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Black hole perturbations

* Test fields in BH spacetimes play an important role in

the understanding of phenomena in the strong-gravity regime

e.g., gravitational waves from binary black holes,
time evolution of ultralight bosons around black holes,
linear stabilities of black hole spacetimes,
relaxation phenomena within AdS/CFT, ...

* In many problems, master equations take a form of Schrodinger eq:

* Mathematical tools in quantum mechanics can be useful in BH perturbation theory

e.g., ladder operators




Ladder operators

* In quantum mechanics,

ladder operators allow to relate the different energy eigenvalues

* Ladder operators in curved spacetimes: Mass ladder operators [Cardoso et al, 2017]
[Cardoso et al, 2018]

O-—u?]®=0 |fl> B (200t D® 0

Mass ladder operator [ ) maps a Klein-Gordon field onto another Klein-Gordon field

This is constructed from spacetime conformal symmetry

Question:
Does a mass ladder operator keep physics determined by boundary conditions?

This work: Application of mass ladder operators to black hole physics
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Review: Mass Ladder operators from spacetime conformal symmetry

* Material: spacetime conformal symmetry

[Wald's textbook]

Definition: spacetime symmetry

Spacetime (M, gqop) possesses symmetry
iff 9ab admits an isometry defined by ¢, : M — M such that ©;gab = Gab

€CL
Isometry group is generated by =% — % — £*
along a Killing vector field that satisfies L¢gq, = 0 = o~
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»
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Review: Mass Ladder operators from spacetime conformal symmetry

* What is spacetime conformal symmetry?

Generalization of spacetime symmetry

- EE N N
i -,
il B R
- . O
o i [y

-~
N (ORI

&
~
-

[Wald's textbook]

Definition: spacetime conformal symmetry
Spacetime (M, gqp) possesses conformal symmetry

iff gab admits a conformal isometry defined by ¢, : M — M
such that ¢ ga = exp (2Q) 946 , where ( is a function on M

Conformal isometry group is generated by x* — % — ¢
along a conformal Killing vector field that satisfies £:gop = 2Qgas

* Conformal Killing vector field is
a Killing vector field of gay = Q%gar with Q = —2¢°V,1In




5 [Cardoso et al, 2017]
Construction of mass Ladder operators ., yo.. ot a1 201

* “Closed” condition for conformal Killing vector fields: V,(p = V(4

» Assumption: R%¢° = x(n—1)¢%, x€R

A

e.g., n-dimensional (anti-) de Sitter spacetimes with x = =

* Mass ladder operator: Dy, := L, — % (V. 2) ke

* Commutation relation holds: [[J, D] = x (2k + n — 2) Dy +2Q (O + xk (k+n — 1))

2

$Dk—2 [D_ILLQ](I): [D_(NQ_"_(SMQ)} Dkq), v :—Xk(k—Fn—l),
op” —x(2k +n —2)

If ® isa Klein-Gordon field with ,LL2,
D;.® is also a Klein-Gordon field but with p? + 6

Note: Mass ladder operator is an onto map




[Cardoso et al, 2017]
Mass Ladder operators e

* Mass ladder operator connects Klein-Gordon fields with different mass squared:

O-p?]@=0— [O- (k*+6u?)] Dp® =0 p? == xk(k +n—1),
6us— 0k "n 2

* k is required to be real, so leads to inequalities:

e U O )

Note: In AdS case(y < 0) , the lower bound coincides with the BF bound

* When parametrizing p? = —xv(v +n—1) (v > —1),

leads to two solutions, k. = -—n+1—v, k_ =v

O+ x#(@ +n—1)] D, ®=0

U = v + 1 mass raising (lowering) for x <0 (>0)

O+xv(v+n—-1)|®=0

/'
~ [O+x0(F+n—-1)]Ds ®=0

UV = v — 1 mass lowering (raising) for x < 0 (> 0)




Mass shift

Example: [D — /f] ® = 0 on AdS;3 with length scale ¢:= \/—1/A

Mass parametrization: p’ =v(v +2)/¢? (v > —1)

Mass ladder operators Dy, make mass squared raise or lower
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Quasinormal modes

e Quasinormal modes (QNMs) describe

characteristic dynamics of test fields on BH spacetimes as a linear response

=2

*L [Witek et al, 2013]

* Many applications:
modeling ringdown gravitational waveforms,
analysis of relaxation phenomena within AdS/CFT,
linear mode stability of BH spacetimes,...

[Giesler et al, 2019]
[Horowitz and Hubeny, 2000]
[Regge and Wheeler, 1957]




Brief review: QNMs in asymptotically flat BH spacetimes

* Equation for linear perturbations on asymptotically flat background:

L+ V@) ) =0

dx?

e.g., spin-s field perturbation on Schwarzschild backgrounds

* Appropriate boundary conditions at the horizon 2 = —co and infinityx = oo,

lim ¢ =e " (purely ingoing)
Dt = OO

lim ¢ =e™? (purely outgoing)
=100

define QNMs and (a discrete set of) QNM frequencies

* QNM frequencies are complex, ¢ o ¢~ *RelwltImlw]t




Brief review: QNMs as poles of Green’s function

* Equation for linear perturbations in time domain: [02 — 07 — V(z)] ¢(t,z) =0

2 A

Laplace transform leads to % +w® —V(z)| ¢(z;w) = [iwd — 9]

* Two homogeneous sols. such that

el T — —00,

gillue g, (wiel . o = Sfec

by (w)e ™t + by (w)e™t, z — —o0
el T — 400,

Y

* Green'’s function in frequency domain: [Leaver,1988]
. [Anderson,1996]

G (x,x';w) = ¢+ (xv;-;/)v qi}_) (CC/;CU)

where W is a Wronskian of q3+ and qAb_

QNM frequencies are determined by W = (




Brief review: Overtones

o0 I (%)
 QNM takes a form: 2oxm=>_ Y ) dumn(@)e ™~ ¥py, (6, ¢)

£=2 m=—¢n=0

For each mode with /7,
there exists a discrete set of modes labeled by n(=0,1,2,---): overtones

* Index of overtones is defined in the order from the smallest value of |Im|w]|

n = 0 : fundamental mode, 1 = 1: 1st overtones, n = 2 : 2nd overtones,...

30

[Leaver 1985]




QNMs in AdS BH spacetimes

* QNMs in AdS BH spacetimes can be defined in the same manner [Berti et al, 2009]

* Variety of boundary condition at infinity exists due to the asymptotic structure

B

e.g., lim ¢ =A+ — for massless scalar field
=0 I

A0 : Dirichlet condition

B =0 : Neumann condition

: — Asym. flat Asym. AdS
B =kA, k€ R :Robin condition . y

I£l> Rich structure of QNM dynamics appears in AdS (as will be seen later)
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Question and our work

Mass ladder operator works in curved spacetimes with conformal symmetry:

B o |fl> (O— (p*+6p*)] DP =0

Question:
Does a mass ladder operator keep physics determined by boundary conditions?

We study QNMs of a massive Klein-Gordon field
in Banados-Teitelboim-Zanelli black hole spacetimes

Why BTZ?: BTZ spacetime is the simplest system,
in which QNMs and mass ladder operators can be exactly derived




Static Banados-Teitelboim-Zanelli spacetime

* BTZ geometry describes asymptotically AdS black hole spacetimes in 3 dim.

* Line element in (t,7,¢) coordinates: [Banados, Teitelboim, and Zanelli, 1992]

2 2

dst— — Nelp e - 7

dre Srcdos N (r) —

NE(r)

—0o i< 60, Emp T 00 U< o< On

* Horizon is located at r = ry such that N? (rg) =0

* locally isometric to AdSs

*) BTZ BH can rotate but for simplicity we consider the static version




Massive Klein-Gordon fields

* Massive Klein-Gordon field: [VMV“ =

Vi =

* Expanding the field: & = Zgbm exunlcly

2\/
¢//_|_<1_|_(N)>¢/_|_ 1

r N2

* Appropriate B.C. selects a discrete set of eigenvalues, i.e., QNM frequencies

At the horizon: Ingoing-wave condition vl

27”H
=
2T'H

v+2 (w€+m)
TH) oF1 (a,b5¢,1 — 13 /1)




QNMs in BTZ spacetimes

e B.C. at infinity: Dirichlet B.C. for v > —1 (p* > ugp)

6= AQ ()t T An) () T ]

T r

e dla e b ) s
Ar (w) (._A (T D) ) vanishes

fao—= norb=~nfor n=0172.  dieto |/ T(-n —0

* QNMs frequencies: |wp = i% — zZ—ZI (2n + 2 4+ v) | [Cardoso and Lemos, 2001]

2
-

2 ) where (§)x =T'(z + k)/I'(2)

Imaginary parts are negative, indicating linear mode stability




QNMs in BTZ spacetimes: Other boundary condition

e B.C. at infinity: Neumann B.C. for v > —1 (¢* > ugp)

T (%H)_V[H-.-HM(%H)M[H---]
=

Imaginary part can be nonnegative if ¥ >0 (u* > 0),
indicating linear mode instability
due to the presence of non-normalizable mode

» B.C atiinfinity: Robin B.C. for - | < 1-= 0 (uds == < 0)

AH/AI = (li & R)

including the Dirichlet K = oo (A; = 0)and Neumann B.C. x =0 (A =0)

In this sense, Robin B.C. is more general and admits rich structure




Fundamental modes in Robin condition

Neumann B.C. (k =

Dirichlet B.C. (k = 00)

-1.0-05 00 05

Rel|w/]

As K decreases, the trajectories approach the imaginary axis,
eventually intersect, and split into two parts

[Ishibashi and Wald, 2004]

[TK and Harada, 2021]
indicating linear mode instability due to the boundary condition

There exist growing modes,




QNMs in BTZ spacetimes: BF bound case

* B.C. at infinity: Dirichelt-Neumann B.C. for v = —1 (u? = ufp) Ushibashi and Wald, 2004]

= "H TH P 3
¢(?“) —AI,BF P + BF 3 ln( = )—I—O(l/?“ ),
m .y
$ wDN:j:?_ZKT(Qn_Fl)

£ B C atinfinity- Robin B.C. forv——1F (s — )
Anpr/Aipr = 1/ker (kBr € R)

02
0.0
~ -02f
>, —04f
é —0.6f

-0.8}

Dirichlet - Neumann B.C. (kpr — —0)

-1.0f
-1.0 -05 0.0

Rel|w/] |
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Mass ladder operators in BTZ spacetimes

* Mass ladder operators:|D, ;, := L, — gVHC,L“, ke R

* Four independent CCKVs (i =0, 1, 2, 3) exist in the BTZ spacetime, thus:
1 VT2 — TR V12 —rg?
O — Or +k :
72 — rp? Crn i

ryARE AL \/—)

L Oy +
r2 — rg? t 2 tory

?“2 i TH2
s
( lry G 8 KTH)

+ (—T Eri e L -0, +k:—)

KTH ETH

Acting on ® o e~ “tei™m¥  the factors|eT 72 t| shift w — w L iry 02
g

while | ;£ =& ¢ | break the periodicity to ¢

I£l> We mainly focus on Doy i, D1k ( D2k, D3k still work by multiple action)




Mass ladder operators in BTZ spacetimes

2% + 1 9
SUFE e
2 kT3

* Commutation relation: [V,V* D, ;] =—
When choosing k =k, := -2 —v

v(v+2)
02

] o [VMV“ G 1{); 5 3)] s

Dk lvuv“ :

When choosing kK = k_ :=v

v(v 4+ 2)
02

v—1)(v+1)
02

Dy [vuv“ = ] o = [vuv“ il ] D) ®.

[ For the massive Klein-Gordon field ® with v(v + 2) /¢

D; . D is also that with 7(7 +2)/6> (P =v £1)




Mass ladder operators and QNM boundary conditions

2
2

= s 2+v ' :
e QNM with Dirichlet B.C.: =4 (1 = T_f;) (=2) T oF, (a,b;;1 — 3 fr?) emieptrime,

r r

mE
wD:i7—2£(2n+2+y)

02

B il e N : : :
Dl — PEary ( THH) [1+ O(r —rg)]e P (Ingoing wave)

* Acting Do ., D1 k. onthe QNMs, at r — rg

r—rg ) _iZf’QH (wti%H)

[1 s 0(7“ s TH)] e—i(w+i2—§)t+imgp)
e

Dok, ® =co i, (

2

—_ S o : = '
Dl’kiq) = (b (T T;H) - [1 + O(’I“ = TH)] 6_z(w—ze—g)t+zm9@.

Mass ladder operators keep the ingoing-wave condition




Mass ladder operators and QNM boundary conditions

24+v : 5
& o (TTH) 1+ 0(1/r%)] e~ ™M (Dirichlet B.C.)

* Acting Dg 1., D1, onthe QNMs, at 7 — oo

Do, ® =B () 140 (1/r%)] entleridlevime,

34+v ; 3 ‘
D17k+@ e (3&]33—‘_ > =3 [1 i O (1/7"2)] e—z(w—ze—g)t—l—zmcp.

Asymptotic behaviors of the Klein-Gordon field with 7 (7 + 2) /¢* (7 =v + 1)

Mass ladder operators Dy 1 , D1 ., keep the Dirichlet B.C.




Mass ladder operators and QNM boundary conditions

24+v : 5
& o (TTH) 1+ 0(1/r%)] e~ ™M (Dirichlet B.C.)

* Acting Dy ;_, D1 ;_onthe QNMs, at r — oo

DQ,]{;_(I) =— Cé?{:)_ (’I“TH)I—I-V [1 L0 (1/742)} e—i(w—i—i%)t—l—imap’

Dl,k_q) L cgi)_ (TTH)H—V [1 e (1/7“2)} e—i(w—iZ—g)t—l—imS@.

* For v >0 (u? > 0) :

Asymptotic behaviors of the Klein-Gordon field with & (7 + 2) /£ (7 =v —1)

Mass ladder operators Dg ;_, D1 x_ keep the Dirichlet B.C.

e Forv =0 (4?2 =0): o = —1 corresponds to pgpl’ = —1

Dirichlet B.C. changes to the Dirichlet-Neumann B.C.




Mass ladder operators and QNM boundary conditions

Dos @ =), (ZZ)™ L+ 0 yr)] eloriieime

1+v . 7 :
Dl,k:_(I) = 0532_ (’I“TH) =t [1 Lo (1/7“2)} e—z(w—zz—g)t-i—zm‘ﬂ.

Fon | v -0k 0 -0 :

The above corresponds to Aj;(w) = 0 (Neumann B.C.)

of the asymptotic behavior

Y

with 7 = |v| — 1
(-1 < v <0)

Dirichlet B.C. changes to Neumann B.C.




Brief summary: Changes of QNM boundary conditions

e At the horizon:

Mass ladder operators Dy ., D1 . keep the ingoing-wave condition

* At infinity:

Mass ladder operators Do« , D1 k.

Dirichlet B.C. —— Dirichlet B.C.

Mass ladder operators Do ., D1 1

For v >0 (u*>0) Dirichlet B.C. ——— Dirichlet B.C.

For v=0 (u? =0) Dirichlet B.C. ———— Dirichlet-Neumann B.C.

For —1<v <0 (uap < 4?2 <0) Dirichlet B.C. —— Neumann B.C.




Brief summary: Neumann case

* At infinity:
Mass ladder operators Do ., , D1 1,
Neumann B.C. —— Neumann B.C.
Mass ladder operators Do _, D1 k_
For_ v -0 (2> 0) Neumann B.C.——— Neumann B.C.
For:v— 0. (i —0) Neumann B.C.——— Dirichlet-Neumann B.C.

For -1 <v <0 (p4p < p2 <0) Neumann B.C.—— Dirichlet B.C.




Brief summary: Dirichlet-Neumann, Robin cases

v(v 4+ 2) /02
* Dirichlet-Neumann case v = —1 (u

Mass ladder operators Dg i, , D1k, (ky =Fk_)

Dirichlet-Neumann B.C. ——— Dirichlet B.C.

* Robin boundary condition is kept

but the resulting boundary condition parameter is complex
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QNM frequency shift

* Frequency shift from expressions of mass ladder operators

7t = Ty W sk
VT2 — rp? P2ry 2ry :
1 r1T2 — 12 \/r2—rH2)

; sy
= (\/r2—rH28t+ Pry g 2y

’7"2 5
The factors | £ & t| suggest w — w =+ irg /£°

T’Ht

* Example: Shift by Do .,

m T'H
S

Original QNM frequency with Dirichlet B.C.: wp 7 72

(2n 4+ 2 + v)
Mass parameter shift: v - v =v +1

QNM frequency shift: wp — Wwp = :I:% — z£—2 2(n—1)4+ 24 7]

n—n-—1

Note: no “negative overtones” are generated, Dy, [fundamental mode] =0




QNM frequency shift

Operators

1) (v>0)

Frequencies

wn(lv|—1,n) (-1 < v <0) wn(lv|—1,n+1) (-1 <v <0)

where wp (v,n) ==+ % — zZ—I; (2n + 2 4+ v), (Dirichlet B.C.)
el ) =+ % — zr;—g] (2n —v), (Neumann B.C.)
m 'y e
G — =k T (2n+1), (Dirichlet-Neumann B.C.)

Mass ladder operators change not only mass squared but also indices of overtones




Overtone shift by multiple actions

* Multiple actions Dq . _1Dg x_ or Dl,k+_1D1,k_ keep mass squared

but QNM frequencies are shifted:

e sfers Do e o

for . D1

)

D5

>/

Note: no “negative overtones” are generated from the fundamental mode

All overtones can be generated from the fundamental mode




Regular solutions generated by multiple actions of D2k, D3k,

2 2
L THe (ﬂa _a - k_>

Or g L

i (_ﬁa - 3 +k—)

ETH ETH

Factors ¢ ¥ | break the periodicity to ¢ ;

thus, the single action of Dy, , D3, fails to generate a regular solution

* Multiple actions can remove those singular factors,
€.9., Doy, 1D3,

24n — 1) t2 - 2} for Pirichlet B C.

2(n+1)—(¥+2)] for Neumann B.C.

g, Hoy iy

QNM frequency does not change
Infact, Do, —1D3, = L¢ is a symmetry operator




Other boundary condition: Robin case

[Ishibashi and Wald, 2004]

1) s o) (2

r

* Robin B.C. (-1 < v < 0): Ainf/A1 =« (k € R),

| ... Neumann B.C. (s = 0)

M r
wn(0) = :I:? = 26_12{ [—V]

Dirichlet B.€. (& —o0)

= F
wpl)= :l:? — 26_12{ 2 + V]

-1.0-05 00 05 1.0

Rel[w/]

» Acting the mass ladder operators, w — & = w =+ irgy /£°

k — K (complex value)

At least, for K so that w is purely imaginary,
K is real, and (0 is also purely imaginary




Summary

We have studied QNMs of massive Klein-Gordon fields in static BTZ spacetimes
in terms of mass ladder operators

* Ladder operator is a useful tool to understand mathematical properties of QNMs

* Mass ladder operator change not only mass squared but also QNM frequencies

* In particular, an index of overtones are shifted

* All overtones can be generated from fundamental modes by their multiple actions




Other boundary condition: Neumann case

Operators

Frequencies : wn (

M T
where wp (v,n) == i g—f
N = % — zr;—g] (2n —v), (Neumann B.C.)

m 'y S
o () = e Lo (2n+ 1), (Dirichlet-Neumann B.C.)

(2n+ 2+ v), (Dirichlet B.C.)




BF bound case

Operators | Do 1 ’ DY

Frequencies|wp(0,n — 1) wpN (0) = wn(0,0)

WD Dl — = % — zr;—g] (2n+ 2+ v), (Dirichlet B.C.)
WNELTY) = % — ZZ—I;I (2n —v), (Neumann B.C.)

m ST -
wWoN ) — & L (2n+ 1), (Dirichlet-Neumann B.C.)

* We find new mass ladder operator only for the fundamental mode in BF bound:

2 2 2
D(])BFq)O — (vucg>q)0 = erHt/E Vai ’I“Hq)

EQTH

05




Other boundary condition: Robin case with BF bound

RN BE (V = _1) ; AII,BF/AI,BF = 1/"‘3BF (HBF c R), [Ishibashi and Wald, 2004]

r r r
o(r) IAI,BFTH s AII,BFTH In (TH) i) (1/7°3)

0.2}
0.0
-02}

|
N
3 —0.4}
=
|

~0.6} _.1-- Dirichlet - Neumann B.C. (kBF = —00)
m .TH

—0.81 1" wpn(0)=4— —i—

—-1.0

-1.0 -0.5 0.0

Rel|w/] |

* Acting the mass ladder operators, w — @& =w +iry/¢?

kBr — Rpr (complex value)

At least, for KBF so that w is purely imaginary,
KBF is real, and w is also purely imaginary




Application: scalars in near-horizon geometry

* We have derived conserved quantities along black hole horizons [TK and Kimura 2021]

o . [TK and Kimura 2022]
by exploiting mass ladder operators near the horizon

* Vicinity of black holes with zero Hawking temperature is

highly-symmetric geometry called near-horizon geometry:

do- — —>\0,02d?)2 + 2dvdp + ’VOin—2

AdS, S <
* Reduction of scalars on near-horizon geometry to that on AdS2:

l+n—3
o =0 > DAdS2_( 773 )¢e=0

%) y4
b = Z Z (ﬁe(v,p)}/ﬂm (97 90)

=0 m=—¢

Mass ladder operators connect different multipole modes

* We obtain conservation laws along the horizon: 8, [0,D1D3 - - -




