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Renormalization Group (RG)

UV (ultraviolet) Question

AnswerIR (infrared)



Example: QCD
• We have known UV description for decades;        

 gauge theory w/ fundamental quarks. 

• Even perturbative computation is possible. 

• But we haven’t succeeded to show its IR behaviors:

SU(3)

•Spont. breaking of chiral sym. (for massless quarks) 
•Confinement



Possible answers

Symmetry\Gap Gapped (or TQFT) Gapless (~CFT)

Preserved

Spont. broken



SSB and free energy

F = E − TS .

SSB can be understood as minimization of free energy
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SSB and free energy

F = E−TS .

SSB can be understood as minimization of free energy

At high temperature , the entropy term is dominant.T

 system maximizes entropy ⇒ S

At low temperature , the entropy term is negligible.T

 system minimizes energy  at the cost of ⇒ E S



Example of SSB: ferromagnet

H = − ∑
⟨i,j⟩

sisj



Example of SSB: ferromagnet
High T

F = E −TS
 To minimize , random config. w/ large  is favored⇒ F S

 Rotation symmetry is preserved⇒



Example of SSB: ferromagnet
Low T

F = −TS

 To minimize , aligned config. w/ small  is favored⇒ F E

 SSB of rotation sym.⇒

E



SSB =  minimizationF

Symmetry\Gap Gapped (or TQFT) Gapless (~CFT)

Preserved

Spont. broken



Another possibility: emergent symmetry

Sometimes, . 

ex) 

•  rotation (square lattice)  Lorentz (continuum) 

• 4d  Lagrangian (UV)  4d  (IR) 

•  flavor   flavor (4d   SQCD w/ )

Sym.UV ⊂ Sym.IR

90∘ ⊂

' = 1 ⊂ ' = 2

SU(8) ⊂ E7 ' = 1 SU(2) Nf = 4



When, Why, What?

• When and why symmetry emerges? 

• What is its structure (`size’ and `algebra’)? 

• Can emergent sym. also be understood via ?F



Q:When and Why 
What symmetry emerges?



Content

1. Def. of Symmetry

2. (New) constraints on RG flow

3. Emergent Symmetry
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What are symmetries?

 charge  which is 

1. defined on time-slice, 

2. and conserved.

∃ Q

Traditional



What are symmetries?

1. time-slice 

2. conserved

Traditional
Q(Σt=t0)

Q(Σt=t0+δt)

t = t0

t = t0

t = t0 + δt

Q(Σt=t0)
| |



What are symmetries?

1. defined on time-slice, 

2. and conserved.

Modern

codimension-1 defect

topological

| |

| |

[Gaiotto-Kapustin-Seiberg-Willett ’14]

 charge  which is∃ Q

Define symmetry by these two axioms.



Some generalizations

• codim.-   -form symmetry 

• Non-invertible (=monoid)  non-invertible symmetry

(p + 1) → p

→

ordinary sym.  codimension-1 topological defect:=



Some generalizations

• codim.-   -form symmetry(p + 1) → p

ordinary sym.  codimension-1 topological defect:=

• Non-invertible (=monoid)  non-invertible symmetry→
or category symmetry



Category sym. vs. group
Group

=

g1 g2 g1g2



Category sym. vs. group
Category

=

L1 L2 L3 L4

+ +⋯



Braided Fusion Category (BFC)

• Fusion category   objects & fusion 

• BFC   fusion cat. w/ braiding 

C =

(C, c) = c

(w/ consistency)

(w/ consistency)

ci,j =

i j

ij



Modular Tensor Category (MTC)
• Fusion category   objects & fusion 

• BFC   fusion cat. w/ braiding  

• MTC  = BFC w/ non-singular -matrix 
(=modular)

C =

(C, c) = c

(C, c) S

(w/ consistency)

(w/ consistency)

S̃ij := tr(cj,ici,j) =

i j

i j



Example of category sym.
0-form sym. in 2d) 

codim.-1 = line  

 minimal model 

3 TDLs (topological defect lines) ~ charge

L

M(4,3)

Lid, Lℤ2
, LNrank 3

=



Example of category sym.
2d  minimal model 

`Algebra’ of the TDLs:

M(4,3)

Lℤ2
Lℤ2

= Lid,
LNLℤ2

= LN, LNLN = Lid + Lℤ2
.



Example of category sym.
2d  minimal model 

`Algebra’ of the TDLs:

M(4,3)

Lℤ2
Lℤ2

= Lid,
LNLℤ2

= LN, LNLN = Lid + Lℤ2
.

σ . −σ .

Lℤ2
Lℤ2

TDLs act on operators:



Example of category sym.
2d  minimal model 

3 TDLs  have -matrix

M(4,3)

Lid, Lℤ2
, LN S

S̃ =
1 1 2
1 1 − 2
2 − 2 0

.

 is modular, while  is non-modular.{Lid, Lℤ2
, LN} {Lid, Lℤ2

}



Q:When and Why 
What (category) sym. emerges?



A: Consistent category w/ 
minimal .F



Content

1. Def. of Symmetry

2. (New) constraints on RG flow

3. Emergent Symmetry



Constraints on RG flow
We will present 2 types of new constraints:

- Spin constraint

• Double braiding relation

• ‘‘Monotonicity’’

- Scaling dimension
- Global dimension



Constraints on RG flow
A TDL  is preserved along RG flow triggered by an op. 
 if it commutes with .

L
O O

O . O .

L L

[Gaiotto ’12, Chang-Lin-Shao-Wang-Yin ‘18]



New spin constraint
When relevant ops. are scalars, rotation sym. is preserved.

 Spins are conserved.⇒
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For a TDL , we have an associated defect Hilbert space .L HL
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New spin constraint
When relevant ops. are scalars, rotation sym. is preserved.

For a TDL , we have an associated defect Hilbert space .L HL

 Spins are conserved.⇒

SIR
L ⊂ SUV

L

Operators of  have specific spins, called spin contents .HL SL

 of surviving TDL  are (basically) preserved.⇒SL L

[KK-Chen-Xu-Chang ’22]



Monotonic decrease of scaling dim.

In Wilsonian RG, we integrate out heavy modes.

 EFTs should have lighter observables.⇒



Monotonic decrease of scaling dim.

In Wilsonian RG, we integrate out heavy modes.

 EFTs should have lighter observables.⇒

hIR
j ≤ hUV

j

In fact, we proved the monotonic decrease

in minimal models (both unitary and non-unitary).
[2207.06433 (KK), 2207.10095 (KK)]



Monotonic decrease of global dim.

We can shrink away loops of TDLs.

dj :=

j

D2 := ∑
j

d2
jGlobal dimension



Monotonic decrease of global dim.

A MTC w/ global dim.  gives entropyD

S ∋ −ln D . [Kitaev-Preskill ‘05, Levin-Wen ’05]

The 2nd law of thermodynamics motivates

|DIR | < |DUV | .

In fact, we proved this in (non)unitary minimal models.
[2207.10095 (KK)]



Known monotonicity
-theorem (unitary)c

(0 < )cIR < cUV

Effective -theorem (non-unitary)c

(0 ≤ )ceff
IR ≤ ceff

UV

ceff := c − 24hsmallest

[Zamolodchikov ’86]

[Castro-Alvaredo-Doyon-Ravanini ’17]



Summary of monotonicities

- Spin constraint

- Scaling dimension

- Global dimension

SIR
L ⊂ SUV

L

hIR
j ≤ hUV

j

|DIR | < |DUV |

- (Effective) -theoremc cIR < cUV

ceff
IR ≤ ceff

UV



Double braiding relation

‘‘Something discrete cannot jump under RG flow.’’

e.g. ’t Hooft anomaly matching



Double braiding relation

‘‘Something discrete cannot jump under RG flow.’’

e.g. ’t Hooft anomaly matching

Wrong!



Double braiding relation

Braiding is subject to consistency.

Its solutions are discrete.

 Braidings should NOT jump under RG flow, right?⇒

Let’s see a ‘counterexample.’

(hexagon axiom)

(Ocneanu rigidity)



Double braiding relation

 minimal model (UV)M(5,4)

 minimal model (IR)M(4,3)

↓



Double braiding relation
3 TDLs  of  survive the flow.{Lid, Lℤ2

, LN} M(5,4)

But  hasM(4,3)

 line has double braidingLN

cUV
LN,LN

cUV
LN,LN

= eπi/4idLid
⊕ e5πi/4idLℤ2

.

cIR
LN,LN

cIR
LN,LN

= e−πi/4idLid
⊕ e−5πi/4idLℤ2

.

 Braidings jump!⇒



Double braiding relation
You may realize double braidings  are the oppositecj,ici,j

cIR
j,i cIR

i,j = (cUV
j,i cUV

i,j )* .

This relation holds in all examples we studied.

Why?



RG interface
RG flow  maps  UV ops.  IR ops.= : →

[Gaiotto ’12]

UV RCFT

IR RCFT

RG interface



RG interface
RG flow  maps  UV ops.  IR ops.= : →

[Gaiotto ’12]

UV RCFT

IR RCFT

RG interface

=
fold UV RCFT

IR RCFT

RG boundary



RG interface

⇒ cIR
j,i cIR

i,j = (cUV
j,i cUV

i,j )*

[Gaiotto ’12]

UV RCFT

IR RCFT

The folding trick turns 
 right-handed rule (UV) to left-handed rule (IR).



Prediction of conf. dim. hj
Double braiding is given by

cj,ici,j = ∑
k

Nk
ij

e2πihk

e2πihie2πihj
idk .

j

j

i

i

j

j

i

i

k∑
k

=

Prediction on IR !⇒ hj



Sample prediction of hj

cj,ici,j = ∑
k

Nk
ij

e2πihk

e2πihie2πihj
idk .

cLN,LN
cLN,LN

= eπi/4idLid
⊕ e5πi/4idLℤ2

.

 model hasM(5,4)

The -channel predictsLid

e−4πihIR
LN = e−πi/4

or
 mod .hIR

LN
= 1

16
1
2



Sample prediction of hj

The smallest positive candidate  is physically favored 
because  enters energy .

1/16

h L̂0 |h⟩ = h |h⟩

hIR
Lℤ2

= 1
2 .

 Correct prediction .⇒ hIR
LN

= 1
16

We also get
e2πihIR

Lℤ2 = e(1+3)πi/4

or



Comment on gap
The double braiding relation can rule out gapless scenario.

Pick 3 RCFTs  w/ RG flowT1, T2, T3

T1 → T2 → T3 .

The double braiding relation claims

cT1
j,i cT1

i,j = (cT2
j,i cT2

i,j )* = cT3
j,i cT3

i,j = (cT3
j,i cT3

i,j )* .

 Such pairs  should have real double braiding.⇒ i, j



Comment on gap
The reality condition  explains whycj,ici,j = (cj,ici,j)*

•  minimal model+  

•  minimal model+
M(5,4) σ′ 

M(6,5) ϵ′ 

are gapped.

It also explains some structures of theory space.



Content

1. Def. of Symmetry

2. (New) constraints on RG flow

3. Emergent Symmetry



Specialize to 2d RCFT

Facts 

• Sym. (sub)category = MTC (modular tensor category) 

• -theorem: c cIR < cUV

=BFC w/ non-singular -matrixS



Specialize to 2d RCFT

Facts 

• Sym. (sub)category = MTC (modular tensor category) 

• -theorem: c cIR < cUV

⇒ If IR theory is RCFT, 
its sym. category should be MTC w/ .c < cUV

[KK ’21]



Our example
 minimal modelM(m + 1,m)

 minimal modelM(m, m − 1)

+ϕ1,3



Key idea
MTCUV



Key idea
MTCUV

BFC



Key idea
MTCUV

BFC MTCIR



Test1)  minimal modelM(5,4) +ϕ1,3
• The theory has 6 TDLs. 

1. Only 3 of them  survive -deform. 

2. They can form rank 3 MTC w/ . 

3. Emergent sym. is unnecessary.

{Lid , L2,1 , L3,1} ϕ1,3

c < cUV = 7
10

[Gepner-Kapustin ’94]



Test1)  minimal modelM(5,4) +ϕ1,3

Absence of emergent sym. is consistent with known RG flow

 minimal model (UV)M(5,4)

 minimal model (IR)M(4,3)

↓+ϕ1,3



Test2)  minimal modelM(6,5) +ϕ1,3

• The theory has 10 TDLs. 

1. Only 4  survive -deform. 

2. The rank 4 sym. category  is not an MTC. 

3. Emergent sym. is needed!

{Lid , L2,1 , L3,1 , L4,1} ϕ1,3

C



Test2)  minimal modelM(6,5) +ϕ1,3

Can 1 emergent TDL make  an MTC?C



Test2)  minimal modelM(6,5) +ϕ1,3

Can 1 emergent TDL make  an MTC?C

No. There is no rank 5 MTC containing .C

[Bruillard-Ng-Rowell-Wang ’15]



Test2)  minimal modelM(6,5) +ϕ1,3

How about 2 emergent TDLs?



Test2)  minimal modelM(6,5) +ϕ1,3

How about 2 emergent TDLs?
It works. 

There is one rank 6 MTC w/ .c < cUV = 4
5

[Gepner-Kapustin ’94]



The emergent sym. is consistent with known RG flow

 minimal model (UV)M(6,5)

 minimal model (IR)M(5,4)

↓+ϕ1,3

Test2)  minimal modelM(6,5) +ϕ1,3



Consistent MTC w/ minimal rank is realized.

Remark on free energy

In unitary theory, , and larger rank has larger .dj ≥ 1 D

 Minimal free energy  Minimal rank⇒ ≃



Test3)  minimal modelM(7,6) +ϕ1,3

• The theory has 15 TDLs. 

1. Only 5  survive. 

2. The rank 5 sym. category  is an MTC.

{Lid , L2,1 , L3,1 , L4,1, L5,1}

C

But how about ?c

[Gepner-Kapustin ’94]



Test3)  minimal modelM(7,6) +ϕ1,3

• According to [Gepner-Kapustin ’94], the rank 5 MTC has 

• Assuming unitarity, this means 

• This cannot be smaller than ! 

• Symmetry should emerge.

cUV = 6
7

 mod 4.c = 2

.c = 2,6,10,…



Test3)  minimal modelM(7,6) +ϕ1,3

Can 1 emergent TDL make C
consistent with -theorem?c



Test3)  minimal modelM(7,6) +ϕ1,3

[Gepner-Kapustin ’94]

No. There is no rank 6 MTC containing .C

Can 1 emergent TDL make C
consistent with -theorem?c



Test3)  minimal modelM(7,6) +ϕ1,3

How about 2 emergent TDLs?



Test3)  minimal modelM(7,6) +ϕ1,3

How about 2 emergent TDLs?

Unfortunately, rank  MTCs are poorly 
classified…

r ≥ 7



Test3)  minimal modelM(7,6) +ϕ1,3

How about 2 emergent TDLs?

Unfortunately, rank  MTCs are poorly 
classified…

r ≥ 7

At least, no candidate up to  in the partial classification [Wen ’15], 
suggesting .

r = 9
r ≥ 10



Test3)  minimal modelM(7,6) +ϕ1,3
However, emergent sym. itself is 
consistent with known RG flow

∃

 minimal model (UV)M(7,6)

 minimal model (IR)M(6,5)

↓+ϕ1,3



Symmetry enhancement 
in RCFT

2 requirements 

・modularity 
・ -theorem 

correctly explain sym. enhancement in 2d unitary RCFT.

c



Symmetry enhancement 
in RCFT

2 requirements 

・modularity 
・ -theorem 

correctly explain sym. enhancement in 2d unitary RCFT.

c

Use -theorem.⇒ ceff

How about non-unitary cases?



Non-unitary example
 minimal modelM(p,2p + 1)

 minimal modelM(p − 1,2p − 1)

+ϕ5,1

+ϕ1,2

 minimal modelM(p,2p − 1)



Test4)  minimal modelM(3,5) +ϕ1,2

• The theory has 4 TDLs. 

1. Only 2  survive. 

2. They can form rank 2 MTC.

{Lid , L3,1}

[Gepner-Kapustin ’94]

Consistent w/ -theorem?ceff

Compute  by predicting ⇒ ceff hIR



Test4)  minimal modelM(3,5) +ϕ1,2
 hasL3,1

cL3,1,L3,1
cL3,1,L3,1

= e−4πi/5id1 ⊕ e−2πi/5id3,1 .

Thus,  should haveL3,1 → j

cj,jcj,j = e+4πi/5id1 ⊕ e+2πi/5idj .

The -channel predictsj

e−2πihIR
j = e2πi/5,

or
 (mod 1).hIR

j = 4
5



Test4)  minimal modelM(3,5) +ϕ1,2

With ‘‘monotonicity’’ , we gethIR
j ≤ 1

5

.hIR
j ≤ − 1

5

-theorem  givesceff cIR − 24hIR
j ≤ ceff

UV = 3
5

.cIR ≤ − 21
5

[Gepner-Kapustin ’94]The rank 2 MTC can have such .cIR

 Emergent symmetry is unnecessary.⇒



Test4)  minimal modelM(3,5) +ϕ1,2

 minimal model (UV)M(3,5)

 minimal model (IR)M(2,5)

↓+ϕ1,2

Absence of emergent sym. is consistent with known RG flow



Test5)  minimal modelM(3,7) +ϕ5,1

• The theory has 6 TDLs. 

1. Only 2  survive. 

2. They can form rank 2 MTC .

{Lid , L1,2}

C [Gepner-Kapustin ’94]

Compute  by predicting ⇒ ceff hIR

Consistent w/ -theorem?ceff



Test5)  minimal modelM(3,7) +ϕ5,1

Symmetry should emerge.⇒

Double braiding relation predicts

 (mod ).hIR
j = 1

4
1
2

Small computation shows .ceff ≰ ceff
UV



Test5)  minimal modelM(3,7) +ϕ5,1

Can 1 emergent TDL make  consistent?C



Test5)  minimal modelM(3,7) +ϕ5,1

Can 1 emergent TDL make  consistent?C

There is 1 rank 3 MTC enlarging , but C … [Gepner-Kapustin ’94]

The scenario requires , contradiction.dL = 0
(invertibility of -symbols)F



Test5)  minimal modelM(3,7) +ϕ5,1

How about 2 emergent TDLs?



Test5)  minimal modelM(3,7) +ϕ5,1

How about 2 emergent TDLs?

There are 3 rank 4 MTCs enlarging :C [Gepner-Kapustin ’94]

Rank 4 MTCs Possible?

SU(4)1

SO(8)1

SU(2)3



Test5)  minimal modelM(3,7) +ϕ5,1

How about 2 emergent TDLs?

There are 3 rank 4 MTCs enlarging :C [Gepner-Kapustin ’94]

(reality of )dj

Rank 4 MTCs Possible?

XSU(4)1

SO(8)1

SU(2)3



Test5)  minimal modelM(3,7) +ϕ5,1

Which is realized,  or ?SO(8)1 SU(2)3



Test5)  minimal modelM(3,7) +ϕ5,1

Which is realized,  or ?SO(8)1 SU(2)3

Each scenario has global dimension

D2
SO(8)1

= 4,

D2
SU(2)3

= 5 ± 5 .

 scenario w/  is preferred 
because it has minimal free energy .
SU(2)3 D2 = 5 − 5

F ∋ T ln D



Test5)  minimal modelM(3,7) +ϕ5,1

 minimal model (UV)M(3,7)

 minimal model (IR)M(3,5)

↓+ϕ5,1

 can have , and indeed it is correct:SU(2)3 ceff ≤ ceff
UV = 5

7



General remark

• Consistency explained when symmetry emerges.

• Minimization of  further fixed what sym. is realized.F



Test6)  minimal modelM(4,7) +ϕ1,2

• The theory has 9 TDLs. 

1. Only 3  survive. 

2. They can form rank 3 MTC .

{Lid , L3,1 , L5,1}

C [Gepner-Kapustin ’94]

Compute  by predicting ⇒ ceff hIR

Consistent w/ -theorem?ceff



Test6)  minimal modelM(4,7) +ϕ1,2

The rank 3 MTC  has  w/ .C c = 24
7 − 4n n ∈ ℕ

Double braiding relation predicts  haveL3,1 → k, L5,1 → j

 ( ).hj = 4
7 − l, hk = − 1

7 − m l, m ∈ ℕ

∴ ceff = ( 24
7 − 4n) − 24 min ( 4

7 − l, − 1
7 − m)

= 4
7 {(6 − 7n) − min(24 − 42l, − 6 − 42m)}

.



Test6)  minimal modelM(4,7) +ϕ1,2

ceff = 4
7 {(6 − 7n) − min(24 − 42l, − 6 − 42m)} = 0, 4

7 ,

-theorem  only allowsceff 0 ≤ ceff ≤ ceff
UV = 11

14

or  They have no solution:b := {} = 0,1.

18 + b = 7(−n + 6l),
−12 + b = 7(−n + 6m) .

Symmetry should emerge (violate -theorem).⇒ ceff



Test6)  minimal modelM(4,7) +ϕ1,2

[Gepner-Kapustin ’94]

There is no rank 4,5 MTCs enlarging .C

There are 2 rank 6 MTCs enlarging :C

Rank 6 MTCs

SU(2)5

SU(2)3/ℤ2 × SU(2)5/ℤ2

D2

2 × 7
4 cos2 π

14

5 ± 5
2 × 7

4 cos2 π
14



Test6)  minimal modelM(4,7) +ϕ1,2

The 2nd w/  has minimal .D2 = 5 − 5
2 × 7

4 cos2 π
14

F

Rank 6 MTCs

SU(2)5

SU(2)3/ℤ2 × SU(2)5/ℤ2

D2

2 × 7
4 cos2 π

14

5 ± 5
2 × 7

4 cos2 π
14

But its  is inconsistent w/ -theorem  .ceff ceff ⇒ SU(2)5



Test6)  minimal modelM(4,7) +ϕ1,2

 minimal model (UV)M(4,7)

 minimal model (IR)M(3,7)

↓+ϕ1,2

Consistent  w/ minimal  is indeed correct:SU(2)5 F



Emergent symmetry

• Consistency explains when symmetries emerge. 

• Min. free energy also explains what sym. is realized. 

• Agree with known RG flows in all examples.

- Rank, 
- Multiplication rule, 
- Anomaly, etc



Summary
Qualitative

• IR symmetry is realized by 

consistent symmetry category with minimal free energy.

• Discrete quantity can jump at conformal fixed point.



Summary

when surviving sym. category  is inconsistentC

[KK ’21]

Quantitative

• We proposed mechanism behind emergent symmetry:

sym. should enhance to consistent (=why) 
w/ minimal free energy.

D ⊃ C

• non-modularity, or 
• ‘‘non-monotonic,’’

[KK ’22]



Summary

MTCUV

C = BFC D = MTCIR



Summary

MTCUV

MTCIRBFC
F

ι



Summary

• RG flows among RCFTs  Kan extension=

MTCUV

MTCIRBFC
F

ι R

[2209.00016 (KK)]



Many future directions

• More general RCFTs 

• RG flow to irrational CFT 

• Generalization to other dimensions

[2207.06433 (KK)][KK-Chen-Xu-Chang ’22]

•Non-diagonal RCFT 
•Fermionic RCFT 
• Irrational CFT  RCFT→ (commutativity)



Appendix



Commutativity
 gauging and relevant deform. w/singlets commute.ℤ2

For singlet,

O . O .

L L

=



Commutativity

[2207.06433 (KK)]

 gauging and relevant deform. w/singlets commute.ℤ2

For singlet,

O . O .

L L

=

(ZT/ℤ2)
′ 

≡ 1
2 (ZT[0,0] + ZT[0,1] + ZT[1,0] + ZT[1,1])′ 

= 1
2 {(ZT)′ [0,0] + (ZT)′ [0,1] + (ZT)′ [1,0] + (ZT)′ [1,1]} ≡ (ZT)′ /ℤ2



Another side of our proposal
Conjecture: for  

there is no MTC satisfying 3 conditions 
simultaneously: 

1) which has rank ; 

2) which has central charge ; 

3) which contains surviving sym. category.

m = 2M + 1 (M = 2,3,…),

2M < r < M(2M − 1)

c < 1 − 3
(2M + 1)(M + 1)


