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• Topological strings: A   supersymmetric non-linear sigma model from world 
sheet  to target space  

                                     

When the target space  is a Calabi-Yau -fold, topological string theory is the most 
interesting that higher genus free energies are non-trivial 

• There are two types of topological twists, they give  A-model and B-model. The 
topological string partition function 

                                                 
where     are Kähler moduli in the case of A-model, and complex structure moduli in the 
case of B-model
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• Topological strings on a CY3 , have a close connection with M-theory on the 
background  

• The  M2-branes winding on holomorphic 2-cycles in  give BPS particles. The 
number of the BPS particles are BPS invariants or Gopakumar-Vafa(GV) invariants, 
which are captured by the A-model topological string free energies. 

• They are related to Gromov-Witten invariants by a transformation. 

• Low energy theory is a supergravity theory on  . When  is non-compact, 
the low energy theory is 5d N=1 supersymmetric gauge theory on  with 8 
supercharges
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• Mirror symmetry relates topological A-model on manifold  to topological B-model 
on its mirror manifold.  

• Some very difficult mathematical problems of enumerate geometry can be easily 
solved by topological B-model methods 

• The solutions to the Picard-Fuchs operator for quintic: 
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Mirror map 

• The coefficients in the mirror map are not always integers, but the coefficients in 
the inverse of the complex structure are always integers (Q = et)
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• For a K3 surface,  gives Thompson series related to moonshine.  

• Local (non-compact) Calabi-Yau  

• Local                  , the low energy theory is 5d pure SU(2),
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BPS particles with Wilson loop operator

[Lian and Yau, 94’]



• For a K3 surface,  gives Thompson series related to moonshine.  

• Local Calabi-Yau  

• Local                  , the low energy theory is 5d pure SU(2),
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• Topological strings on local CY3 / N=1 SQFT in 5d 

• Wilson loops in SQFT in 5d 

• Perspective in M-theory 

• p-q five-brane description, refined topological vertex  

• Relation to quantum (refined?) curves. 

• B-model approach to 5d Wilson loops 

• Wilson loop free energies are quasi-modular forms 

• Applications to quantum/refined periods.

Outline



• 5d  SYM on Omega-deformed   

• Nekrasov’s partition function, well-defined in mathematics 

• M-theory compactified on non-compact Calabi-Yau three-fold  

• The BPS states are captured by M2-branes winding on 2-cycles   

• Schwinger integral for dynamic electric particles [Gopakumar and Vafa, 98’] 

N = 1 ℝ4
ϵ1,2
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C ∈ H2(X, ℤ)

5d BPS partition function

Spectrum of dynamic operator 

e−(n+1/2)β



BPS invariants

refined BPS invariants 
positive integers

With the spin  in the representation of   Lorentz symmetry of ( jL, jR) SU(2)L × SU(2)R = SO(4) ℝ4



BPS invariants

refined BPS invariants 
positive integers

FBPS(tC, ϵ1, ϵ2) = ∑
n,g

(ϵ1 + ϵ2)2n(ϵ1ϵ2)g−1F(n,g)
BPS (tC)

Refined Topological string amplitude/free energy



• 5d  SYM on  

• Put a heavy, stationery quark at the origin of space , by inserting a half-BPS 
operator 

 

• Labeled by a representation    of the gauge group. 

• Goal: expectation value of the half-BPS Wilson loop operator 

• In the 4d limit, Chiral operators [Losev, Marshakov and Nekrasov, 03’]

N = 1 ℝ4 × S1
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Half-BPS Wilson loop operator

⟨Wr⟩



• Half-BPS brane bound states 

• D3 branes in type IIB (fermonic quarks) 

• F1 string with fixed end point on D3(stationery)

Brane realization [Tong and Wong]

D5

NS5

F1

D3

0 1 2 3 4 5 6 7 8 9

D5 × × × × × ×
NS5 × × × × × ×
F1 × ×
D3 × ○ ○ ○ ○ × × ×

Codimension 4 defect 
No-dynamic on ℝ4

ℝ4S1



• Consider a single D3 defect-brane and define the partition function to be  

• Introduce             observable 

• Non-perturbative Dyson-Schwinger equation (for pure SU(N)) 

•The LHS is called -character 
•The RHS is a Laurent polynomial of , with the coefficients to be Wilson 

loops 
•In the Nekrasov-Shatashvili (NS) limit               , quantum Seiberg-Witten curve 
•classical Seiberg-Witten curve

qq
X = ex

Dyson-Schwinger equation [Nekrasov, 15’]



• For pure SU(2) case 

• Quantum curve 

• Classical curve (Spectral curve for relativistic Toda chain)

Example pure SU(2)



• For local CY3’s, the mirror geometry 

• All the information of periods can be translated to the periods of the mirror curve 

• For local                  , the mirror curve is 

where  is the complex structure parameter dual to the compact divisoru

Mirror geometry of local CY3



• The mirror curve of local                   coincides with the classical SW curve of pure 
SU(2)  

• The statement here can be generalized to arbitrary local toric CY3’s and even 
non-toric cases 

• E.g. for SU(N), the complex structure parameter of the Sasaki-Einstein manifold
YN,0

Mirror geometry of local CY3

 thi



• The source of the Wilson loop are heavy stationery quarks which can be 
fermionic or bosonic 

• From M-theory perspective, bosonic quarks (electric particles) are generated by 
M2-branes winding on curves in CY3. 

• heavy: curves with infinite volume, non-compact 

• stationery: the curves are fixed as background, without dynamic

Half-BPS Wilson loop operator



• Schwinger integral for dynamic electric particles [Gopakumar and Vafa, 98’] 

 

• Schwinger integral for stationery electric particles  

 

• We first add dynamic electric particles and then absorb the dynamic term by 
defining the effective mass

Half-BPS Wilson loop operator

No dynamic term!



• The additional non-compact curve      as primitive curve [Kim, Kim, Kim,21’], it 
generates stationery electric particles. 

• The particle mass is extremely heavy, that only the leading term contributes. 

• There is no state like   

• The representation  generated by a primitive curve is not decomposable r

Half-BPS Wilson loop operator



Half-BPS Wilson loop operator

X X

X̂



• Denote the additional curve      as primitive curve, the particle mass is extremely heavy, that 
only the leading term contributes, that we have the Wilson loop partition function 

• The representation  generated by a primitive curve is not decomposable r

Half-BPS Wilson loop operator



• For SU(2),  is not decomposable which is generated by a primitive curve 

•  is decomposable 

• The tensor product of non-decomposable representations are generated by 
multiple primitive curves, e.g.  are generated by  which generate  
and  respectively.  

• Define the BPS sector 

as the amplitude of the curve class                               for any 

2
3 = 2 ⊗ 2 − 1

2 ⊗ 2 𝖢1, 𝖢2 2
2

Half-BPS Wilson loop operator



• The free energy has an additional term 

where 

In the massive limit , the Wilson loop expectation value has the BPS 
expansion in terms with BPS sectors. 

In each BPS sector, the BPS invariants are always positive integers!

M1,2 → 0

Half-BPS Wilson loop operator



D5

NS5

(1,1)-strings
m → + ∞

Pure SU(2) SU(2) with Nf = 1 Extremely heavy limit

ZSU(2),Nf=1 = ZSU(2)+⟨WSU(2)
2 ⟩

e−m

2 sinh(ϵ1/2) ⋅ 2 sinh(ϵ2/2)
+ 𝒪(e−2m)

Wilson loop expectation value Momentum term from dynamics

effect mass of an additional bosonic quark

Bosonic quark from 5-branes



Bosonic quark from 5-branes



Bosonic quark from 5-branes



Bosonic quark from 5-branes



Bosonic quark from 5-branes



Bosonic quark from 5-branes

Hanany-Witten transitions

7-branes



Bosonic quark from 5-branes

Higgsing from toric case

q1q2 q1q2



Wilson loops as 1-strings ending on D5 branes



Wilson loops as 1-strings ending on D5 branes

Tao(道) web diagram 

[Kim,Taki,Yagi,15’]



Summary: 5d half-BPS Wilson loop

heavy stationery quarks

Bosonic

Fermionic Quantum curve/Dyson-Schwinger eq

M2-branes on primitive curves

Schwinger integral

BPS expansion 
New topological invariants



Summary: 5d half-BPS Wilson loop

heavy stationery quarks

Bosonic

Fermionic Quantum curve/Dyson-Schwinger eq

M2-branes on primitive curves

Schwinger integral

BPS expansion 
New topological invariants

For SU(2) , with n<=82n

Inherit from the BPS invariants of SU(2)+n F



Summary: 5d half-BPS Wilson loop

heavy stationery quarks

Bosonic

Fermionic Quantum curve/Dyson-Schwinger eq

M2-branes on primitive curves

Schwinger integral

BPS expansion 
New topological invariants

For SU(2) , with n>82n

NEW!



Holomorphic anomaly equation [BCOV]

+

∂̄īℱg =
1
2

C̄jk
ī
(DjDkℱg−1+

g−1

∑
g′ =1

Djℱg′ 
⋅ Dkℱg−g′ 

)

•               : Genus  topological string amplitude, which is a secKon of line bundle of the geometryg



Holomorphic anomaly equation

+

•                                 : holomorphic limit 

•                                                         : propagator



Direct integration method

• EffecKve coupling:   

•  is proporKonal to quasi-modular form. e.g. Eisenstein series  

τij = ∂i∂jF(0,0)

Sij E2(τ)

Rational  function of complex structure parameters (modular function)



Direct integration method

• Holomorphic anomaly equaKon works for all Calabi-Yau three folds 

•  is a weight zero meromorphic quasi-modular form 

• Usually hard to solve the holomorphic ambiguity 

•  can be explicitly expanded to arbitrary order at any point in the CY moduli space 

• e.g. MUM, orbifold, conifold point 

• For non-compact CY3, Refined holomorphic anomaly equaKon [Huang and Klemm, 10’]

Fg

Fg

[Krefl and Walcher 10’]



• Holomorphic ambiguities can be completely solved from gap condition near 
conifold point and regularity near orbifold point to arbitrary (n, g) 

• For local ℙ1 × ℙ1

Refined holomorphic anomaly equation

Local ℙ1 × ℙ1

F(0,2) =
5S3

24z6(−1 + 16z)2
+

S2 (−2160z2 + 21600z3)
12960z6(−1 + 16z)2

+
S (585z4 − 12960z5 + 80640z6)

12960z6(−1 + 16z)2
+

−55z6 + 1884z7 − 24000z8 + 110592z9

12960z6(−1 + 16z)2
,

F(1,1) =
S2(90 − 720z)

2160z4(−1 + 16z)2
+

S (−45z2 + 600z3 − 7680z4)
2160z4(−1 + 16z)2

+
5z4 − 108z5 + 2560z6 − 21504z7

2160z4(−1 + 16z)2
,

F(2,0) =
S (15 − 240z + 960z2)

4320z2(−1 + 16z)2
+

−5z2 + 164z3 − 3200z4 + 10752z5

4320z2(−1 + 16z)2



Mirror curve & Seiberg-Witten curve & Wilson loops

Local ℙ1 × ℙ1

Y +
1
Y

+ X +
1
X

−u = 0

Seiberg-Witten curve

Wilson loop

Mirror curve

Complex structure parameter

 
 : intersection matrix

u = zC−1

C = − 2

e.g. SU( ), 2 u =
1

z1/2

u

D = {u = 0}



 
•   

•   

• Properties 

1. pole free from : 

2. Seiberg-Witten curve/Mirror curve correspondence :  

• For SU( ),  

3. Tensor product :  

4.  Direct sum: 

ϵ1,2

2

Refined holomorphic anomaly equation for Wilson loops

Local ℙ1 × ℙ1

Conjecture



Refined holomorphic anomaly equation for Wilson loops

Local ℙ1 × ℙ1

• Holomorphic ambiguities can be completely solved from gap condition near 
conifold point and regularity near orbifold point  for representation r = 2



Refined holomorphic anomaly equation for Wilson loops

Local ℙ1 × ℙ1

• By computing the amplitudes to higher enough genus, we recover the BPS 
invariants from topological vertex



Refined holomorphic anomaly equation for Wilson loops

Local ℙ1 × ℙ1

• By computing the amplitudes to higher enough genus, we recover the BPS 
invariants from topological vertex



Refined holomorphic anomaly equation for Wilson loops

• In the NS-limit 

• additive  

• In the NS limit, the Wilson loop expectation value of tensor products is equal to 
the product of the Wilson loop expectation values of each representations. 

• Hamiltonians are commutative 



• Quantum period from WKB method of a quantum mechanic system 

• One can solve  

• Results agree with [Huang, Klemm, Reuter and Schiereck, 14’] 

Other applications

Y +
1
Y

+ X +
1
X

−u = 0

log u Quantum Wilson loop



• Refined period 

• One can solve 

Other applications



• Local                ,          is still a second differential operator, but depends on the 
propagator   

where                  

S

Other applications



Thank You


