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Motivations and background

• Quantum technologies are developing very fast.  
Governments and companies are making huge 
investments.  Universities and research institutes are 
hiring many researchers.


• Currently, we only have noisy intermediate-scale 
quantum (NISQ) devices.  Their abilities are limited by 
noise (errors) and size.


• People hope for early (  10 years) practical applications 
in chemistry (catalyst design) and finance (portfolio 
optimization).

≲
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• We expect that the quantum simulation of many-body 
systems (condensed matter systems and lattice quantum 
field theories) will be an important target application in 
the long term (  10 years).   


• We wish to do something interesting even with the 
current quantum computers.


• Q1: Can we quantify the effects of quantum noise 
using a many-body system? 


• Q2: Is there a way to put discretization errors under 
control?

≳
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• Because the realistic lattice gauge theories (such as 
lattice QCD) are hard to simulate on current devices, we 
consider a spin chain as a toy model.


• It is generally expected that integrable models provide 
useful benchmarks for quantum simulation because they 
allow greater analytical control, even when the system 
size is so large that classical simulation is impossible.


• Today I report the results of our quantum simulation of 
the Heisenberg spin 1/2 XXX spin chain.
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Integrable Trotterization
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Integrable Trotterization
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• XXX Hamiltonian: 

 . 

• Ideally, we want to implement 
.  This is not possible and 

we resort to the Suzuki-Trotter 
approximation

H ∝
N

∑
j=1

σj ⋅ σj+1 = He + Ho

e−itH

σ ≡ (σx, σy, σz) ≡ (X, Y, Z)

1 2N
3

[Vanicat, Zadnik & Prosen ’17]

: number of repetitions  depth

(e−i(t/d)Hee−i(t/d)Ho)d = e−it(He+Ho)(1 + '(d−1)) .
d ∼
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The Trotterized small-time evolution (even , periodic b.c.) can 
be expressed in terms of the R(-check) matrix: 

 

  

  ( )

N

e−iαHee−iαHo =
N/2

∏
j=1

R2j−1,2j(δ)
N/2

∏
j=1

R2j,2j+1(δ) =: )(δ) ,

Rij(δ) = (1 + iδPij)/(1 + iδ)
= (phase)eiα(XiXj+YiYj+ZiZj) .

δ = tan α

Time evolution =

)
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•  commutes with the transfer matrix with specific 
inhomogeneity 

 for any . 

• Charges  are exactly 

conserved even with Trotterization, which give rise to 
time-discretization errors for other observables. 

•  is also conserved.

)(δ)

Tδ(λ) = tr0[
⟵
∏

1≤ j≤N
R0j(λ − (−1) jδ)] λ ∈ ℂ

Q±
n (δ) ∼ dn

dλn log Tδ(λ)
λ=±δ/2

Qdif
n ≡ [Q+

n (δ) − Q−
n (δ)]/δ

Conserved charges



• Densities  in higher charges


 


 


can be computed via the recursion relation  on 
an infinite chain, where  is a discrete (Lorentz) boost 
transformation. [Vanicat et al.]


• We implemented the recursion in Mathematica programs.

q[n,±]
j,j+1,…,j+2n

Q+
n (δ) =

N/2

∑
j=1

q[n,+]
2j−2,2j−1,…,2j+2n−2(δ) ,

Q−
n (δ) =

N/2

∑
j=1

q[n,−]
2j−1,2j,…,2j+2n−1(δ)

Q±
n+1 ∼ [B, Q±

n ]
B

10



q[1,±]
1,2,3 (�) = �1 · �2 + �2 · �3 ⌥ ��1 · (�2 ⇥ �3) + �2�2 · �3 ,

q[2,±]
1,2,3,4,5(�) = ⌥2�(�3 · �4 + �4 · �5 � �3 · �5)� (1� �2)�3 · (�4 ⇥ �5)� �2 · (�3 ⇥ �4)� �2�2 · (�3 ⇥ �5)

��2�1 · (�3 ⇥ �4)� �4�1 · (�3 ⇥ �5)± ��2 · (�3 ⇥ �4 ⇥ �5)± ��1 · (�2 ⇥ �3 ⇥ �4)

±�3�1 · (�3 ⇥ �4 ⇥ �5)± �3�1 · (�2 ⇥ �3 ⇥ �5)� �2�1 · (�2 ⇥ �3 ⇥ �4 ⇥ �5) ,

q[3,+]
1,2,3,4,5,6,7 = �4�6 · �7 + 2�5 · �7 � 4�5 · �6 + 2�4 · �6 + 2�4 · (�5 ⇥ �6 ⇥ �7) + 2�3 · (�4 ⇥ �5 ⇥ �6)

+�
⇣
10�5 · (�6 ⇥ �7)� 2�4 · (�6 ⇥ �7)� 4�4 · (�5 ⇥ �7) + 8�4 · (�5 ⇥ �6)� 4�3 · (�5 ⇥ �6)

�2�3 · (�4 ⇥ �6)� 4�3 · (�4 ⇥ �5 ⇥ �6 ⇥ �7)� 2�2 · (�3 ⇥ �4 ⇥ �5 ⇥ �6)
⌘

+�2
⇣
2�6 · �7 � 10�5 · �7 + 2�5 · �6 + 2�4 · �7 + 2�4 · �6 + 2�3 · �6

�6�4 · (�5 ⇥ �6 ⇥ �7) + 6�3 · (�5 ⇥ �6 ⇥ �7) + 2�3 · (�4 ⇥ �6 ⇥ �7) + 6�3 · (�4 ⇥ �5 ⇥ �7)

�6�3 · (�4 ⇥ �5 ⇥ �6) + 2�2 · (�3 ⇥ �5 ⇥ �6)

+2�2 · (�3 ⇥ �4 ⇥ �5 ⇥ �6 ⇥ �7) + 2�1 · (�2 ⇥ �3 ⇥ �4 ⇥ �5 ⇥ �6)
⌘

+�3
⇣
6�5 · (�6 ⇥ �7)� 2�4 · (�6 ⇥ �7) + 4�4 · (�5 ⇥ �7)� 2�3 · (�6 ⇥ �7)� 8�3 · (�5 ⇥ �7)

�2�3 · (�4 ⇥ �6) + 4�3 · (�5 ⇥ �6)� 2�3 · (�4 ⇥ �7) + 4�3 · (�4 ⇥ �5 ⇥ �6 ⇥ �7)

�2�2 · (�3 ⇥ �5 ⇥ �6 ⇥ �7)� 2�2 · (�3 ⇥ �4 ⇥ �5 ⇥ �7)� 2�1 · (�3 ⇥ �4 ⇥ �5 ⇥ �6)

�2�1 · (�2 ⇥ �3 ⇥ �5 ⇥ �6)� 2�1 · (�2 ⇥ �3 ⇥ �4 ⇥ �5 ⇥ �6 ⇥ �7)
⌘

+�4
⇣
� 2�6 · �7 � 8�5 · �7 � 2�5 · �6 + 2�4 · �7 + 2�3 · �6 + 2�3 · �7 � 2�3 · (�5 ⇥ �6 ⇥ �7)

+2�3 · (�4 ⇥ �6 ⇥ �7)� 2�3 · (�4 ⇥ �5 ⇥ �7) + 2�2 · (�3 ⇥ �5 ⇥ �7) + 2�1 · (�3 ⇥ �5 ⇥ �6)

+2�1 · (�3 ⇥ �4 ⇥ �5 ⇥ �6 ⇥ �7) + 2�1 · (�2 ⇥ �3 ⇥ �5 ⇥ �6 ⇥ �7) + 2�1 · (�2 ⇥ �3 ⇥ �4 ⇥ �5 ⇥ �7)
⌘

+�5
⇣
4�5 · (�6 ⇥ �7)� 2�3 · (�6 ⇥ �7)� 2�3 · (�4 ⇥ �7)� 2�1 · (�3 ⇥ �5 ⇥ �6 ⇥ �7)

�2�1 · (�3 ⇥ �4 ⇥ �5 ⇥ �7)� 2�1 · (�2 ⇥ �3 ⇥ �5 ⇥ �7)
⌘

+�6
⇣
� 4�5 · �7 + 2�3 · �7 + 2�1 · (�3 ⇥ �5 ⇥ �7)

⌘
.
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new

<latexit sha1_base64="vYu+NE6QDeTlBmfCSzlvljxeN1k="></latexit>

�1 · (�2 ⇥ �3 ⇥ · · ·⇥ �`�1 ⇥ �`) := �1 · (�2 ⇥ (�3 ⇥ (· · ·⇥ (�`�1 ⇥ �`) · · · )))Here

known

Densities and charges 
are traceless.



Basics of quantum gates 
and circuits
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Qubits

13

• A quantum computer comes with qubits.  


• Each qubit is a 2-dimensional complex vector space spanned by 
the eigenstates  and  of  with eigenvalues 1 and .|0⟩ |1⟩ Z −1



Quantum gates
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Gates are unitary transformations that act on a single qubit or 
multiplet qubits.  We use


• Pauli gates  and ,


• Z-rotation  ,


• Hadamard gate  ,   , 


• Phase gate  ,  , 


• “controlled X” =  =  :  
( .

X, Y, Z

RZ(α) = e−i(α/2)Z

H = 2−1/2 (1 1
1 −1) X ↔ Z

S = diag(1,i) X ↔ Y

CX CNOT CX12 |s1, s2⟩ = (X2)s1 |s1, s2⟩
s1, s2 ∈ {0,1})
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e
i↵
2 (X⌦X+Y⌦Y ) =

• H • RZ(�↵) • H •

RZ(↵)

e
i↵
2 Z⌦Z =

• •
RZ(�↵)

The R matrix  can be implemented 
by elementary gates.

Rij(δ) = (phase)eiα(XiXj+YiYj+ZiZj)



Quantum circuit
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• Initialization: by default the quantum device prepares .  We 
further apply some of , , and Pauli gates (  and ) to prepare a 
simultaneous eigenstate   of  with 
eigenvalues .


• Time evolution:  repetitions of  


 .


• Measurement: we measure the eigenvalue of , or  for each qubit.

|00…0⟩
H S X, Y, Z

|s1…sN⟩P1…PN
Pi ∈ {X, Y, Z}

(−1)si

d

)(δ) = (
N/2

∏
j=1

R2j−1,2j(δ))(
N/2

∏
j=1

R2j,2j+1(δ))
X, Y Z

state 
initialization time evolution measurement

1

N

2



Estimating observables
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• One can compute (estimate) the expectation value of a charge 


,   , 


from the measurement results in various measurement bases.


• See our paper for concrete formulas (no originality claimed) for 
the expectation value and the statistical uncertainty. 

Q = ∑
P∈{I,X,Y,Z}⊗N

cQ,PP cQ,P ∈ ℂ



Quantum devices
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IBM: Superconducting devices

• IBM uses superconducting transmon qubits.  These are 
made of materials such as niobium and aluminum placed 
on a silicon chip.  Two energy-levels form an approximate 
qubit.

19 source: https://japan.zdnet.com/article/35174399/

• We obtained access 
to the devices 
through the University 
of Tokyo.   (Supported 
by UTokyo Quantum 
Initiative).


• We used the 
ibm_kawasaki and 
ibm_washington 
processors.



IonQ: trapped ion devices

• We mainly used IonQ’s device called Harmony.  (Not in the 
current version of the e-print.)


• A linear chain of  ions near an electrode trap.171Yb+

20 arXiv:1903.08181

• 11 qubits with 
all-to-all 
couplings.


• We got indirect 
access through 
Google Cloud 
and direct 
access through 
IonQ itself.



Cloud access via Qiskit
• We used the SDK called Qiskit to control the IBM and IonQ 

quantum computers.


• Our (mostly Python) programs are available via a GitHub 
repository.
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Results of real-device 
simulations

22



Simulation results for ibm_kawasaki
•  decays 

exponentially to zero 
asymptotically, due to noise.  
No error mitigation.


• Error bars are hidden by 
markers.  Rescaled for better 
visibility.  The theoretical 
values are shown by dotted 
lines.  Fit by .


• The initial state is 
.


• Large fluctuations from one 
step to the next.  (Due to 
change in device parameters?)

⟨Q+
1 ⟩ = tr(ρQ+

1 )

c1e−γd + c2

|0101…01⟩

23
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41

2

3
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>

Only the 12-site 
simulation is for a 
circular topology.



24

• Similar results for .

• The initial states are chosen appropriately to give non-

zero theoretical expectation values.

Qdif
1 = [Q+

1 (δ) − Q−
1 (δ)]/2



Simulations on a 127-qubit IBM device

• Quantum device 
ibm_washington with 
127 qubits.


• We ran simulations with 
qubits on loops of size 
12, 20, and 84.  The 84-
qubit loop is shown in 
the figure.


• To have slower decays, 
it is important to avoid 
faulty (purple) qubits 
and connections.
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Simulation results on large chains

• Loops of size 12, 20, and 
84.


• Similar exponential decays 
of .


• For the 84-site run, we had 
 shots (circuit 

executions) for each value 
of .


• (There were significant time 
gaps between some data.)


• (Not in the current version 
of the e-print.)

⟨Q+
1 ⟩

106

d
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Preliminary
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Simulation results for IonQ Harmony

Preliminary

•Similar exponential 
decays.

•To have slower decays, it 
seems important to use 
the qubits (ions) in the 
middle of the linear chain.




Simulator results and 
theoretical analysis
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Numerical noise models

• We ran digital quantum simulations on the Qiskit (classical) 
simulator with noise models.


• We considered two noise models:


1. (1-qubit) depolarizing error channels inserted after 1- and 2-
qubit gate operations.


2. (1-qubit) amplitude-and-phase damping error channels 
inserted after 1- and 2-qubit gate operations.
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Classical emulation of quantum 
simulation with a depolarizing 
noise model

•  with 

 

 

inserted after gate operations.


•  and  decay 
exponentially to zero.  This 
suggests that the finite state is 
completely mixed.

Φdepo(ρ) =
4

∑
j=1

DjρD†
j

D1 = 1 − 3p
4 I , D2 = p

4 X ,

D3 = p
4 Y , D4 = p

4 Z

⟨Q+
j ⟩ ⟨Qdif

j ⟩
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Classical emulation of quantum 
simulation with a amplitude-and-
phase damping noise model

•  with 

 

 

inserted after gate operations.


•  (and ) asymptote to finite 
values.  The finite state is unique and is 
NOT completely mixed.  Checked by 
quantum tomography.

Φdamp(ρ) =
3

∑
j=1

DjρD†
j

D1 =
1 0
0 1 − λa − λp

,

D2 = (0 λa

0 0 ) , D3 =
0 0
0 λp

⟨Q+
j ⟩ ⟨Qdif

j ⟩
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Analysis fo quantum channels

• The initial state  is mapped, at Trotter step , to 
, where  is a noisy time evolution for a single step.


• The expectation value of a conserved charge  at step  is 
.


• We studied the eigenvalue distribution of the linear map 
.

ρ0 = |ψ0⟩⟨ψ0 | d
Φd(ρ) Φ

Q d
⟨Q⟩d = tr[Φd(ρ)Q]

ρ → Φ(ρ)

32



33

Noiseless Depolarizing noise model

• The eigenvalues for the single time step  on 4 sites.  

• In the noiseless case, the evolution is unitary and the eigenvalues are 

on a unit circle.

• In the depolarizing noise model, all the eigenvalues except one are 

strictly inside the unit circle.  There remains a single eigenvalue 1, 
corresponding to the unique fixed point (completely mixed state) of .

Φ

Φ



Possible use of conserved charges 
as benchmarks for future quantum 
computing
• For future quantum 

devices we expect smaller 
error rates.  We propose to 
use the higher conserved 
charges of the integrable 
Trotterization as 
benchmarks.


• On a classical simulator, 
we numerically computed 
the time evolution on 8 
sites.


• The slopes of early-tiime 
decays depend on the 
types and the degrees of 
the charges.
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Summary and conclusions

• We implemented the integrable Trotterization of the Heisenberg 
spin 1/2 XXX spin chain on real quantum computers and on 
classical simulators.  We used superconducting devices of IBM 
and trapped ion devices of IonQ.


• As expected, conserved charges decay due to noise on the 
current quantum devices.


• The early-time decay rate seems to depend on the type and the 
degree of the charge.  Higher charges are candidates of 
benchmarks for the future quantum simulation.
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