If turning on the twisted mass, the central charge expression will be modified.
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An intermediate scale

In quantum field theory, the physics depends on scale. Now if we consider a scale

Λ� e(µ),

where e is the gauge coupling. The mass of the perturbative spectrum is proportional to the
gauge coupling e. At this scale, the physics degrees of freedom are domainwalls. We will show
that this is the theory for spin chains.



State Space For Vacua

Now, we come back the vacuum equations

(σa)N = q̃.

So the vacua can be understood by picking k sites out of N-values on the Coulomb field σ.

.
How about the Hilbert space representation? See Witten ’82 or Hori.et.al mirror symmetry book
’2000, we have the ground states

k∏
a=1

δ2(σa)
k∏

a=1

λ̄+,a | 0〉.

From the structure, we can enlarge the fermionic degrees of freedom as

λ±,j :=

∫
d2σδ2(σa − σa)λ±, λ±,j :=

∫
d2σδ2(σa − σa)λ±,

and their canonical commutation relations

{λ±,j , λ±,i} = δji .
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State Space

If we replace the formal state

|0〉 7→
N−k∏
i=1

λ̄−,i |Ω〉

Now we can represent the state-space by a formal notation, for example, for k=2

|−, · · · ,+,−, · · · ,−,+,−, · · · ,−〉.

This notation is not necessary for quantum field theory, however, it would be useful for
presenting the data of the spin chain.



Spin Operators

One can construct local spin operators on each site as

S+,i = λ̄+,iλ−,i , S−,i = λ̄−,iλ+,i , Sz,i =
1

2

(
λ̄+,iλ+,i − λ̄−,iλ−,i

)
.

It is readily to show that
[S+, S−] = 2Sz .

This explains why we need N = (2, 2) supersymmetry for getting a spin chain. For more general
global symmetry in gauge theory, it would have one more index for defining the local spin
operators, see Gu ’22.



Domainwalls In The Spin Chain

The domainwall can be regarded as a map such as

|−, · · · ,−i−1,+i ,−i+1 · · · 〉 7→ |−, · · · ,−i−2,+i−1,−i · · · 〉

φ : 7→ Di = S−,i S+,i−1.

One can similarly define the anti-domainwall. For more general domainwalls, a similar
construction applies.



Constraints From Domainwalls

In our case, we have the global symmetry SU(N) in our target space. The domainwalls are
charged under the center group ZN of the flavor group SU(N). So the dynamic domainwalls
suggested that all of the physical state space should be neutral under the center group ZN . The
expectation value of σ field is also charged under ZN group. So, for example, consider the k=1
case, the physical state space at the intermediate scale can be represented as

N∑
i=1

σi | · · ·+i · · · 〉.

This is actually the state for one “magnon” in the spin chain if we replace σ with e ip , where p is
the momentum of the magnon.



Finite Symmetries: CPT

CPT-symmetries in quantum field theory can also descend to the spin chain. They act as the
following:

PS±,iP−1 = S∓,i PSz,iP−1 = −Sz,i ,

T S±,iT −1 = −S±,i T Sz,iT −1 = Sz,i ,

CS±,iC−1 = −S∓,i CSz,iC−1 = −Sz,i .

These symmetries act on the domain walls as

PDiP−1 = D̄i PDNP−1 =

(
q̃

|q̃|

)2

D̄N ,

T DiT −1 = Di T DNT −1 =

(
q̃

|q̃|

)−2

DN ,

CDiC−1 = D̄i CDNC−1 = D̄N ,

where we have used the fact that T iT −1 = −i for i2 + 1 = 0. From the above, one can observe
that P and T may be violated individually unless q̃ = ±1. However, we will see that the
scattering factor could also break the T -symmetry if it is not a pure phase factor.
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Open v.s Closed Spin Chain

The general vacuum equations look like the following:(
e ipa

)N
= q̃

∏
b 6=a

Sab.

• When the scattering factor, Sab, is a pure phase: Besides a usually closed spin chain with
q̃ = 1 defined in the literature, we claim that the anti-periodic spin chain with q̃ = −1 is also a
closed one. On the other hand, the open spin chain in this situation has q̃ 6= ±1.
• When the scattering factor is not a pure phase: It is always an open spin chain for any q̃.
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Hamiltonian

For a closed spin chain, it is natural to propose the Hamiltonian as

H =
∑

i

Di +
∑

i

D̄i + f (Di , D̄i ),

where the factor f (Di , D̄i ) can be fixed if we require that the state spaces are eigenstates of this
Hamiltonian. We have assumed the fact that all other matter representations are a subspace of
the tensor product of fundamental matters. This is not true for general, and for a general case,
one may need to take into account the so-called higher symmetries. We will not focus on this in
this talk.

For an open spin chain, we take the (anti-)holomorphic part of the above.



Hamiltonian

For a closed spin chain, it is natural to propose the Hamiltonian as

H =
∑

i

Di +
∑

i

D̄i + f (Di , D̄i ),

where the factor f (Di , D̄i ) can be fixed if we require that the state spaces are eigenstates of this
Hamiltonian. We have assumed the fact that all other matter representations are a subspace of
the tensor product of fundamental matters. This is not true for general, and for a general case,
one may need to take into account the so-called higher symmetries. We will not focus on this in
this talk.

For an open spin chain, we take the (anti-)holomorphic part of the above.



A Summary

Let us summarize what we have. Before Nekrasov and Shatashvili about the correspondence
between the integrable system and the gauge theory:

Y(pa) ↔ W̃eff(σa)
pa ↔ σa

k-particle sector ↔ gauge group U(k)
N-sites ↔ flavor group SU(N)

twisted boundary ↔ t = r − iθ
(in-)homogeneities ↔ twisted masses

Spin chain is not manifest in their studies.

Based on the vacuum structure and the dynamics of the domainwalls. We have shown that the
spin chain can emerge from the N = (2, 2) supersymmetric gauge theory in two steps.

I Write the ground states as the Hilbert space formula, and (isomorphic-)map them to the
magnon’s configuration in the spin chain.

I Kinetic and dynamics of magnons map to the kinetic and dynamics of domainwalls.

So the above similarities found by Nekrasov and Shatashvili between the integrable systems and
the gauge theories are just a consequence of our framework.
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Examples: Gr(k;N)

Now we focus on the simplest example: gauged linear sigma model for Gr(k;N). The vacuum
equations are

(σa)N = ΛN .

If we use the variable σ̃a = σaΛ−1, the vacuum equations reduce to

(σ̃a)N = 1.

These equations are Bethe-equations of the XX model. And we expect that the spin chain is a
closed one.

The Hamiltonian is simple:

H =
∑

i

Di +
∑

i

D̄i .

The eigenstates are k-magnons

| k〉 := Ak

∑
1≤j1<···<jk≤N

k∏
a=1

∑
W∈Sk

(
σ̂W(a)

)ja |j1, · · · , jk 〉k .

The eigenvalue is
H· | k〉 := (e1(σ) + e1(σ̄)) | k〉
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closed one.
The Hamiltonian is simple:

H =
∑

i

Di +
∑

i

D̄i .

The eigenstates are k-magnons

| k〉 := Ak

∑
1≤j1<···<jk≤N

k∏
a=1

∑
W∈Sk

(
σ̂W(a)

)ja |j1, · · · , jk 〉k .

The eigenvalue is
H· | k〉 := (e1(σ) + e1(σ̄)) | k〉



Quantum Cohomology

One might have noticed that the holomorphic part of the eigenvalue e1(σ) is the cohomology
generator of H1,1(Gr(k; N)). One may expect that all of the generators can be constructed as
the eigenvalues of the corresponding operators. It was first done by mathematicians (Postnikov
’05, C. Korff and C. Stroppe ’09) that one can construct a general elementary function:

er (D).

The eigenvalue of this is er (σ). One can further construct the Schur operators Sλ (D) that the
eigenvalues are

Sλ (σ) .

In this context, the quantum cohomology of Gr(k;N) can be reconstructed from the XX model.
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Open XX model

If we start from the vacuum equations

(σa)N = ΛN .

The emergent spin chain is an open one.

All the discussions are similar to the closed one by only focusing on the (anti-)holomorphic part.
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K-theoretic of XX model

One can lift gauged linear sigma models to the 3d CS-matter theories on space-time R2 × S1.
Compared to the 2d theory, one has one more parameter to label the vacua and others: the
so-called Chern-Simons levels. We only focus on the gauge Chern-Simons level kU(k). We split
it into two factors: kU(1) and kSU(k).

• If we choose (Kapustin-Willet ’2013)

kU(1) = kSU(k) = −
N

2
,

the vacuum equations are
(1− xa)N = q̃.

So the integrable system is almost identical to one for two-dimensional gauge theory with the
only change being to replace σ by 1− x .



K-theoretic of XX model

One can lift gauged linear sigma models to the 3d CS-matter theories on space-time R2 × S1.
Compared to the 2d theory, one has one more parameter to label the vacua and others: the
so-called Chern-Simons levels. We only focus on the gauge Chern-Simons level kU(k). We split
it into two factors: kU(1) and kSU(k).
• If we choose (Kapustin-Willet ’2013)

kU(1) = kSU(k) = −
N

2
,

the vacuum equations are
(1− xa)N = q̃.

So the integrable system is almost identical to one for two-dimensional gauge theory with the
only change being to replace σ by 1− x .



K-theoretic XX model

• If we choose (Jockers et.al, Ueda and Yoshida ’2019, Gu et.al ’20 and ’22 )

kU(1) = −
N

2
, kSU(k) = k −

N

2
,

the vacuum equations are

(1− xa)N = q̃
(xa)k∏k
b=1 xb

.

There is “interaction factor” on the right hand side

Sab = −
xa

xb
.

This factor means the magnons interacts each other. Since this factor of this case is not a pure
phase, the spin chain of this case is always an open one regardless of what the value of q̃ is.
This is because if we regard

1− xa := e ipa

The momentum pa is not real.
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State Space

One can propose the interacting state space as follows:

Ak

∑
1≤j1<···<jk≤N

∑
W∈Sk

SW(a)e
∑k

a=1 ipW(a)ja |j1 < · · · < jk 〉k ,

where Ak is an overall normalization factor, and
∑
W∈Sk

SW is a multiplication of scattering
factors Sab. One can show that the proposed state space is consistent with the symmetries.

The fundamental Hamiltonian of this system is a complex one, which was first proposed in a
slightly different context by Gorbounov and Korff ’2014:

h =
N∑
i

Di −
N∑

|i1−i2| mod N>1

Di1Di2 +
N∑

|ia−ib| mod N>1

Di1Di2Di3 + · · · .

The number of sites is N, so only finitely many terms act non-trivially, and the series therefore
terminates.
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Gr(2;N)

Let us check whether the ground state wave functions proposed in our paper for this case are
indeed the eigenstates of the Hamiltonian. To shorten the notation, we denote the ground state
as | ω〉2 =

∑
1≤j1<j2≤N a(j1, j2)|j1 < j2〉2, where

a(j1, j2) = A
(

e i(p1j1+p2j2) + S21e i(p2j1+p1j2)
)
.

The boundary condition is a(j1, j2 + N) = q · a(j2, j1), which gives

e i(p1j1+p2j2)e ip2N + S21e ip1N e i(p2j1+p1j2) = q
(

e i(p1j2+p2j1) + S21e i(p2j2+p1j1)
)
.

The vacuum equations can be read from the above as

e ip1N = qS12, e ip2N = qS21.

So it is consistent.



Gr(2;N)

To compute H | ω〉2, special care is needed when two overturned spins are sitting next to each
other. We find

H | ω〉2 =
∑

1≤j1<j2≤N

(a(j1 + 1, j2) + a(j1, j2 + 1)− a(j1 + 1, j2 + 1)) | j1 < j2〉2

−
∑

1≤j≤N

(a(j + 1, j + 1)− a(j + 1, j + 2)) | j < j + 1〉2.

In order to obey the eigenstate condition, the contact terms in the last line of the above
equation should be vanishing:

a(j + 1, j + 1)− a(j + 1, j + 2) = 0.

If we test the coefficient as a(j1, j2) = Ce i(p1j1+p2j2) + De i(p1j2+p2j1), the vanishing contact terms
all give

C

D
= −

x1

x2
.

This is certainly consistent with our scattering factor S12 in the vacuum equations. The
procedure applies to a general Grassmannian.



Geometric basis

The Hamiltonian actually has a geometrical meaning. See Buch and Mihalcea ’08. The
eigenvalue of this Hamiltonian is the first Schubert class of the Gr(k; N):

H | ω〉k = O� | ω〉k

where

O� := 1−
k∏

a=1

xa.

For example, if k=2 the factor in the above equation is

a(j1 + 1, j2) + a(j1, j2 + 1)− a(j1 + 1, j2 + 1) = (z1 + z2 − z1z2)a(j1, j2)

where the coefficient (z1 + z2 − z1z2) = 1− x1x2 (where z = 1− x) is indeed the first Schubert
class of Gr(2,N). Thus, one may naturally expect that higher Schubert classes are the
eigenvalues of the higher Hamiltonian as well. Quantum K-theory of Gr(k; N) from the
integrable model has been investigated by Gorbounov and Korff ’2014, although their
construction was based on a five-vertex model rather than a spin chain.
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Seiberg(-like) Duality is P-symmetry

In gauge theories, there is a so-called Seiberg(-like) duality between two gauge theories:

Gr(k; N) ∼= Gr(N − k; N).

The gauged linear sigma models for them are different: one is U(k) gauge group and the other
one is U(N − k). However, the two gauge theories share the same vacuum structures and BPS
spectrum. This relation is nontrivial in the sense that it is not a symmetry of a single gauge
theory.

But from the spin chain, it is a P-symmetry. To see this, we notice that the spin up/down maps
to the spin down/up under the P symmetry.

P :| +〉 7→| −〉.

This says that the k-magnons map to the N-k magnons. This is exactly the Seiberg(-like)
duality between two gauge theories.
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A Unification of Gauge Theories Via Spin Chain

In the spin chain, we have spin operators: S±. They have no field theoretic correspondence
since they change the number of magnons which can not happen in a field theoretic process.

If we map the k-magnons of the spin chain to the U(k) gauge theory, then from the point of
view of the spin chain. Different gauge theories can be connected via the spin operators. Maybe
something deep behind this. . .
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The Yang-Baxter Equation

In the Yang-Baxter equation, the R-matrix is the fundamental variable used to describe the
dynamics. It is defined by a map

Rab : Va ⊗ Vb 7→ Va ⊗ Vb.

For the cases in this talk, the basis chosen for V is

| +,+〉, | −,+〉, | +,−〉, | −,−〉.

Since the basis is transformed under the R-matrix, we expect that the off-diagonal entries of the
R-matrix correspond to the (anti)-domain walls in our context.
Example: For the Grassmannian, we have the R-matrix

a
b c

c̃ b̃
ã

 .

So two options for a generic q̃: c or c̃ is vanishing. They are the so-called five-vertex models.
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R-matrix

For XXX or XXZ model, the Hamiltonian is a hermitian operator, which says:

a = ã, b = b̃, c = c̃.

For XYZ model, we also have domainwall configurations:

| −,−〉 7→| +,+〉, or | +,+〉 7→| −,−〉.

The R-matrix for this model should be enlarged as
a d

b c
c b

d a

 .

One can derive the Yang-Baxter equation from the dynamic constraint of domainwalls. See Gu
’22.
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A comment on the four-dimensional CS theory

In 4d CS theory the space-time is Σ× C , and the integrable systems depend on the C :
• if C = C, it gives XXX model.

• if C = C?, it leads to XXZ model.
• if C = Torus, it corresponds to XYZ model.
Recall that the spin operator, Sz =

∑
i Sz,i , is actually half of the axial-R symmetry operator

Sz =
1

2
FA

If we regard the GLSM as an effective theory of 4d N=1 gauge theory on Σ× C , and the
operator FA depends on the sharp of C , which is exactly what the 4d-CS theory suggested.
There should be more deep connections...
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Conclusion

I We showed how a spin chain emerges from the two-dimensional supersymmetric gauge
theory. Domainwalls play a crucial role.

I We discussed several examples.

I We talked about the Yang-Baxter equations with new insight, and commented on the
four-dimensional CS theory.



Thanks!


