Wilson loops & Topological Strings A/B-model approaches to 5d Wilson loops

Korea Institute for Advanced Study

Based on 2205.02366, in collaboration with Min-xin Huang(USTC), Kimyeong Lee(KIAS)

Xin Wang

- sheet Σ to target space X
 - ϕ_i :

When the target space X is a Calabi-Yau 3-fold, topological string theory is the most interesting that higher genus free energies are non-trivial

• There are two types of topological twists, they give A-model and B-model. The topological string partition function

$$Z = \exp(\sum_{g=0}^{\infty} g_s^{2g-2} F_g(t_i))$$

where t_i are Kähler moduli in the case of A-model, and complex structure moduli in the case of B-model

• Topological strings: A N = (2,2) supersymmetric non-linear sigma model from world

$$\Sigma \to X$$

- Topological strings on a CY3 X, have background $\mathbb{R}^4 \times S^1 \times X$
- The M2-branes winding on holomorphic 2-cycles in X give BPS particles. The number of the BPS particles are BPS invariants or Gopakumar-Vafa(GV) invariants, which are captured by the A-model topological string free energies.
- They are related to Gromov-Witten invariants by a transformation.
- Low energy theory is a supergravity theory on $\mathbb{R}^4 \times S^1$. When X is non-compact, the low energy theory is 5d N=1 supersymmetric gauge theory on $\mathbb{R}^4 \times S^1$ with 8 supercharges

• Topological strings on a CY3 X, have a close connection with M-theory on the

,

- on its mirror manifold.
- Some very difficult mathematical problems of enumerate geometry can be easily solved by topological B-model methods
- The solutions to the Picard-Fuchs operator for quintic:

$$L = \theta^4 - 5^5 z \prod_{k=1}^4 (\theta - a_k), \quad a_k = \frac{k}{5}, k = 1, 2, 3, 4.$$

$$\prod_{0} = \begin{pmatrix} f_0(z) \\ f_0(z) \log(z) + f_1(z) \\ \frac{1}{2} f_0(z) \log^2(z) + f_1(z) \log(z) + f_2(z) \\ \frac{1}{6} f_0(z) \log(z)^3 + \frac{1}{2} f_1(z) \log(z)^2 + f_2(z) \log(z) + f_3(z) \end{pmatrix}$$

$$L = \theta^4 - 5^5 z \prod_{k=1}^{5} (\theta - a_k), \quad a_k = \frac{k}{5}, k = 1, 2, 3, 4.$$

$$\Pi = X_0 \begin{pmatrix} 1 \\ t \\ \partial_t \mathcal{F} \\ 2\mathcal{F} - t\partial_t \mathcal{F} \end{pmatrix} \qquad \mathbf{a} = \begin{pmatrix} f_0(z) \\ f_0(z) \log(z) + f_1(z) \\ \frac{1}{6} f_0(z) \log^2(z) + f_1(z) \log(z) + f_2(z) \\ \frac{1}{6} f_0(z) \log(z)^3 + \frac{1}{2} f_1(z) \log(z)^2 + f_2(z) \log(z) + f_3(z) \end{pmatrix}$$

• Mirror symmetry relates topological A-model on manifold X to topological B-model

Mirror map

the inverse of the complex structure are always integers ($Q = e^t$)

 $rac{1}{z} = rac{1}{Q} + 770 + 421375Q + 274007500Q^2 + 236982309375Q^3 + 251719793608904Q^4 + \mathcal{O}(Q^5)$

• The coefficients in the mirror map are not always integers, but the coefficients in

- For a K3 surface, gives Thompson series related to moonshine. [Lian and Yau, 94']
- Local (non-compact) Calabi-Yau
 - Local $\mathbb{P}^1 \times \mathbb{P}^1$, the low energy theory is 5d pure SU(2),

$$\frac{1}{z^{\frac{1}{2}}} = \frac{1}{\sqrt{Q}} + \frac{2}{\sqrt{Q}} + \frac{3}{Q}^{3/2} + \frac{1}{\sqrt{Q}} + \frac{1}{\sqrt$$

 $-10Q^{5/2} + 49Q^{7/2} + 288Q^{9/2} + \cdots$

BPS particles with Wilson loop operator

- For a K3 surface, gives Thompson series related to moonshine.
- Local Calabi-Yau

$$\frac{1}{z^{\frac{1}{2}}} = \frac{1}{\sqrt{Q}} + \frac{2}{\sqrt{Q}} + \frac{3}{Q}^{3/2} + \frac{1}{\sqrt{Q}} + \frac{1}{\sqrt$$

$$\frac{1}{\sqrt{Q}} + \sqrt{Q} + m\sqrt{Q} + \cdot$$

• •

• Local $\mathbb{P}^1 \times \mathbb{P}^1$, the low energy theory is 5d pure SU(2), [Lian and Yau, 94']

 $-10Q^{5/2} + 49Q^{7/2} + 288Q^{9/2} + \cdots$

BPS particles with Wilson loop operator

Outline

- Topological strings on local CY3 / N=1 SQFT in 5d
- Wilson loops in SQFT in 5d
 - Perspective in M-theory
 - p-q five-brane description, refined topological vertex
 - Relation to quantum (refined?) curves.
- B-model approach to 5d Wilson loops
 - Wilson loop free energies are quasi-modular forms
- Applications to quantum/refined periods.

5d BPS partition function

- 5d N = 1 SYM on Omega-deformed [
 - Nekrasov's partition function, well-defined in mathematics
- M-theory compactified on non-compact Calabi-Yau three-fold X
- The BPS states are captured by M2-branes winding on 2-cycles $C \in H_2(X, \mathbb{Z})$ Schwinger integral for dynamic electric particles [Gopakumar and Vafa, 98']

$$F_{\rm BPS} = \sum_{C \in H_2(X,\mathbb{Z})} \sum_{j_L, j_R} N_{j_L, j_R}^C \int_0^\infty \frac{ds}{s} \frac{\operatorname{Tr}_{(j_L, j_R)}(-1)^{\sigma_L + \sigma_R} e^{-sm} e^{-2se(\sigma_L F_+ + \sigma_R F_-)}}{(2\sinh(seF_1/2))(2\sinh(seF_2/2))},$$

$$\mathbb{R}^4_{\epsilon_{1,2}} \times S^1$$

Spectrum of dynamic operator

$$e^{-(n+1/2)\beta}$$

BPS invariants

With the spin (j_L, j_R) in the representation of $SU(2)_L \times SU(2)_R = SO(4)$ Lorentz symmetry of \mathbb{R}^4

BPS invariants

$F_{\text{BPS}}(t_C, \epsilon_1, \epsilon_2) = \sum (\epsilon_1 + \epsilon_2)^{2n} (\epsilon_1 \epsilon_2)^{g-1} F_{\text{BPS}}^{(n,g)}(t_C)$ n,g

 $F_{\rm BPS}(t_C,\epsilon_1,\epsilon_2) = \sum_{C \in H_2(X,\mathbb{Z})} \sum_{n \in \mathbb{Z}} \sum_{j_L,j_R} (-1)^{2j_L + 2j_R} N_{j_L,j_R}^C \frac{\chi_{j_L}(n\epsilon_-)\chi_{j_R}(n\epsilon_+)}{n(2\sinh(n\epsilon_1/2))(2\sinh(n\epsilon_2/2))} e^{-nt_C},$ refined BPS invariants positive integers

Refined Topological string amplitude/free energy

• 5d N = 1 SYM on $\mathbb{R}^4 \times S^1$

operator

$$W_{\mathbf{r}} = \operatorname{Tr}_{\mathbf{r}} \mathcal{T} \exp\left(i \oint_{S^1} dt (A_0(t) - \varphi(t))\right)$$

- Labeled by a representation r of the gauge group.
- Goal: expectation value of the half-BPS Wilson loop operator
- In the 4d limit, Chiral operators [Losev, Marshakov and Nekrasov, 03']

• Put a heavy, stationery quark at the origin of space \mathbb{R}^4 , by inserting a half-BPS

Brane realization [Tong and Wong]

- Half-BPS brane bound states
- D3 branes in type IIB (fermonic quarks)
- F1 string with fixed end point on D3(stationery)

Codimension 4 defect No-dynamic on \mathbb{R}^4

Dyson-Schwinger equation [Nekrasov, 15']

- Introduce $\mathcal{Y}(x)$ observable
- Non-perturbative Dyson-Schwinger equation (for pure SU(N))

$$\mathcal{Y}(x) + \Lambda^{2N} \frac{1}{\mathcal{Y}(x + \epsilon_1 + \epsilon_2)} = \chi(x)$$

- The LHS is called *qq*-character
- loops
- •classical Seiberg-Witten curve $\epsilon_{1,2} \rightarrow 0$

• Consider a single D3 defect-brane and define the partition function to be $\chi(x)$

•The RHS is a Laurent polynomial of $X = e^x$, with the coefficients to be Wilson •In the Nekrasov-Shatashvili (NS) limit $\epsilon_2
ightarrow 0$, quantum Seiberg-Witten curve

Example pure SU(2)

• For pure SU(2) case

$$\mathcal{Y}(x) + \Lambda^4 \frac{1}{\mathcal{Y}(x + \epsilon_1 + \epsilon_2)} = -X - \frac{1}{X} + \langle W_2^{SU(2)} \rangle$$

Quantum curve

$$\widehat{Y} + \frac{1}{\widehat{Y}} + \widehat{X} + \frac{1}{\widehat{X}} = H, \quad H = \lim_{\epsilon_2 \to 0} \langle W_2^{SU(2)} \rangle, \qquad \widehat{X}\widehat{Y} = e^{\epsilon_1}\widehat{X}\widehat{Y}$$

• Classical curve (Spectral curve for relativistic Toda chain)

$$Y + \frac{1}{Y} + X + \frac{1}{X} =$$

$$u, \quad u = \lim_{\epsilon_{1,2} \to 0} \langle W_2^{SU(2)} \rangle$$

Mirror geometry of local CY3

- For local CY3's, the mirror geometry
 - st = H(
- All the information of periods can be $0 = H(d_{1})$
- For local $\mathbb{P}^1 \times \mathbb{P}^1$, the mirror curve is $Y + rac{1}{Y} + X + rac{1}{X}$

where *u* is the complex structure parameter dual to the compact divisor

$$(X, Y, u_i)$$

All the information of periods can be translated to the periods of the mirror curve

$$\frac{1}{X} = u$$

Mirror geometry of local CY3

• The mirror curve of local $\mathbb{P}^1 imes \mathbb{P}^1$ coincides with the classical SW curve of pure SU(2)

$$Y + \frac{1}{Y} + X + \frac{1}{X} = u, \quad u = \lim_{\epsilon_{1,2} \to 0} \langle W_2^{SU(2)} \rangle$$

- non-toric cases
 - $Y^{N,0}$

$$u_{i} = \prod_{j} z_{j}^{C_{ij}^{-1}} = \lim_{\epsilon_{1,2} \to 0} \left\langle W_{(00 \cdots 010 \cdots 0)}^{SU(N)} \right\rangle_{i \text{ th}}$$

The statement here can be generalized to arbitrary local toric CY3's and even

• E.g. for SU(N), the complex structure parameter of the Sasaki-Einstein manifold

- The source of the Wilson loop are heavy stationery quarks which can be fermionic or bosonic
- M2-branes winding on curves in CY3.
 - heavy: curves with infinite volume, non-compact
 - stationery: the curves are fixed as background, without dynamic

• From M-theory perspective, bosonic quarks (electric particles) are generated by

$$F_{
m BPS} = \sum_{C \in H_2(X,\mathbb{Z})} \sum_{j_L,j_R} N_{j_L,j_R}^C \int_0^\infty rac{ds}{s} rac{{
m Tr}_{(j_L,j_R)}(-1)^{\sigma_L + \sigma_R} e^{-sm} e^{-2se(\sigma_L F_+ + \sigma_R F_-)}}{(2\sinh(seF_1/2))(2\sinh(seF_2/2))},$$

Schwinger integral for stationery electric particles

$$F_{\rm BPS} = \sum_{C \in H_2(X,\mathbb{Z})} \sum_{j_L, j_R} N_{j_L, j_R}^C \int_0^\infty \frac{ds}{s} \frac{\operatorname{Tr}_{(j_L, j_R)}(-1)^{\sigma_L + \sigma_R} e^{-sm} e^{-2se(\sigma_L F_+ + \sigma_R F_-)}}{(2\sinh(seF_1/2))(2\sinh(seF_2/2))}, \quad \text{No dynamic the set of the$$

defining the effective mass

$$M \equiv \frac{e^{-t_{\mathsf{C}}}}{2\sinh(\epsilon_1/2) \cdot 2\sinh(\epsilon_2/2)}$$

Schwinger integral for dynamic electric particles [Gopakumar and Vafa, 98']

• We first add dynamic electric particles and then absorb the dynamic term by

- generates stationery electric particles.
- - There is no state like $e^{-2t_c}, e^{-3t_c}, \cdots$

• The representation **r** generated by a primitive curve is not decomposable

• The additional non-compact curve C as primitive curve [Kim, Kim, Kim, 21'], it

• The particle mass is extremely heavy, that only the leading term contributes.

only the leading term contributes, that we have the Wilson loop partition function

$$Z_{\rm BPS}^{\rm Wilson} = \exp\left(\mathcal{F}_{\rm BPS}(t_C,\epsilon_1,\epsilon_2) + \mathcal{F}_{\rm BPS}^{\rm Wilson}(t_{\sf C},t_C,\epsilon_1,\epsilon_2)\right)$$

$$\sim Z_{\rm BPS}(t_C,\epsilon_1,\epsilon_2) \left(1 + \sum_{C \in H_2(X,\mathbb{Z})} \sum_{j_L,j_R} (-1)^{2j_L + 2j_R} N_{j_L,j_R}^{C,{\sf C}} \chi_{j_L}(\epsilon_-) \chi_{j_R}(\epsilon_+) e^{-t_C} M\right)$$

$$= \exp\left(\mathcal{F}_{\rm BPS}(t_C,\epsilon_1,\epsilon_2)\right) \left(\sum_{C \in H_2(X,\mathbb{Z})} \sum_{j_L,j_R} (-1)^{2j_L + 2j_R} \tilde{N}_{j_L,j_R}^C \chi_{j_L}(\epsilon_-) \chi_{j_R}(\epsilon_+) e^{-t_C}\right)$$

$$Z_{\rm BPS}^{\rm Wilson} = \exp\left(\mathcal{F}_{\rm BPS}(t_C,\epsilon_1,\epsilon_2) + \mathcal{F}_{\rm BPS}^{\rm Wilson}(t_C,t_C,\epsilon_1,\epsilon_2)\right)$$

$$\sim Z_{\rm BPS}(t_C,\epsilon_1,\epsilon_2) \left(1 + \sum_{C \in H_2(X,\mathbb{Z})} \sum_{j_L,j_R} (-1)^{2j_L + 2j_R} N_{j_L,j_R}^{C,\mathsf{C}} \chi_{j_L}(\epsilon_-) \chi_{j_R}(\epsilon_+) e^{-t_C} M\right)$$

$$\mathbb{Z}_{W_{\mathbf{r}}} = \exp\left(\mathcal{F}_{\rm BPS}(t_C,\epsilon_1,\epsilon_2)\right) \left(\sum_{C \in H_2(X,\mathbb{Z})} \sum_{j_L,j_R} (-1)^{2j_L + 2j_R} \tilde{N}_{j_L,j_R}^C \chi_{j_L}(\epsilon_-) \chi_{j_R}(\epsilon_+) e^{-t_C}\right)$$

• The representation **r** generated by a primitive curve is not decomposable

• Denote the additional curve C as primitive curve, the particle mass is extremely heavy, that

- For SU(2), 2 is not decomposable which is generated by a primitive curve
- $3 = 2 \otimes 2 1$ is decomposable
- and 2 respectively.
- Define the BPS sector

$$\mathcal{F}_{\text{BPS},\{\mathsf{C}_{1},\cdots,\mathsf{C}_{l}\}} = \sum_{C \in H_{2}(X,\mathbb{Z})} \sum_{j_{L},j_{R}} (-1)^{2j_{L}+2j_{R}} N_{j_{L},j_{R}}^{C,\mathsf{C}_{1},\cdots,\mathsf{C}_{l}} \chi_{j_{L}}(\epsilon_{-}) \chi_{j_{R}}(\epsilon_{+}) e^{-t_{C}}$$

as the amplitude of the curve class $C + C_1 + \cdots + C_l$ for any $C \in H_2(X,\mathbb{Z})$

• The tensor product of non-decomposable representations are generated by multiple primitive curves, e.g. $2 \otimes 2$ are generated by C_1, C_2 which generate 2

- The free energy has an additional term $\mathcal{F}_{\rm BPS}^{\rm Wilson}(t_{\rm C}, t_{\rm C}, \epsilon_1, \epsilon_2) = \mathcal{F}_{\rm BPS, \{C_1\}} M_1 + \mathcal{F}_{\rm BPS, \{C_2\}} M_2 + \mathcal{I} \cdot \mathcal{F}_{\rm BPS, \{C_1, C_2\}} M_1 M_2 + \mathcal{O}(M_{1,2}^2)$ where
 - $\mathcal{I} \equiv 2 \sinh(\epsilon_1/2) \cdot 2 \sinh(\epsilon_2/2)$
 - In the massive limit $M_{1,2} \rightarrow 0$, the Wilson loop expectation value has the BPS expansion in terms with BPS sectors.

$$\langle W_{\mathbf{r}_1 \otimes \mathbf{r}_2} \rangle = \mathcal{F}_{\mathrm{BPS}, \{\mathsf{C}_1\}} \mathcal{F}$$

In each BPS sector, the BPS invariants are always positive integers!

- $\mathcal{F}_{\mathrm{BPS}, \{\mathsf{C}_2\}} + \mathcal{I} \cdot \mathcal{F}_{\mathrm{BPS}, \{\mathsf{C}_1, \mathsf{C}_2\}}$

Pure SU(2)

Wilson loop expectation value Momentum term from dynamics

Extremely heavy limit

d	$\oplus \widetilde{N}^{\mathbf{d}}_{j_l,j_r}(j_l,j_r)$	d	$\oplus \widetilde{N}^{\mathbf{d}}_{j_l,j_r}(j_l,j_r)$
(1,1)	(0, 0)	(1,3)	(0, 1)
(1,5)	(0,2)	(1,7)	(0,3)
(1,9)	(0, 4)	(2,5)	(0,2)
(2,7)	$(0,2)\oplus 2(0,3)\oplus (1/2,7/2)$	(2,9)	$(0,2)\oplus 2(0,3)\oplus 3(0,4)\oplus$
			$(1/2,7/2) \oplus 2(1/2,9/2) \oplus (1,5)$
(3,7)	(0,3)	(3,9)	$(0,2)\oplus 2(0,3)\oplus 3(0,4)\oplus$
			$(1/2,7/2)\oplus 2(1/2,9/2)\oplus (1,5)$

Table 1. BPS Spectrum of SU(2) Wilson loop expectation value in the representation **2** for the curve class $d_1m_0 + d_2\phi$ with $d_1 = 1, 2, 3$, and $d_2 \leq 9$.

$$Z_{W_{2}} = Z^{SU(2)} \times \langle W_{2} \rangle = Z_{\text{pert}}^{SU(2)} \sum_{\mu_{1},\mu_{2}} \left(\mathfrak{q}_{\sqrt{\frac{q}{t}}} \right)^{|\mu_{1}|+|\mu_{2}|} \cdot \frac{\text{Ch}_{\mu_{1}\mu_{2}}(Q_{F},t,q)}{\prod_{i,j=1}^{2} N_{\mu_{i}\mu_{j}}(Q_{ij};t,q)}$$

$$Z_{W_{\mathbf{2}\otimes\mathbf{2}}^{(\mathrm{a})}} = Z_{\mathrm{pert}}^{SU(2)} \sum_{\mu_1,\mu_2} \left(\mathfrak{q}\sqrt{\frac{q}{t}} \right)^{|\mu_1|+|}$$

$$\begin{aligned} Z_{W_{\mathbf{2}\otimes\mathbf{2}}^{(\mathrm{b})}} &= Z_{\mathrm{pert}}^{SU(2)} \sum_{\mu_{1},\mu_{2}} \left(\mathfrak{q}\sqrt{\frac{q}{t}} \right) \\ &\times \left(\mathrm{Ch}_{\mu_{1}\mu_{2}}(Q_{F},t,q) \right) \end{aligned}$$

$\left| \frac{-|\mu_2|}{\prod_{i,j=1}^2 N_{\mu_i\mu_j}(Q_F,t,q) \operatorname{Ch}_{\mu_2^t\mu_1^t}(Q_F,q,t)}{\prod_{i,j=1}^2 N_{\mu_i\mu_j}(Q_{ij};t,q)} \right|$

 $\left(\sqrt{\frac{q}{t}} \right)^{|\mu_1|+|\mu_2|} \cdot \frac{1}{\prod_{i,j=1}^2 N_{\mu_i\mu_j}(Q_{ij};t,q)}$ $(t,t,q)^2 + (1-q)(1-1/t)q$

Higgsing from toric case

Wilson loops as 1-strings ending on D5 branes

$$\begin{split} Z_{W_{2}\otimes 5} = & Z_{\text{pert}}^{SU(2)} \sum_{\mu_{1},\mu_{2}} \left(\mathfrak{q} \sqrt{\frac{q}{t}} \right)^{|\mu_{1}|+|\mu_{2}|} \cdot \\ & \times \left[\text{Ch}_{\mu_{1}\mu_{2}} (Q_{F},t,q)^{3} \text{Ch}_{\mu_{2}^{t}\mu_{1}^{t}} (q_{F},t,q)^{3} \text{Ch}_{\mu_{2}^{t}\mu_{1}^{t}} (q_{F},t,q)^{2} (1-1/t)^{2} \text{Ch}_{\mu_{2}^{t}} (q_{F},t,q)^{2} (q_{F},$$

1 $\prod_{i,j=1}^2 N_{\mu_i\mu_j}(Q_{ij};t,q)$ $(Q_F, q, t)^2 + (1 - t)(1 - 1/q) \operatorname{Ch}_{\mu_1 \mu_2} (Q_F, t, q)^3$ $h_{\mu_1\mu_2}(Q_F, t, q) Ch_{\mu_2^t \mu_1^t}(Q_F, q, t)^2$ $_{\mu_1\mu_2}(Q_F,t,q)\mathrm{Ch}_{\mu_2^t\mu_1^t}(Q_F,q,t)^2$ $q \operatorname{Ch}_{\mu_1 \mu_2}(Q_F, t, q)$ $\left(2\mathfrak{q}\mathrm{Ch}_{\mu_{2}^{t}\mu_{1}^{t}}(Q_{F},q,t)-\mathfrak{q}^{2}\mathrm{Ch}_{\mu_{1}\mu_{2}}(Q_{F},t,q)\right)\right]$

Wilson loops as 1-strings ending on D5 branes

Tao(道) web diagram [Kim,Taki,Yagi,15']

Quantum curve/Dyson-Schwinger eq

Schwinger integral

BPS expansion New topological invariants

Quantum curve/Dyson-Schwinger eq

Inherit from the BPS invariants of SU(2)+n F New topological invariants

Quantum curve/Dyson-Schwinger eq

NEW!

New topological invariants

Holomorphic anomaly equation [BCOV]

 $\bar{\partial}_{\bar{i}}\mathscr{F}_{g} = \frac{1}{2}\bar{C}_{\bar{i}}^{jk}(D_{j}D_{k}\mathscr{F}_{g})$

• $\mathscr{F}_{g}(t, \bar{t})$: Genus g topological string amplitude, which is a section of line bundle of the geometry

$$g_{j-1} + \sum_{g'=1}^{g-1} D_j \mathscr{F}_{g'} \cdot D_k \mathscr{F}_{g-g'})$$

Holomorphic anomaly equation

$$rac{\partial}{\partial S^{ij}}\mathcal{F}_g = rac{1}{2}(D_j D_k \mathcal{F}_{g-1})$$

• $\mathcal{F}_g = \lim_{\mathrm{Im} t \to \infty} \mathscr{F}_g$: holomorphic limit

• $S^{ij} = \frac{1}{C_{ijk}} \partial_{t_k} \mathcal{F}_1 + \text{holo.func.} : \text{propagator}$

$$\mathcal{F}_g = \int dS^{ij} \frac{1}{2} (D_j D_k \mathcal{F}_{g-1} + \sum_{g'=1}^{g-1})$$

 $1 + \sum_{i=1}^{g-1} D_j \mathcal{F}_{g'} \cdot D_k \mathcal{F}_{g-g'})$ q'=1

 $D_j \mathcal{F}_{g'} \cdot D_k \mathcal{F}_{g-g'}$ + holomorphic ambiguity

Direct integration method

• Effective coupling:
$$\tau_{ij} = \partial_i \partial_j F^{(0,0)}$$

• S^{ij} is proportional to quasi-modular form. e.g. Eisenstein series $E_2(\tau)$

$$\mathcal{F}_g = \int dS^{ij} \frac{1}{2} (D_j D_k \mathcal{F}_{g-1} + \sum_{g'=1}^{g-1} D_j \mathcal{F}_g$$

Rational function of complex structure parameters (modular function)

$(g' \cdot D_k \mathcal{F}_{g-g'}) + \text{holomorphic ambiguity}$

Direct integration method

- Holomorphic anomaly equation works for all Calabi-Yau three folds
- F_g is a weight zero meromorphic quasi-modular form
- Usually hard to solve the holomorphic ambiguity
- F_g can be explicitly expanded to *arbitrary* order at *any* point in the CY moduli space
 - e.g. MUM, orbifold, conifold point
- For non-compact CY3, Refined holomorphic anomaly equation [Huang and Klemm, 10'] [Krefl and Walcher 10']

$$\frac{\partial \mathcal{F}^{(n,g)}}{\partial S^{ij}} = \frac{1}{2} \left(D_i D_j \mathcal{F}^{(n,g-1)} + \sum_{n',g'} D_i \mathcal{F}^{(n',g')} \cdot D_j \mathcal{F}^{(n-n',g-g')} \right), \quad n+g \ge 2.$$

Refined holomorphic anomaly equation

- conifold point and regularity near orbifold point to arbitrary (n, g)
- For local $\mathbb{P}^1 \times \mathbb{P}^1$

$$F^{(0,2)} = \frac{5S^3}{24z^6(-1+16z)^2} + \frac{S^2\left(-2160z^2+21600z^3\right)}{12960z^6(-1+16z)^2} + \frac{S\left(585z^4-12960z^5+80640z^6\right)}{12960z^6(-1+16z)^2} + \frac{-55z^6+1884z^7-24000z^8+11059z^6}{12960z^6(-1+16z)^2}$$

$$F^{(1,1)} = \frac{S^2(90-720z)}{2160z^4(-1+16z)^2} + \frac{S\left(-45z^2+600z^3-7680z^4\right)}{2160z^4(-1+16z)^2} + \frac{5z^4-108z^5+2560z^6-21504z^7}{2160z^4(-1+16z)^2},$$

$$F^{(2,0)} = \frac{S\left(15-240z+960z^2\right)}{4320z^2(-1+16z)^2} + \frac{-5z^2+164z^3-3200z^4+10752z^5}{4320z^2(-1+16z)^2}$$

Holomorphic ambiguities can be completely solved from gap condition near

Mirror curve & Seiberg-Witten curve & Wilson loops

Seiberg-Witten curve

Wilson loop

 $W_{\mathbf{r}}$

 $u = z^{C^-}$ C = -2: intersection matrix

e.g. SU(2),
$$u = \frac{1}{z^{1/2}}$$

n,g

Conjecture
$$\frac{\partial F_{\mathbf{r}}^{(n,g)}}{\partial S^{ij}} = \frac{1}{2} (D_i D_j F_{\mathbf{r}}^{(n,g-1)} + \sum_{n',g'} D_i F_{\mathbf{r}}^{(n',g')} \cdot D_j F_{\mathbf{r}}^{(n-n',g-g')}).$$

• $F_{\mathbf{r}} = \log Z_{W_{\mathbf{r}}} = \sum_{m=1}^{\infty} (\epsilon_1 + \epsilon_2)^{2n} (\epsilon_1 \epsilon_2)^{g-1} F_{\mathbf{r}}^{(n,g)}$ n.q

•
$$\mathcal{W}_{\mathbf{r}} = \log \langle W_{\mathbf{r}} \rangle = \log \frac{Z_{W_{\mathbf{r}}}}{Z} = \sum (\epsilon_1 + \epsilon_2)^{2n} (\epsilon_1)^{2n} (\epsilon_2)^{2n} (\epsilon_2)^{2n}$$

- Properties
 - 1. pole free from $\epsilon_{1,2}$: $\mathcal{W}_{\mathbf{r}}^{(n,g=0)} = 0$
 - 2. Seiberg-Witten curve/Mirror curve

• For SU(2),
$$W_{\mathbf{r}=\mathbf{2}}^{(0,1)} = -\frac{1}{2}\log z$$

3. Tensor product : $\mathcal{W}_{\mathbf{r}_1 \otimes \mathbf{r}_2}^{(0,1)} = \mathcal{W}_{\mathbf{r}_1}^{(0,1)}$

4. Direct sum: $\exp(\mathcal{W}_{\mathbf{r}_1\oplus\mathbf{r}_2}^{(0,1)}) = \exp(\mathcal{W}_{\mathbf{r}_1}^{(0,1)})$

 $(\epsilon_1 \epsilon_2)^{g-1} \mathcal{W}^{(n,g)}_{\mathbf{r}}$

e correspondence :
$$\mathcal{W}_{\mathbf{r}}^{(0,1)} = -C^{-1}\log z$$

+ $\mathcal{W}_{\mathbf{r}_2}^{(0,1)}$
 $\overset{(0,1)}{\mathbf{r}_1} + \exp(\mathcal{W}_{\mathbf{r}_2}^{(0,1)})$ Local \mathbb{P}^1

conifold point and regularity near orbifold point for representation $\mathbf{r} = 2$

$$W_{\mathbf{2}^{\otimes l}}^{(1,1)} = \frac{l}{72z^2\Delta} (3S - 24Sz - z^2 + 20z^3),$$

$$\begin{split} W^{(0,2)}_{\mathbf{2}} &= \frac{9S^2 + 24Sz^3 - z^4 + 16z^5}{36z^4\Delta}, \\ W^{(0,2)}_{\mathbf{2}\otimes\mathbf{2}} &= \frac{18S^2 + 9Sz^2 - 96Sz^3 - 5z^4 + 116z^5 - 576z^6}{36z^4\Delta}, \\ W^{(0,2)}_{\mathbf{2}\otimes\mathbf{2}\otimes\mathbf{2}} &= \frac{9S^2 + 9Sz^2 - 120Sz^3 - 4z^4 + 100z^5 - 576z^6}{12z^4\Delta}, \end{split}$$

Holomorphic ambiguities can be completely solved from gap condition near

• By computing the amplitudes to higher enough genus, we recover the BPS invariants from topological vertex

$egin{array}{c c c c c c c c c c c c c c c c c c c $	$2j_Lackslash 2j_R$	0		$2j_L$	$\lambda \langle 2j_R \rangle$	0)			
0 1	0	2			0					
$d\!=\!-rac{1}{2}$	$d\!=\!rac{1}{2}$			$d\!=\!rac{3}{2}$						
	2	$2j_L \setminus 2j_L$	R	0	1 2		3			
		0								
		1								
					<i>d</i> =	$=\frac{7}{2}$				
	$2j_L \setminus 2j_F$	2 0	1	2	3	4	5			
	0					2				
	1									
	2									
					<i>d</i> =	$=\frac{9}{2}$				

4

 $\mathbf{2}$

• By computing the amplitudes to higher enough genus, we recover the BPS invariants from topological vertex

2j

	2j	$j_L \setminus 2$	j_R	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14		
		0				1		4		9		12		17		1				
		1							1		5		10		12		1			
		2										1		5		9				
		3													1		4			
		4																1		
										<i>d</i> =	$=\frac{11}{2}$									
											2									
$_L \backslash 2j_R$	0	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16	17	18
0	2		4		12		20)		32		36		40		6		2		
1				2		6			16		28		38		38		8			
2							2			6		18		28		32		4		
3											2		6		16		20		2	
4														2		6		12		
5																	2		4	
6																				2
I																				

 $d = \frac{13}{2}$

• In the NS-limit

$$\frac{\partial \mathcal{W}_{\mathbf{r}}^{(n,1)}}{\partial S^{ij}} = \sum_{n'=0}^{n-1} D_i \mathcal{W}_{\mathbf{r}}^{(n',1)} \cdot D_j \mathcal{F}^{(n-n',0)}$$

additive

$$\mathcal{W}^{(n,1)}_{\mathbf{r}_{i_1}\otimes\cdots\otimes\mathbf{r}_{i_l}} = \mathcal{W}^{(n,1)}_{\mathbf{r}_1} + \cdots + \mathcal{W}^{(n,1)}_{\mathbf{r}_l}, \quad n \ge 0,$$

- - Hamiltonians are commutative

• In the NS limit, the Wilson loop expectation value of tensor products is equal to the product of the Wilson loop expectation values of each representations.

Other applications

Quantum period from WKB method of a quantum mechanic system

 $Y + \frac{1}{Y} + \frac{1}{Y}$

 $\mathcal{W}^{(0,1)}_{\mathbf{r}}\left(t(z)
ight) =$ logu

One can solve

 $t(z;\hbar) = [1 +$

Results agree with [Huang, Klemm, Reuter and Schiereck, 14']

$$X + \frac{1}{X} - u = 0$$

$$= \sum_{n=0}^{\infty} W_{\mathbf{r}}^{(n,1)} \left(t(z;\hbar) \right) \hbar^{2n}$$

Quantum Wilson loop

$$-\sum_{i=1}^{\infty}\hbar^{2i}\mathcal{D}_{2i}]t(z)$$

$$S^{ij} = \frac{1}{C_{ijk}} \partial_{t_k} \mathcal{F}_1 + \text{hol}$$

Other applications

Refined period

$$\mathcal{W}_{\mathbf{r}}^{(0,1)}\left(t(z)\right) = \sum_{n,g=0}^{\infty} \mathcal{W}_{\mathbf{r}}^{(q)}$$

• One can solve

$$t(z;\epsilon_1,\epsilon_2) = \begin{bmatrix} 1 + \sum_{\substack{i,j=1,\\i+j>0}}^{\infty} ($$

$\left(t^{(n,g)}(t(z;\epsilon_1,\epsilon_2))(\epsilon_1+\epsilon_2)^{2n}(\epsilon_1\epsilon_2)^{g-1} \right)$

 $(\epsilon_1 + \epsilon_2)^{2i} (\epsilon_1 \epsilon_2)^j \mathcal{D}_{i,j} \quad t(z)$

Other applications

• Local $\mathbb{P}^1 imes \mathbb{P}^1$, $\mathcal{D}_{i,j}$ is still a second differential operator, but depends on the propagator S

$$\begin{aligned} \mathcal{D}_{0,1} &= \frac{1}{6z^2} [(-3S + z^2 - 32z^3)\Theta + (3S + 4z^2 - 64z^3)\Theta^2], \\ \mathcal{D}_{0,2} &= \frac{1}{12960z^8\Delta^2} [(-3240S^4 + 1080S^3z^2 + 34560S^3z^3 - \\ &- 1725Sz^6 - 1105920S^2z^6 + 125280Sz^7 + 830z^8 + \\ &+ 25436160Sz^9 + 2891616z^{10} - 48084480z^{11} + 30z^4 + \\ &+ (3240S^4 - 1080S^3z^2 - 34560S^3z^3 + 2295S^2z^4 + \\ &+ 1105920S^2z^6 - 125280Sz^7 + 2545z^8 + 3098880z^4 - \\ &- 25436160Sz^9 + 7271616z^{10} - 108942336z^{11} + 6z^4 + \\ &+ 25436160Sz^9 + 26271616z^{10} - 108942336z^{11} + 6z^4 + \\ &+ 25436160Sz^9 + 7271616z^{10} - 108942336z^{11} + 6z^4 + \\ &+ 25436160Sz^9 + 7271616z^{10} - 108942336z^{11} + 6z^4 + \\ &+ 25436160Sz^9 + 7271616z^{10} - 108942336z^{11} + 6z^4 + \\ &+ 25436160Sz^9 + 7271616z^{10} - 108942336z^{11} + 6z^4 + \\ &+ 25436160Sz^9 + 7271616z^{10} - 108942336z^{11} + 6z^4 + \\ &+ 25436160Sz^9 + 7271616z^{10} - 108942336z^{11} + 6z^4 + \\ &+ 25436160Sz^9 + 7271616z^{10} - 108942336z^{11} + 6z^4 + \\ &+ 25436160Sz^9 + 7271616z^{10} - 108942336z^{11} + 6z^4 + \\ &+ 25436160Sz^9 + 7271616z^{10} - 108942336z^{11} + 6z^4 + \\ &+ 25436160Sz^9 + 7271616z^{10} - 108942336z^{11} + 6z^4 + \\ &+ 25436160Sz^9 + 7271616z^{10} - 108942336z^{11} + 6z^4 + \\ &+ 25436160Sz^9 + 7271616z^{10} - 108942336z^{11} + 6z^4 + \\ &+ 25436160Sz^9 + 7271616z^{10} - 108942336z^{11} + 6z^4 + \\ &+ 25436160Sz^9 + 7271616z^{10} - 108942336z^{11} + \\ &+ 25436160Sz^9 + 7271616z^{10} - 108942336z^{11} + \\ &+ 25436160Sz^9 + 2543616z^{10} + 2545280z^2 + \\ &+ 25436160z^2 + 2545280z^2 + 2545z^8 + \\ &+ 25436160z^2 + 2545280z^2 + 2545z^8 + 2545z^8 + \\ &+ 25436160z^2 + 2545280z^2 + 2545z^8 + 255z^8 + 255z^8 + 255z^8 + 255z^8 + 255z^8 + 255z^8 + 255$$

where
$$\Theta = z \partial_z$$

 $2295S^2z^4 + 79920S^2z^5$ $-3098880Sz^8 - 78920z^9$ $06118656z^{12})\Theta$ $-79920S^2z^5 + 1725Sz^6$ $Sz^8 - 218944z^9$ $612237312z^{12})\Theta^2],$

