Emergent symmetry and free energy

Ken KIKUCHI 謙 菊池

YMSC

Based on

2109.02672 (KK), 2207.06433 (KK), 2207.10095 (KK), 2209.00016 (KK)

Renormalization Group (RG)

Example: QCD

- We have known UV description for decades; $SU(3)$ gauge theory w/ fundamental quarks.
- Even perturbative computation is possible.

- But we haven't succeeded to show its IR behaviors:
	- •Spont. breaking of chiral sym. (for massless quarks)
	- •Confinement

Possible answers

SSB and free energy

SSB can be understood as minimization of free energy

 $F = E - TS$.

SSB and free energy

SSB can be understood as minimization of free energy

 $F = E - TS$.

At high temperature *T*, the entropy term is dominant.

⇒ system maximizes entropy *S*

SSB and free energy

SSB can be understood as minimization of free energy

 $F = E - TS$.

At high temperature *T*, the entropy term is dominant.

⇒ system maximizes entropy *S*

At low temperature *T*, the entropy term is negligible.

⇒ system minimizes energy *E* at the cost of *S*

Example of SSB: ferromagnet

Example of SSB: ferromagnet

⇒ To minimize *F*, random config. w/ large *S* is favored ⇒ Rotation symmetry is preserved

Example of SSB: ferromagnet

 \Rightarrow To minimize *F*, aligned config. w/ small *E* is favored \Rightarrow SSB of rotation sym.

SSB = *F* minimization

Another possibility: emergent symmetry

Sometimes, Sym._{*UV}* ⊂ Sym._{IR}</sub>

ex)

- 90° rotation (square lattice) ⊂ Lorentz (continuum)
- 4d $\mathcal{N} = 1$ Lagrangian (UV) $\subset 4d$ $\mathcal{N} = 2$ (IR)
- $SU(8)$ flavor $\subset E_7$ flavor (4d $\mathcal{N} = 1$ *SU*(2) **SQCD** w/ $N_f = 4$)

When, Why, What?

• When and why symmetry emerges?

• What is its structure ('size' and 'algebra')?

• Can emergent sym. also be understood via *F*?

Q:**When** and **Why What** symmetry emerges?

Content

1. Def. of Symmetry

2. (New) constraints on RG flow

3. Emergent Symmetry

Content

1. Def. of Symmetry

2. (New) constraints on RG flow

3. Emergent Symmetry

What are symmetries?

Traditional

∃ charge Q which is

1. defined on time-slice,

2. and conserved.

What are symmetries?

Traditional

1. time-slice

2. conserved

What are symmetries?

Modern

[Gaiotto-Kapustin-Seiberg-Willett '14]

∃ charge *Q* which is

1. defined on time-slice, **codimension-1 defect** ||

2. and conserved. **topological** ||

Define symmetry by these two axioms.

Some generalizations

ordinary sym. $:=$ codimension-1 topological defect

• codim. $-(p + 1) \rightarrow p$ -form symmetry

• Non-invertible $(=monoid) \rightarrow non-invertible$ symmetry

Some generalizations

ordinary sym. $:=$ codimension-1 topological defect

• codim. $-(p + 1) \rightarrow p$ -form symmetry

• Non-invertible $(=monoid) \rightarrow non-invertible symmetry$ **or category symmetry**

Category sym. vs. group

Group

Category sym. vs. group

Category

Braided Fusion Category (BFC)

- Fusion category $C =$ objects & fusion $(w /$ consistency)
- BFC (C, c) = fusion cat. w/ braiding c (w/ consistency)

Modular Tensor Category (MTC)

- Fusion category $C =$ objects & fusion $(w /$ consistency)
- BFC (C, c) = fusion cat. w/ braiding c (w/ consistency)
- MTC $(C, c) = \text{BFC w}/\text{non-singular } S\text{-matrix}$ (=modular)

0-form sym. in 2d)

codim.-1 = line *L*

minimal model *M*(4,3)

3 TDLs (topological defect lines) \sim charge rank 3 L_{id} , $L_{\mathbb{Z}_2}$, L_N $\mathbf{\mathsf{I}}$

<u>2d *M*(4,3) minimal model</u>

`Algebra' of the TDLs:

$$
L_{\mathbb{Z}_2}L_{\mathbb{Z}_2} = L_{id},
$$

$$
L_N L_{\mathbb{Z}_2} = L_N, \quad L_N L_N = L_{id} + L_{\mathbb{Z}_2}.
$$

<u>2d *M*(4,3) minimal model</u>

`Algebra' of the TDLs:

$$
L_{\mathbb{Z}_2}L_{\mathbb{Z}_2} = L_{id},
$$

$$
L_N L_{\mathbb{Z}_2} = L_N, \quad L_N L_N = L_{id} + L_{\mathbb{Z}_2}.
$$

TDLs act on operators:

<u>2d *M*(4,3) minimal model</u>

3 TDLs L_{id} , $L_{\mathbb{Z}_2}$, L_N have *S*-matrix

$$
\widetilde{S} = \begin{pmatrix} 1 & 1 & \frac{1}{2} & \sqrt{2} \\ 1 & 1 & \frac{1}{2} & -\sqrt{2} \\ \frac{1}{2} & -\sqrt{2} & \frac{1}{2} & 0 \end{pmatrix}.
$$

 $\{L_{id}, L_{\mathbb{Z}_2}, L_N\}$ is **modular**, while $\{L_{id}, L_{\mathbb{Z}_2}\}$ is **non-modular**.

Q:When and Why What (category) sym. emerges? A: Consistent category w/ minimal *F*.

Content

1. Def. of Symmetry

2. (New) constraints on RG flow

3. Emergent Symmetry

Constraints on RG flow

We will present 2 types of new constraints:

- ʻʻMonotonicity''
	- Spin constraint
	- Scaling dimension
	- Global dimension
- Double braiding relation

Constraints on RG flow

A TDL L is preserved along RG flow triggered by an op.

 O if it commutes with O .

[Gaiotto '12, Chang-Lin-Shao-Wang-Yin ʻ18]

New spin constraint

When relevant ops. are scalars, rotation sym. is preserved.

⇒ Spins are conserved.

New spin constraint

When relevant ops. are scalars, rotation sym. is preserved.

 \Rightarrow Spins are conserved.

For a TDL *L*, we have an associated defect Hilbert space H_L .

New spin constraint

When relevant ops. are scalars, rotation sym. is preserved.

 \Rightarrow Spins are conserved.

For a TDL *L*, we have an associated defect Hilbert space H_I .

Operators of H_I have specific spins, called spin contents S_I .

New spin constraint

When relevant ops. are scalars, rotation sym. is preserved.

 \Rightarrow Spins are conserved.

For a TDL *L*, we have an associated defect Hilbert space H_L .

Operators of H_I have specific spins, called spin contents S_I .

 \Rightarrow *S_L* of surviving TDL *L* are (basically) preserved.

 $S_L^{IR} \subset S_L^{UV}$ **[KK-Chen-Xu-Chang '22]**

Monotonic decrease of scaling dim.

In Wilsonian RG, we integrate out heavy modes.

⇒ EFTs should have lighter observables.

Monotonic decrease of scaling dim.

In Wilsonian RG, we integrate out heavy modes.

 \Rightarrow EFTs should have lighter observables.

In fact, we proved the monotonic decrease

 $h_j^{IR} \leq h_j^{UV}$

in minimal models (both unitary and non-unitary).

[2207.06433 (KK), 2207.10095 (KK)]

Monotonic decrease of global dim.

We can shrink away loops of TDLs.

Global dimension
$$
D^2 := \sum_j d_j^2
$$

Monotonic decrease of global dim.

A MTC w/ global dim. *D* gives entropy

 $S \ni -\ln D$ [Kitaev-Preskill '05, Levin-Wen '05]

The 2nd law of thermodynamics motivates

 $|D^{IR}| < |D^{UV}|$.

In fact, we proved this in (non)unitary minimal models.

[2207.10095 (KK)]

Known monotonicity

c-theorem (unitary)

[Zamolodchikov '86]

 $(0 <)c_{IR} < c_{UV}$

Effective *c*-theorem (non-unitary)

[Castro-Alvaredo-Doyon-Ravanini '17]

$$
(0 \leq) c_{IR}^{eff} \leq c_{UV}^{eff}
$$

 c^{eff} := $c - 24h$ _{smallest}

Summary of monotonicities

- (Effective) c-theorem

$$
c_{IR} < c_{UV}
$$

$$
c_{IR}^{eff} \leq c_{UV}^{eff}
$$

- Spin constraint $S_L^{IR} \subset S_L^{UV}$
- Scaling dimension $h_j^{IR} \leq h_j^{UV}$
- Global dimension $|D^{IR}| < |D^{UV}|$

ʻʻSomething discrete cannot jump under RG flow.''

e.g. 't Hooft anomaly matching

ʻʻSomething discrete cannot jump under RG flow.''

e.g. 't Hooft anomaly matching

Wrong!

Braiding is subject to consistency. (hexagon axiom)

Its solutions are discrete. (Ocneanu rigidity)

⇒ Braidings should **NOT** jump under RG flow, right?

Let's see a ʻcounterexample.'

M(5,4) minimal model (UV)

M(4,3) minimal model (IR)

 $3 \text{ TDLs } \{L_{id}, L_{\mathbb{Z}_2}, L_N\} \text{ of } M(5,4) \text{ survive the flow.}$

 L_N line has double braiding

$$
c_{L_N,L_N}^{UV}c_{L_N,L_N}^{UV}=e^{\pi i/4}id_{L_{id}}\oplus e^{5\pi i/4}id_{L_{\mathbb{Z}_2}}.
$$

But *M*(4,3) has

$$
c_{L_N,L_N}^{IR}c_{L_N,L_N}^{IR} = e^{-\pi i/4}id_{L_{id}} \oplus e^{-5\pi i/4}id_{L_{\mathbb{Z}_2}}.
$$

⇒ Braidings jump!

You may realize double braidings $c_{j,i}c_{i,j}$ are the opposite

$$
c_{j,i}^{IR}c_{i,j}^{IR}=(c_{j,i}^{UV}c_{i,j}^{UV})^*
$$
.

This relation holds in all examples we studied.

Why?

RG interface

[Gaiotto '12]

RG flow = maps : UV ops. \rightarrow IR ops.

UV RCFT

IR RCFT

RG interface

RG interface

RG boundary

[Gaiotto '12]

The folding trick turns right-handed rule (UV) to left-handed rule (IR).

$$
\Rightarrow c_{j,i}^{IR}c_{i,j}^{IR} = (c_{j,i}^{UV}c_{i,j}^{UV})^*
$$

Prediction of conf. dim. *hj*

Double braiding is given by

 \Rightarrow Prediction on IR h_i !

Sample prediction of *hj*

$$
c_{j,i}c_{i,j} = \sum_k N_{ij}^k \frac{e^{2\pi i h_k}}{e^{2\pi i h_i}e^{2\pi i h_j}} id_k.
$$

M(5,4) model has

$$
c_{L_N,L_N}c_{L_N,L_N}=e^{\pi i/4}id_{L_{id}}\oplus e^{5\pi i/4}id_{L_{\mathbb{Z}_2}}.
$$

The *Lid*-channel predicts

$$
e^{-4\pi i h_{L_N}^{IR}} = e^{-\pi i/4}
$$

or

$$
h_{L_N}^{IR} = \frac{1}{16} \text{ mod } \frac{1}{2}.
$$

Sample prediction of *hj*

The smallest positive candidate 1/16 is physically favored because *h* enters energy $\hat{L}_0 | h \rangle = h | h \rangle$. ̂

$$
\Rightarrow \text{Correct prediction } h_{L_N}^{IR} = \frac{1}{16}.
$$

We also get

$$
e^{2\pi i h_{L_{\mathbb{Z}_2}}^R} = e^{(1+3)\pi i/4}
$$

or

$$
h^{IR}_{L_{\mathbb{Z}_2}}=\frac{1}{2}\,.
$$

Comment on gap

The double braiding relation can rule out gapless scenario.

Pick 3 RCFTs T_1, T_2, T_3 w/ RG flow

$$
T_1 \to T_2 \to T_3.
$$

The double braiding relation claims

$$
c_{j,i}^{T_1}c_{i,j}^{T_1} = (c_{j,i}^{T_2}c_{i,j}^{T_2})^* = c_{j,i}^{T_3}c_{i,j}^{T_3} = (c_{j,i}^{T_3}c_{i,j}^{T_3})^*.
$$

⇒ Such pairs *i*, *j* should have real double braiding.

Comment on gap

The reality condition $c_{j,i}c_{i,j} = (c_{j,i}c_{i,j})^*$ explains why

- $M(5,4)$ minimal model+ σ'
- $M(6,5)$ minimal model+ ϵ'

are gapped.

It also explains some structures of theory space.

Content

1. Def. of Symmetry

2. (New) constraints on RG flow

3. Emergent Symmetry

Specialize to 2d RCFT

Facts

• Sym. (sub)category $=$ MTC (modular tensor category)

=BFC w/ non-singular *S*-matrix

• *c*-theorem: c_{IR} < c_{UV}

Specialize to 2d RCFT

Facts

- Sym. (sub)category = MTC (modular tensor category)
- *c*-theorem: $c_{IR} < c_{UV}$

 \Rightarrow If IR theory is RCFT, its sym. category should be MTC w/ $c < c_{UV}$.

[KK '21]

Our example

 $M(m+1,m)$ minimal model

Key idea

- The theory has 6 TDLs.
- 1. Only 3 of them $\{L_{id}, L_{2,1}, L_{3,1}\}$ survive $\phi_{1,3}$ -deform.

2. They can form rank 3 MTC w/ $c < c_{UV} = \frac{c}{10}$. 7 10

[Gepner-Kapustin '94]

3. Emergent sym. is unnecessary.

Absence of emergent sym. is consistent with known RG flow

M(5,4) minimal model (UV)

M(4,3) minimal model (IR)

- The theory has 10 TDLs.
- 1. Only 4 $\{L_{id}, L_{2,1}, L_{3,1}, L_{4,1}\}$ survive $\phi_{1,3}$ -deform.
- 2. The rank 4 sym. category C is not an MTC.
- 3. Emergent sym. is needed!

Can 1 emergent TDL make *C* an MTC?

Can 1 emergent TDL make *C* an MTC? No. There is no rank 5 MTC containing *C*.

[Bruillard-Ng-Rowell-Wang '15]

How about 2 emergent TDLs?

How about 2 emergent TDLs? It works.

There is one rank 6 MTC w/ $c < c_{UV} = \frac{1}{5}$. 4 5

[Gepner-Kapustin '94]
The emergent sym. is consistent with known RG flow

M(6,5) minimal model (UV)

M(5,4) minimal model (IR)

Remark on free energy

Consistent MTC w/ minimal rank is realized.

In unitary theory, $d_i \geq 1$, and larger rank has larger *D*.

 \Rightarrow Minimal free energy \simeq Minimal rank

- The theory has 15 TDLs.
- 1. Only 5 $\{L_{id}, L_{2,1}, L_{3,1}, L_{4,1}, L_{5,1}\}$ survive.
- 2. The rank 5 sym. category C is an MTC. **[Gepner-Kapustin '94]**

But how about *c*?

• According to [Gepner-Kapustin '94], the rank 5 MTC has

 $c = 2 \mod 4$.

• Assuming unitarity, this means

 $c = 2.6, 10, \ldots$

- This cannot be smaller than $c_{UV} = \frac{3}{7}$! 6 7
- Symmetry should emerge.

Can 1 emergent TDL make *C* consistent with *c*-theorem?

Can 1 emergent TDL make *C* consistent with *c*-theorem?

No. There is no rank 6 MTC containing *C*.

[Gepner-Kapustin '94]

How about 2 emergent TDLs?

How about 2 emergent TDLs?

Unfortunately, rank $r \geq 7$ MTCs are poorly classified…

How about 2 emergent TDLs?

Unfortunately, rank $r \geq 7$ MTCs are poorly classified…

At least, no candidate up to $r = 9$ in the partial classification [Wen '15], suggesting $r \geq 10$.

However, ∃emergent sym. itself is consistent with known RG flow

M(7,6) minimal model (UV)

 $+\phi_{1,3}$

M(6,5) minimal model (IR)

Symmetry enhancement in RCFT

- 2 requirements
	- ・modularity
- \cdot c -theorem

correctly explain sym. enhancement in 2d unitary RCFT.

Symmetry enhancement in RCFT

2 requirements

- ・modularity
- \cdot c -theorem

correctly explain sym. enhancement in 2d unitary RCFT.

How about non-unitary cases?

 \Rightarrow Use c^{eff} -theorem.

Non-unitary example

 $M(p,2p+1)$ minimal model

 $M(p-1,2p-1)$ minimal model $+\phi_{5,1}$ $+\phi_{1,2}$ $M(p,2p-1)$ minimal model

- The theory has 4 TDLs.
- 1. Only 2 $\{L_{id}, L_{3,1}\}\$ survive.
- 2. They can form rank 2 MTC.

[Gepner-Kapustin '94]

Consistent w/ c^{eff} -theorem?

 \Rightarrow Compute c^{eff} by predicting h^{IR}

 $L_{3,1}$ has

$$
c_{L_{3,1},L_{3,1}}c_{L_{3,1},L_{3,1}} = e^{-4\pi i/5}id_1 \oplus e^{-2\pi i/5}id_{3,1}.
$$

Thus, $L_{3,1} \rightarrow j$ should have

$$
c_{j,j}c_{j,j} = e^{+4\pi i/5}id_1 \oplus e^{+2\pi i/5}id_j.
$$

The *j*-channel predicts

$$
e^{-2\pi i h_j^{IR}}=e^{2\pi i/5},
$$

or

$$
h_j^{IR} = \frac{4}{5} \pmod{1}.
$$

With ''monotonicity'' $h_j^{IR} \leq \frac{1}{5}$, we get 1 5

$$
h_j^{IR} \leq -\frac{1}{5}.
$$

$$
c^{eff}\text{-theorem }c_{IR} - 24h_j^{IR} \le c_{UV}^{eff} = \frac{3}{5} \text{ gives}
$$
\n
$$
c_{IR} \le -\frac{21}{5}.
$$

The rank 2 MTC can have such c_{IR} . [Gepner-Kapustin '94]

⇒ Emergent symmetry is unnecessary.

Absence of emergent sym. is consistent with known RG flow

M(3,5) minimal model (UV)

 $+\phi_{1,2}$

M(2,5) minimal model (IR)

- The theory has 6 TDLs.
- 1. Only 2 $\{L_{id}, L_{1,2}\}$ survive.
- 2. They can form rank 2 MTC C.

C **[Gepner-Kapustin '94]**

Consistent w/ c^{eff} -theorem?

 \Rightarrow Compute c^{eff} by predicting h^{IR}

Double braiding relation predicts

$$
h_j^{IR} = \frac{1}{4} \text{ (mod } \frac{1}{2}\text{)}.
$$

Small computation shows $c^{eff} \nleq c_{UV}^{eff}$. *UV*

⇒Symmetry should emerge.

Can 1 emergent TDL make *C* consistent?

Can 1 emergent TDL make *C* consistent?

There is 1 rank 3 MTC enlarging *C*, but … **[Gepner-Kapustin '94]**

The scenario requires $d_I = 0$, contradiction.

(invertibility of *F*-symbols)

How about 2 emergent TDLs?

How about 2 emergent TDLs?

There are 3 rank 4 MTCs enlarging *C*: **[Gepner-Kapustin '94]**

How about 2 emergent TDLs?

There are 3 rank 4 MTCs enlarging *C*: **[Gepner-Kapustin '94]**

(reality of d_i)

Which is realized, $SO(8)$ ₁ or $SU(2)$ ₃?

Which is realized, $SO(8)$ ₁ or $SU(2)$ ₃?

Each scenario has global dimension

$$
D_{SO(8)_1}^2 = 4,
$$

$$
D_{SU(2)_2}^2 = 5 \pm \sqrt{5}.
$$

 $SU(2)_3$

 $SU(2)_3$ scenario w/ $D^2 = 5 - \sqrt{5}$ is preferred because it has minimal free energy $F \ni T \ln D$.

Test5)
$$
M(3,7)
$$
 minimal model+ $\phi_{5,1}$

 $SU(2)_3$ can have $c^{eff} \leq c^{eff}_{UV} = \frac{3}{7}$, and indeed it is correct: = 5 7

M(3,7) minimal model (UV)

M(3,5) minimal model (IR)

General remark

• Consistency explained when symmetry emerges.

• Minimization of *F* further fixed what sym. is realized.

- The theory has 9 TDLs.
- 1. Only 3 $\{L_{id}, L_{3,1}, L_{5,1}\}$ survive.
- 2. They can form rank 3 MTC C.

C **[Gepner-Kapustin '94]**

Consistent w/ c^{eff} -theorem?

 \Rightarrow Compute c^{eff} by predicting h^{IR}

The rank 3 MTC C has
$$
c = \frac{24}{7} - 4n
$$
 w/n \in N.

Double braiding relation predicts $L_{3,1} \rightarrow k, L_{5,1} \rightarrow j$ have

$$
h_j = \frac{4}{7} - l
$$
, $h_k = -\frac{1}{7} - m$ $(l, m \in \mathbb{N})$.

$$
\therefore c^{eff} = \left(\frac{24}{7} - 4n\right) - 24 \min\left(\frac{4}{7} - 1, -\frac{1}{7} - m\right)
$$

$$
= \frac{4}{7} \left\{ (6 - 7n) - \min(24 - 42l, -6 - 42m) \right\}
$$

.

 c^{eff} -theorem $0 \leq c^{eff} \leq c^{eff}_{UV} = \frac{1}{14}$ only allows *UV* = 11 14

$$
c^{eff} = \frac{4}{7} \left\{ (6 - 7n) - \min(24 - 42l, -6 - 42m) \right\} = 0, \frac{4}{7},
$$

or $b := \{ \} = 0,1.$ They have no solution:

$$
18 + b = 7(-n + 6l),
$$

-12 + b = 7(-n + 6m).

 \Rightarrow Symmetry should emerge (violate c^{eff} -theorem).

There is no rank 4,5 MTCs enlarging *C*.

[Gepner-Kapustin '94]

There are 2 rank 6 MTCs enlarging *C*:

The 2nd w/D² =
$$
\frac{5-\sqrt{5}}{2} \times \frac{7}{4\cos^2{\frac{\pi}{14}}}
$$
 has minimal *F*.

But its c^{eff} is inconsistent w/ c^{eff} -theorem \Rightarrow $SU(2)_{5}$.

Consistent $SU(2)$ ₅ w/ minimal F is indeed correct:

M(4,7) minimal model (UV)

M(3,7) minimal model (IR)

Emergent symmetry

- Consistency explains when symmetries emerge.
- Min. free energy also explains what sym. is realized.
	- Rank,
	- Multiplication rule,
	- Anomaly, etc
- Agree with known RG flows in all examples.

Summary

Qualitative

• IR symmetry is realized by

consistent symmetry category with minimal free energy.

• Discrete quantity can jump at conformal fixed point.
Summary

Quantitative

• We proposed mechanism behind emergent symmetry:

when surviving sym. category *C* is inconsistent

- non-modularity, or
- ʻʻnon-monotonic,''

[KK '21] sym. should enhance to consistent $D \supset C(=\underline{why})$ w/ minimal free energy. **[KK '22]**

Summary

Summary

 $[2209.00016(KK)]$

• RG flows among RCFTs = Kan extension

Many future directions

- More general RCFTs
	- •Non-diagonal RCFT
	- •Fermionic RCFT
	- $Irrational CFT \rightarrow RCFT$ (commutativity)
- **[KK-Chen-Xu-Chang '22] [2207.06433 (KK)]**
	-

- RG flow to irrational CFT
- Generalization to other dimensions

Appendix

Commutativity

 \mathbb{Z}_2 gauging and relevant deform. w/singlets commute.

For singlet,

$$
\begin{vmatrix}\n0. & = & 0.\n\end{vmatrix}_{L}
$$

Commutativity

 \mathbb{Z}_2 gauging and relevant deform. w/singlets commute.

 \mathbf{I}

For singlet,

$$
\begin{vmatrix}\n0. & = & 0.\n\end{vmatrix}
$$

[2207.06433 (KK)] $\left(Z_{T\!/\mathbb{Z}_2}\right)$ ′ ≡ 1 $\frac{1}{2}$ $(Z_T[0,0] + Z_T[0,1] + Z_T[1,0] + Z_T[1,1])$ ′ = 1 $\frac{1}{2}$ {(*Z_T*)′[0,0] + (*Z_T*)′[0,1] + (*Z_T*)′[1,0] + (*Z_T*)′[1,1]} \equiv (*Z_T*)′_{*[*1]} / \mathbb{Z}_2

Another side of our proposal

Conjecture: for $m = 2M + 1$ ($M = 2,3,...$),

there is no MTC satisfying 3 conditions simultaneously:

1) which has rank $2M < r < M(2M - 1)$;

2) which has central charge $c < 1 - \frac{3}{(2M+1)(M+1)}$; $(2M + 1)(M + 1)$

3) which contains surviving sym. category.