Ladder operators and quasinormal modes in Banados-Teitelboim-Zanelli black holes

Based on 2205.15610 (T.K. and Masashi Kimura)

Takuya Katagiri
Astronomical Institute, Tohoku Univ.
Niels Bohr Institute

August 3rd 2022, Joint HEP-TH seminar @ online

Outline

1. Introduction

2. Review: Mass ladder operators

3. Review: Quasinormal modes

4. Quasinormal modes in Banados-Teitelboim-Zanell spacetimes

5. Mass ladder operators in Banados-Teitelboim-Zanell spacetimes

6. Shift of quasinormal mode frequencies

Black hole perturbations

- Test fields in BH spacetimes play an important role in the understanding of phenomena in the strong-gravity regime
- e.g., gravitational waves from binary black holes, time evolution of ultralight bosons around black holes, linear stabilities of black hole spacetimes, relaxation phenomena within AdS/CFT, ...
- In many problems, master equations take a form of Schrodinger eq:

$$\left[\frac{d^2}{dx^2} + \omega^2 - V(x) \right] \phi = 0$$

• Mathematical tools in quantum mechanics can be useful in BH perturbation theory e.g., ladder operators

Ladder operators

- In quantum mechanics,
 ladder operators allow to relate the different energy eigenvalues
- Ladder operators in curved spacetimes: Mass ladder operators [Cardoso et al, 2017] [Cardoso et al, 2018]

$$\left[\Box - \mu^2\right] \Phi = 0 \qquad \Box \qquad \left[\Box - \left(\mu^2 + \delta \mu^2\right)\right] D\Phi = 0$$

Mass ladder operator ${\cal D}$ maps a Klein-Gordon field onto another Klein-Gordon field This is constructed from spacetime conformal symmetry

Question:

Does a mass ladder operator keep physics determined by boundary conditions?

This work: Application of mass ladder operators to black hole physics

Outline

1. Introduction

2. Review: Mass ladder operators

3. Review: Quasinormal modes

4. Quasinormal modes in Banados-Teitelboim-Zanell spacetimes

5. Mass ladder operators in Banados-Teitelboim-Zanell spacetimes

6. Shift of quasinormal mode frequencies

Review: Mass Ladder operators from spacetime conformal symmetry

Material: spacetime conformal symmetry

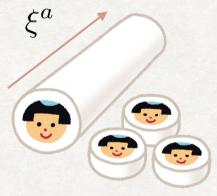
[Wald's textbook]

Definition: spacetime symmetry

Spacetime (\mathcal{M}, g_{ab}) possesses symmetry

iff g_{ab} admits an isometry defined by $\varphi_t:\mathcal{M}\to\mathcal{M}$ such that $\varphi_t^*g_{ab}=g_{ab}$

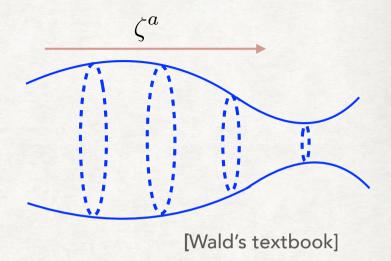
Isometry group is generated by $x^a \to \bar{x}^a - \xi^a$ along a Killing vector field that satisfies $\mathcal{L}_{\xi}g_{ab} = 0$



Kintaro-ame

Review: Mass Ladder operators from spacetime conformal symmetry

What is spacetime conformal symmetry?
 Generalization of spacetime symmetry



Definition: spacetime conformal symmetry

Spacetime (\mathcal{M},g_{ab}) possesses conformal symmetry iff g_{ab} admits a conformal isometry defined by $\varphi_t:\mathcal{M}\to\mathcal{M}$ such that $\varphi_t^*g_{ab}=\exp\left(2Q\right)g_{ab}$, where Q is a function on \mathcal{M}

Conformal isometry group is generated by $x^a \to \bar{x}^a - \zeta^a$ along a conformal Killing vector field that satisfies $\mathcal{L}_{\zeta}g_{ab}=2Qg_{ab}$

* Conformal Killing vector field is a Killing vector field of $\tilde{g}_{ab}=\Omega^2g_{ab}$ with $Q=-2\zeta^a\nabla_a\ln\Omega$

- "Closed" condition for conformal Killing vector fields: $\nabla_a \zeta_b = \nabla_b \zeta_a$
- Assumption: $R^a_{\ b}\zeta^b=\chi(n-1)\zeta^a,\ \ \chi\in\mathbb{R}$ e.g., n-dimensional (anti-) de Sitter spacetimes with $\ \chi=\frac{\Lambda}{n-1}$
- Mass ladder operator : $D_k := \mathcal{L}_\zeta rac{k}{n} \left(
 abla_\sigma \zeta^\sigma
 ight), \,\, k \in \mathbb{R}$
- Commutation relation holds: $[\Box, D_k] = \chi \left(2k + n 2\right) D_k + 2Q \left(\Box + \chi k \left(k + n 1\right)\right)$

$$D_{k-2} \left[\Box - \mu^2 \right] \Phi = \left[\Box - \left(\mu^2 + \delta \mu^2 \right) \right] D_k \Phi, \qquad \frac{\mu^2 = -\chi k(k+n-1)}{\delta \mu^2 = \chi(2k+n-2)},$$

If Φ is a Klein-Gordon field with μ^2 , $D_k\Phi$ is also a Klein-Gordon field but with $\mu^2+\delta\mu^2$

Note: Mass ladder operator is an onto map

Mass Ladder operators

• Mass ladder operator connects Klein-Gordon fields with different mass squared:

$$\left[\Box - \mu^2\right] \Phi = 0 \longrightarrow \left[\Box - \left(\mu^2 + \delta\mu^2\right)\right] D_k \Phi = 0 \qquad \frac{\mu^2 = -\chi k(k+n-1),}{\delta\mu^2 = \chi(2k+n-2)}$$

ullet is required to be real, so leads to inequalities:

$$\mu^2 \ge \frac{\chi}{4} (n-1)^2$$
 (for $\chi < 0$), $\mu^2 \le \frac{\chi}{4} (n-1)^2$ (for $\chi > 0$)

Note: In AdS case $(\chi < 0)$, the lower bound coincides with the BF bound

• When parametrizing $\mu^2 = -\chi \nu (\nu + n - 1) \ (\nu \geq -1)$,

leads to two solutions, $k_+=-n+1u, \quad k_-=
u$

$$\left[\Box + \chi \tilde{\nu}(\tilde{\nu} + n - 1)\right] D_{k_+} \Phi = 0$$

$$\left[\Box + \chi \nu(\nu + n - 1)\right] \Phi = 0$$

$$\left[\Box + \chi \tilde{\nu}(\tilde{\nu} + n - 1)\right] D_{k_-} \Phi = 0$$

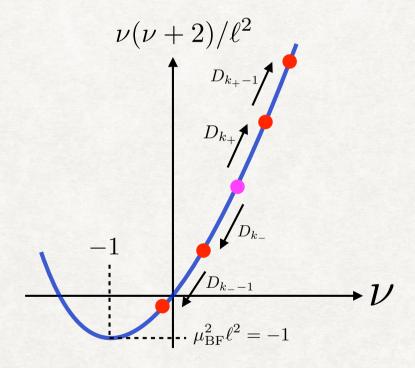
$$\left[\Box + \chi \tilde{\nu}(\tilde{\nu} + n - 1)\right] D_{k_-} \Phi = 0$$

$$\tilde{\nu} = \nu - 1 \text{ mass lowering (raising) for } \chi < 0 \ (> 0)$$

Mass shift

Example: $\left[\Box - \mu^2\right]\Phi = 0$ on AdS_3 with length scale $\ell := \sqrt{-1/\Lambda}$

Mass parametrization: $\mu^2 = \nu(\nu+2)/\ell^2 \ (\nu \geq -1)$



Mass ladder operators D_{k+} make mass squared raise or lower

Outline

1. Introduction

2. Review: Mass ladder operators

3. Review: Quasinormal modes

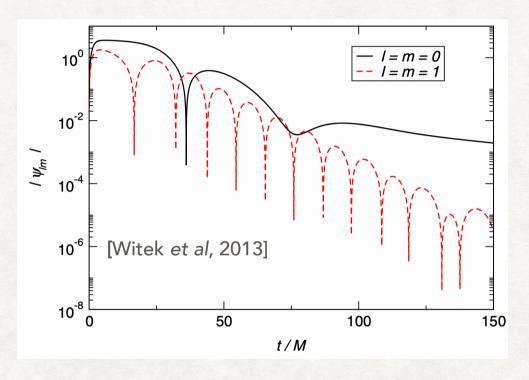
4. Quasinormal modes in Banados-Teitelboim-Zanell spacetimes

5. Mass ladder operators in Banados-Teitelboim-Zanell spacetimes

6. Shift of quasinormal mode frequencies

Quasinormal modes

Quasinormal modes (QNMs) describe
 characteristic dynamics of test fields on BH spacetimes as a linear response



Many applications:

modeling ringdown gravitational waveforms, analysis of relaxation phenomena within AdS/CFT, linear mode stability of BH spacetimes,... [Giesler *et al*, 2019] [Horowitz and Hubeny, 2000] [Regge and Wheeler, 1957]

Brief review: QNMs in asymptotically flat BH spacetimes

• Equation for linear perturbations on asymptotically flat background:

$$\left[\frac{d^2}{dx^2} + \omega^2 - V(x)\right]\phi(x;\omega) = 0$$

e.g., spin-s field perturbation on Schwarzschild backgrounds

$$\left[\frac{d^2}{dx^2} + \omega^2 - V^{(s)}\right] \Phi^{(s)} = 0, \quad \frac{dr}{dx} = 1 - \frac{r_H}{r}$$

$$V^{(s)} = \left(1 - \frac{r_H}{r}\right) \left(\frac{\ell(\ell+1)}{r^2} + \frac{(1-s^2)r_H}{r^3}\right),$$

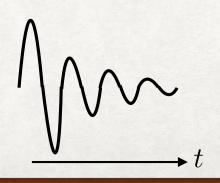
• Appropriate boundary conditions at the horizon $x=-\infty$ and infinity $x=\infty$,

$$\lim_{x \to -\infty} \phi = e^{-i\omega x} \text{ (purely ingoing)}$$

$$\lim_{x \to +\infty} \phi = e^{i\omega x} \text{ (purely outgoing)}$$

define QNMs and (a discrete set of) QNM frequencies

• QNM frequencies are complex, $\phi \propto e^{-i \mathrm{Re}[\omega] t} e^{\mathrm{Im}[\omega] t}$



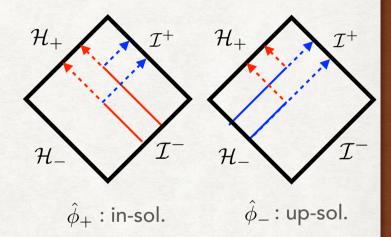
Brief review: QNMs as poles of Green's function

• Equation for linear perturbations in time domain: $\left[\partial_x^2-\partial_t^2-V(x)\right]\phi(t,x)=0$ Laplace transform leads to $\left[\frac{d^2}{dx^2}+\omega^2-V(x)\right]\hat{\phi}(x;\omega)=\left[i\omega\phi-\partial_t\phi\right]_{t=0}^t$

• Two homogeneous sols. such that

$$\hat{\phi}_{+} \simeq \begin{cases} e^{-i\omega t}, & x \to -\infty, \\ a_{1}(\omega) e^{-i\omega t} + a_{2}(\omega) e^{+i\omega t}, & x \to +\infty \end{cases}$$

$$\hat{\phi}_{-} \simeq \begin{cases} b_1(\omega) e^{-i\omega t} + b_2(\omega) e^{+i\omega t}, & x \to -\infty \\ e^{+i\omega t}, & x \to +\infty, \end{cases}$$

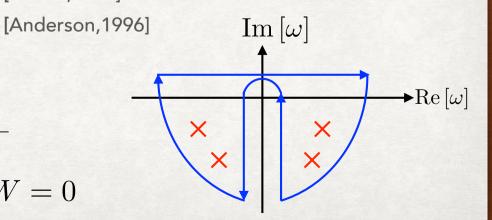


• Green's function in frequency domain: [Leaver, 1988]

$$\hat{G}(x, x'; \omega) = \frac{\hat{\phi}_{+}(x; \omega) \hat{\phi}_{-}(x'; \omega)}{W(\omega)}$$

where W is a Wronskian of $\hat{\phi}_+$ and $\hat{\phi}_-$

QNM frequencies are determined by ${\cal W}=0$



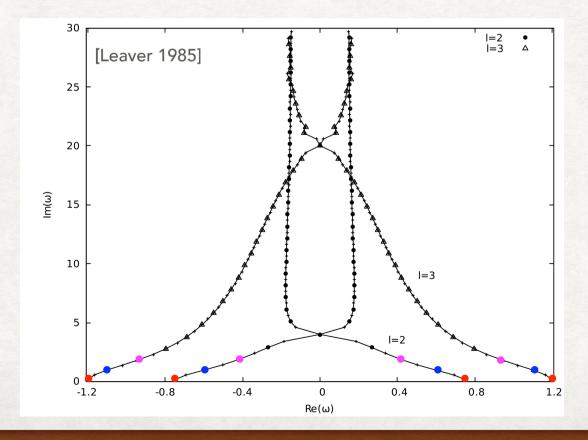
Brief review: Overtones

• QNM takes a form: $\Phi_{\text{QNM}} = \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} \sum_{n=0}^{\infty} \phi_{\ell m n}(x) e^{-i\omega_{\ell m n} t} Y_{\ell m} (\theta, \varphi)$

For each mode with ℓ , there exists a discrete set of modes labeled by $n (=0,1,2,\cdots)$: overtones

ullet Index of overtones is defined in the order from the smallest value of $|\mathrm{Im}[\omega]|$

n=0 : fundamental mode, n=1: 1st overtones, n=2 : 2nd overtones,...



QNMs in AdS BH spacetimes

• QNMs in AdS BH spacetimes can be defined in the same manner [Berti et al, 2009]

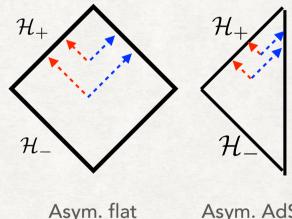
Variety of boundary condition at infinity exists due to the asymptotic structure

e.g.,
$$\lim_{x \to \infty} \phi = A + \frac{B}{x^3}$$
 for massless scalar field

A=0: Dirichlet condition

B=0: Neumann condition

 $B = \kappa A, \quad \kappa \in \mathcal{R} : \text{Robin condition}$



Asym. AdS

Rich structure of QNM dynamics appears in AdS (as will be seen later)

Outline

1. Introduction

2. Review: Mass ladder operators

3. Review: Quasinormal modes

4. Quasinormal modes in Banados-Teitelboim-Zanell spacetimes

5. Mass ladder operators in Banados-Teitelboim-Zanell spacetimes

6. Shift of quasinormal mode frequencies

Question and our work

Mass ladder operator works in curved spacetimes with conformal symmetry:

$$\left[\Box - \mu^2\right] \Phi = 0 \qquad \Box \qquad \left[\Box - \left(\mu^2 + \delta \mu^2\right)\right] D\Phi = 0$$

Question:

Does a mass ladder operator keep physics determined by boundary conditions?

We study QNMs of a massive Klein-Gordon field in Banados-Teitelboim-Zanelli black hole spacetimes

Why BTZ?: BTZ spacetime is the simplest system, in which QNMs and mass ladder operators can be exactly derived

Static Banados-Teitelboim-Zanelli spacetime

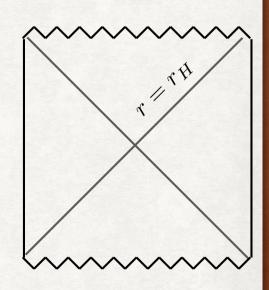
- BTZ geometry describes asymptotically AdS black hole spacetimes in 3 dim.
- Line element in (t,r,arphi) coordinates: [Banados, Teitelboim, and Zanelli, 1992]

$$ds^{2} = -N^{2}(r) dt^{2} + \frac{1}{N^{2}(r)} dr^{2} + r^{2} d\varphi^{2}, \quad N^{2}(r) = \frac{r^{2} - r_{H}^{2}}{\ell^{2}}$$

$$-\infty < t < \infty, \ r_H < r < \infty, \ 0 \le \varphi < 2\pi$$

• Horizon is located at $r=r_H$ such that $N^2\left(r_H\right)=0$

• locally isometric to AdS_3

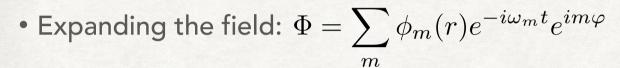


*BTZ BH can rotate but for simplicity we consider the static version

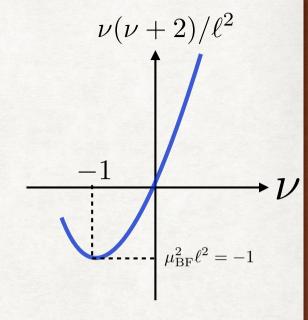
Massive Klein-Gordon fields

• Massive Klein-Gordon field:
$$\left[\nabla_{\mu}\nabla^{\mu}-\frac{\nu\left(\nu+2\right)}{\ell^{2}}\right]\Phi=0$$

$$\nu\geq-1$$



$$\phi'' + \left(\frac{1}{r} + \frac{(N^2)'}{N^2}\right)\phi' + \frac{1}{N^2}\left(\frac{\omega^2}{N^2} - \frac{m^2}{r^2} - \frac{\nu(\nu+2)}{\ell^2}\right)\phi = 0$$



• Appropriate B.C. selects a discrete set of eigenvalues, i.e., QNM frequencies

At the horizon: Ingoing-wave condition

$$\phi = A \left(1 - \frac{r_H^2}{r^2} \right)^{-\frac{i\omega\ell^2}{2r_H}} \left(\frac{r_H}{r} \right)^{\nu+2} {}_{2}F_1 \left(a, b; c; 1 - r_H^2/r^2 \right)$$

$$a = \frac{\nu + 2}{2} - i \frac{\ell}{2r_H} (\omega \ell - m)$$

$$b = \frac{\nu + 2}{2} - i \frac{\ell}{2r_H} (\omega \ell + m)$$

$$c = 1 - i \frac{\omega \ell^2}{r_H}$$

QNMs in BTZ spacetimes

• B.C. at infinity: Dirichlet B.C. for $\nu > -1$ $(\mu^2 > \mu_{\rm BF}^2)$

$$\phi = A_{\rm I}(\omega) \left(\frac{r_H}{r}\right)^{-\nu} \left[1 + \cdots\right] + A_{\rm II}(\omega) \left(\frac{r_H}{r}\right)^{\nu+2} \left[1 + \cdots\right]$$

$$A_{\mathrm{I}}\left(\omega
ight)\left(:=Arac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)}
ight)$$
 vanishes

if
$$a=-n$$
 or $b=-n$ for $n=0,1,2,\cdots$ due to $1/\Gamma(-n)=0$

• QNMs frequencies:
$$\omega_{\mathrm{D}}=\pm \frac{m}{\ell}-i\frac{r_{H}}{\ell^{2}}\left(2n+2+
u
ight)$$
 [Cardoso and Lemos, 2001]

 $a = \frac{\nu+2}{2} - i\frac{\ell}{2m-1} \left(\omega\ell - m\right)$

 $b = \frac{\nu + 2}{2} - i \frac{\ell}{2r_H} \left(\omega \ell + m\right)$

 $c = 1 - i \frac{\omega \ell^2}{m_{eff}}$

$$\phi = A \left(1 - \frac{r_H^2}{r^2} \right)^{-i\frac{\omega_D \ell^2}{2r_H}} \left(\frac{r_H}{r} \right)^{2+\nu} \sum_{k=0}^n \frac{(a)_k(b)_k}{k!(c)_k} \left(1 - \frac{r_H^2}{r^2} \right)^k \text{ where } (\xi)_k \equiv \Gamma(z+k)/\Gamma(z)$$

Imaginary parts are negative, indicating linear mode stability

QNMs in BTZ spacetimes: Other boundary condition

• B.C. at infinity: Neumann B.C. for $\nu > -1$ $(\mu^2 > \mu_{\rm BF}^2)$

$$\phi = A_{\rm I}(\omega) \left(\frac{r_H}{r}\right)^{-\nu} \left[1 + \cdots\right] + A_{\rm II}(\omega) \left(\frac{r_H}{r}\right)^{\nu+2} \left[1 + \cdots\right]$$

$$\Box \qquad \boxed{ \omega_{\rm N} = \pm \frac{m}{\ell} - i \frac{r_H}{\ell^2} \left(2n - \nu \right) }$$

Imaginary part can be nonnegative if $\nu \geq 0$ ($\mu^2 \geq 0$), indicating linear mode instability due to the presence of non-normalizable mode

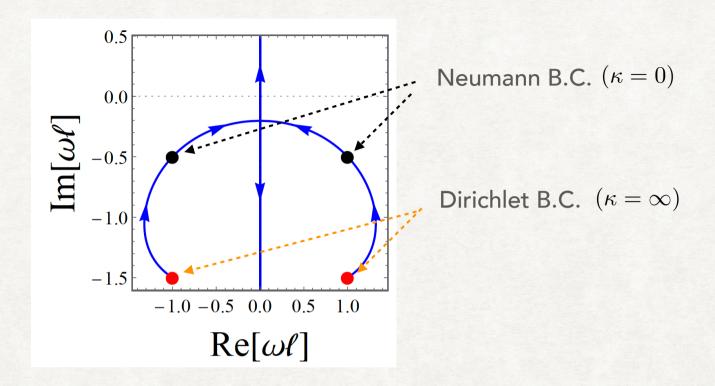
• B.C. at infinity: Robin B.C. for $-1 < \nu < 0 \; (\mu_{\rm BF}^2 < \mu^2 < 0)$

$$A_{\mathrm{II}}/A_{\mathrm{I}} = \kappa \ (\kappa \in \mathbb{R})$$

including the Dirichlet $\kappa=\infty \ \ (A_{\rm I}=0)$ and Neumann B.C. $\kappa=0 \ \ (A_{\rm II}=0)$

In this sense, Robin B.C. is more general and admits rich structure

Fundamental modes in Robin condition



As κ decreases, the trajectories approach the imaginary axis, eventually intersect, and split into two parts

There exist growing modes,

[Ishibashi and Wald, 2004]

[TK and Harada, 2021]

indicating linear mode instability due to the boundary condition

QNMs in BTZ spacetimes: BF bound case

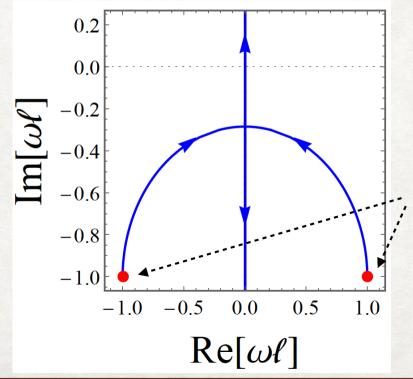
ullet B.C. at infinity: Dirichelt-Neumann B.C. for u=-1 $(\mu^2=\mu_{
m BF}^2)$ [Ishibashi and Wald, 2004]

$$\phi(r) = A_{\text{I,BF}} \frac{r_H}{r} + A_{\text{ILBF}} \frac{r_H}{r} \ln\left(\frac{r_H}{r}\right) + \mathcal{O}\left(1/r^3\right),$$

$$\omega_{\rm DN} = \pm \frac{m}{\ell} - i \frac{r_H}{\ell^2} \left(2n + 1\right)$$

• B.C. at infinity: Robin B.C. for $\nu=-1$ $(\mu^2=\mu_{\rm BF}^2)$

$$A_{\rm II,BF}/A_{\rm I,BF} = 1/\kappa_{\rm BF} \ (\kappa_{\rm BF} \in \mathbb{R})$$



Dirichlet - Neumann B.C. $(\kappa_{\mathrm{BF}} o -\infty)$

Outline

1. Introduction

2. Review: Mass ladder operators

3. Review: Quasinormal modes

4. Quasinormal modes in Banados-Teitelboim-Zanell spacetimes

5. Mass ladder operators in Banados-Teitelboim-Zanell spacetimes

6. Shift of quasinormal mode frequencies

Mass ladder operators in BTZ spacetimes

• Mass ladder operators:
$$D_{i,k}:=\mathcal{L}_{\zeta_i}-rac{k}{3}
abla_{\mu}\zeta_i^{\mu}, \;\; k\in\mathbb{R}$$

• Four independent CCKVs (i = 0, 1, 2, 3) exist in the BTZ spacetime, thus:

$$\begin{split} D_{0,k} = & e^{\frac{r_H}{\ell^2}t} \left(\frac{1}{\sqrt{r^2 - r_H^2}} \partial_t - \frac{r\sqrt{r^2 - r_H^2}}{\ell^2 r_H} \partial_r + k \frac{\sqrt{r^2 - r_H^2}}{\ell^2 r_H} \right), \\ D_{1,k} = & e^{-\frac{r_H}{\ell^2}t} \left(\frac{1}{\sqrt{r^2 - r_H^2}} \partial_t + \frac{r\sqrt{r^2 - r_H^2}}{\ell^2 r_H} \partial_r - k \frac{\sqrt{r^2 - r_H^2}}{\ell^2 r_H} \right), \\ D_{2,k} = & e^{\frac{r_H}{\ell}\varphi} \left(\frac{r^2 - r_H^2}{\ell r_H} \partial_r + \frac{1}{r} \partial_\varphi - k \frac{r}{\ell r_H} \right), \\ D_{3,k} = & e^{-\frac{r_H}{\ell}\varphi} \left(-\frac{r^2 - r_H^2}{\ell r_H} \partial_r + \frac{1}{r} \partial_\varphi + k \frac{r}{\ell r_H} \right). \end{split}$$

Acting on $\Phi \propto e^{-i\omega t}e^{im\varphi}$, the factors $e^{\pm \frac{r_H^2}{\ell^2}t}$ shift $\omega o \omega \pm ir_H/\ell^2$ while $e^{\pm rac{r_H}{\ell} arphi}$ break the periodicity to arphi

Mass ladder operators in BTZ spacetimes

• Commutation relation: $\left[\nabla_{\mu}\nabla^{\mu}, D_{i,k}\right] = -\frac{2k+1}{\ell^2}D_{i,k} + \frac{2}{3}(\nabla_{\mu}\zeta_i^{\mu})\left[\nabla_{\mu}\nabla^{\mu} - \frac{k(k+2)}{\ell^2}\right],$

When choosing $k = k_+ := -2 - \nu$

$$D_{i,k_{+}-2} \left[\nabla_{\mu} \nabla^{\mu} - \frac{\nu(\nu+2)}{\ell^{2}} \right] \Phi = \left[\nabla_{\mu} \nabla^{\mu} - \frac{(\nu+1)(\nu+3)}{\ell^{2}} \right] D_{i,k_{+}} \Phi.$$

When choosing $k = k_{-} := \nu$

$$D_{i,k_--2} \left[\nabla_{\mu} \nabla^{\mu} - \frac{\nu(\nu+2)}{\ell^2} \right] \Phi = \left[\nabla_{\mu} \nabla^{\mu} - \frac{(\nu-1)(\nu+1)}{\ell^2} \right] D_{i,k_-} \Phi.$$

For the massive Klein-Gordon field Φ with $\nu(\nu+2)/\ell^2$ $D_{i,k_\pm}\Phi \text{ is also that with } \tilde{\nu}(\tilde{\nu}+2)/\ell^2 \quad (\tilde{\nu}=\nu\pm1)$

• QNM with Dirichlet B.C.:
$$\Phi = A \left(1 - \frac{r_H^2}{r^2}\right)^{-i\frac{\ell^2}{2r_H}\omega_{\rm D}} \left(\frac{r_H}{r}\right)^{2+\nu} {}_2F_1\left(a,b;c;1 - r_H^2/r^2\right) e^{-i\omega_{\rm D}t + im\varphi},$$

$$\omega_{\rm D} = \pm \frac{m}{\ell} - i\frac{r_H}{\ell^2} \left(2n + 2 + \nu\right)$$

$$\Phi|_{r \simeq r_H} = 2^{-i\frac{\ell^2}{2r_H}\omega_{\mathrm{D}}} A\left(\frac{r - r_H}{r_H}\right)^{-i\frac{\ell^2}{2r_H}\omega_{\mathrm{D}}} \left[1 + \mathcal{O}(r - r_H)\right] e^{-i\omega_{\mathrm{D}}t + im\varphi}.$$
 (Ingoing wave)

ullet Acting D_{0,k_\pm},D_{1,k_\pm} on the QNMs, at $r o r_H$

$$D_{0,k_{\pm}} \Phi = c_{0,k_{\pm}} \left(\frac{r - r_{H}}{r_{H}}\right)^{-i\frac{\ell^{2}}{2r_{H}}\left(\omega + i\frac{r_{H}}{\ell^{2}}\right)} \left[1 + \mathcal{O}(r - r_{H})\right] e^{-i\left(\omega + i\frac{r_{H}}{\ell^{2}}\right)t + im\varphi},$$

$$D_{1,k_{\pm}} \Phi = c_{1,k_{\pm}} \left(\frac{r - r_{H}}{r_{H}}\right)^{-i\frac{\ell^{2}}{2r_{H}}\left(\omega - i\frac{r_{H}}{\ell^{2}}\right)} \left[1 + \mathcal{O}(r - r_{H})\right] e^{-i\left(\omega - i\frac{r_{H}}{\ell^{2}}\right)t + im\varphi}.$$

Mass ladder operators keep the ingoing-wave condition

$$\Phi|_{r\simeq\infty} = A_{\rm II} \left(\frac{r_H}{r}\right)^{2+\nu} \left[1 + \mathcal{O}(1/r^2)\right] e^{-i\omega t + im\varphi}$$
 (Dirichlet B.C.)

• Acting D_{0,k_+}, D_{1,k_+} on the QNMs, at $r \to \infty$

$$D_{0,k_{+}}\Phi = c_{0,k_{+}}^{(D)} \left(\frac{r_{H}}{r}\right)^{3+\nu} \left[1 + \mathcal{O}\left(1/r^{2}\right)\right] e^{-i\left(\omega + i\frac{r_{H}}{\ell^{2}}\right)t + im\varphi},$$

$$D_{1,k_{+}}\Phi = c_{1,k_{+}}^{(D)} \left(\frac{r_{H}}{r}\right)^{3+\nu} \left[1 + \mathcal{O}\left(1/r^{2}\right)\right] e^{-i\left(\omega - i\frac{r_{H}}{\ell^{2}}\right)t + im\varphi}.$$

Asymptotic behaviors of the Klein-Gordon field with $\tilde{\nu}\left(\tilde{\nu}+2\right)/\ell^{2}$ $\left(\tilde{\nu}=\nu+1\right)$

Mass ladder operators D_{0,k_+}, D_{1,k_+} keep the Dirichlet B.C.

$$\Phi|_{r\simeq\infty} = A_{\rm II} \left(\frac{r_H}{r}\right)^{2+\nu} \left[1 + \mathcal{O}(1/r^2)\right] e^{-i\omega t + im\varphi}$$
 (Dirichlet B.C.)

• Acting D_{0,k_-}, D_{1,k_-} on the QNMs, at $r \to \infty$

$$D_{0,k_{-}}\Phi = c_{0,k_{-}}^{(D)} \left(\frac{r_{H}}{r}\right)^{1+\nu} \left[1 + \mathcal{O}\left(1/r^{2}\right)\right] e^{-i\left(\omega + i\frac{r_{H}}{\ell^{2}}\right)t + im\varphi},$$

$$D_{1,k_{-}}\Phi = c_{1,k_{-}}^{(D)} \left(\frac{r_{H}}{r}\right)^{1+\nu} \left[1 + \mathcal{O}\left(1/r^{2}\right)\right] e^{-i\left(\omega - i\frac{r_{H}}{\ell^{2}}\right)t + im\varphi}.$$

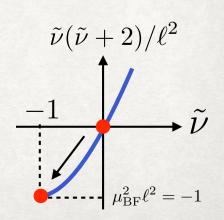
• For $\nu > 0 \ (\mu^2 > 0)$:

Asymptotic behaviors of the Klein-Gordon field with $\tilde{\nu}\left(\tilde{\nu}+2\right)/\ell^{2}$ $\left(\tilde{\nu}=\nu-1\right)$

Mass ladder operators D_{0,k_-}, D_{1,k_-} keep the Dirichlet B.C.

• For $\nu=0$ $(\mu^2=0)$: $\tilde{\nu}=-1$ corresponds to $\mu_{\mathrm{BF}}^2\ell^2=-1$

Dirichlet B.C. changes to the Dirichlet-Neumann B.C.



$$D_{0,k_{-}}\Phi = c_{0,k_{-}}^{(D)} \left(\frac{r_{H}}{r}\right)^{1+\nu} \left[1 + \mathcal{O}\left(1/r^{2}\right)\right] e^{-i\left(\omega + i\frac{r_{H}}{\ell^{2}}\right)t + im\varphi},$$

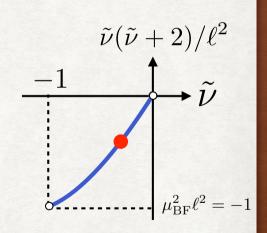
$$D_{1,k_{-}}\Phi = c_{1,k_{-}}^{(D)} \left(\frac{r_{H}}{r}\right)^{1+\nu} \left[1 + \mathcal{O}\left(1/r^{2}\right)\right] e^{-i\left(\omega - i\frac{r_{H}}{\ell^{2}}\right)t + im\varphi}.$$

For
$$-1 < \nu < 0 \ (\mu_{\rm BF}^2 < \mu^2 < 0)$$
:

The above corresponds to $A_{\rm II}(\omega)=0$ (Neumann B.C.) of the asymptotic behavior

$$\phi = A_{\mathrm{I}}\left(\omega\right)\left(rac{r_H}{r}
ight)^{- ilde{
u}}\left[1+\cdots
ight] + A_{\mathrm{II}}\left(\omega\right)\left(rac{r_H}{r}
ight)^{ ilde{
u}+2}\left[1+\cdots
ight]$$
 with $ilde{
u} = |
u|-1$ $(-1< ilde{
u}<0)$

Dirichlet B.C. changes to Neumann B.C.



Brief summary: Changes of QNM boundary conditions

• At the horizon:

Mass ladder operators $D_{0,k_{\pm}},D_{1,k_{\pm}}$ keep the ingoing-wave condition

At infinity:

Mass ladder operators D_{0,k_+}, D_{1,k_+}

Dirichlet B.C. → Dirichlet B.C.

Mass ladder operators D_{0,k_-}, D_{1,k_-}

For $\nu > 0 \ (\mu^2 > 0)$

Dirichlet B.C. Dirichlet B.C.

For $\nu = 0 \; (\mu^2 = 0)$

Dirichlet B.C. Dirichlet-Neumann B.C.

For $-1 < \nu < 0 \ (\mu_{\rm BF}^2 < \mu^2 < 0)$ Dirichlet B.C. \longrightarrow Neumann B.C.

Brief summary: Neumann case

• At infinity:

Mass ladder operators D_{0,k_+}, D_{1,k_+}

Neumann B.C. — Neumann B.C.

Mass ladder operators D_{0,k_-}, D_{1,k_-}

For $\nu > 0 \ (\mu^2 > 0)$

Neumann B.C. Neumann B.C.

For $\nu = 0 \; (\mu^2 = 0)$

Neumann B.C. Dirichlet-Neumann B.C.

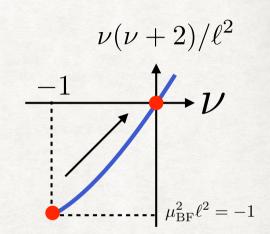
For $-1 < \nu < 0$ ($\mu_{BF}^2 < \mu^2 < 0$) Neumann B.C. \longrightarrow Dirichlet B.C.

Brief summary: Dirichlet-Neumann, Robin cases

• Dirichlet-Neumann case $\nu=-1$ $(\mu^2=\mu_{\rm BF}^2)$:

Mass ladder operators D_{0,k_+}, D_{1,k_+} $(k_+ = k_-)$

Dirichlet-Neumann B.C. → Dirichlet B.C.



Robin boundary condition is kept
 but the resulting boundary condition parameter is complex

Outline

1. Introduction

2. Review: Mass ladder operators

3. Review: Quasinormal modes

4. Quasinormal modes in Banados-Teitelboim-Zanell spacetimes

5. Mass ladder operators in Banados-Teitelboim-Zanell spacetimes

6. Shift of quasinormal mode frequencies

QNM frequency shift

• Frequency shift from expressions of mass ladder operators

$$D_{0,k} = e^{\frac{r_H}{\ell^2}t} \left(\frac{1}{\sqrt{r^2 - r_H^2}} \partial_t - \frac{r\sqrt{r^2 - r_H^2}}{\ell^2 r_H} \partial_r + k \frac{\sqrt{r^2 - r_H^2}}{\ell^2 r_H} \right),$$

$$D_{1,k} = e^{-\frac{r_H}{\ell^2}t} \left(\frac{1}{\sqrt{r^2 - r_H^2}} \partial_t + \frac{r\sqrt{r^2 - r_H^2}}{\ell^2 r_H} \partial_r - k \frac{\sqrt{r^2 - r_H^2}}{\ell^2 r_H} \right),$$

The factors $e^{\pm \frac{r_H^2}{\ell^2}t}$ suggest $\omega o \omega \pm i r_H/\ell^2$

• Example: Shift by D_{0,k_+}

Original QNM frequency with Dirichlet B.C.:
$$\omega_{\rm D}=\pm\frac{m}{\ell}-i\frac{r_H}{\ell^2}\left(2n+2+\nu\right)$$

Mass parameter shift: $\nu \to \tilde{\nu} = \nu + 1$

QNM frequency shift:
$$\omega_{\rm D} o ilde{\omega}_{\rm D} = \pm \frac{m}{\ell} - i \frac{r_H}{\ell^2} \left[2 \underbrace{(n-1) + 2 + ilde{
u}}_{n o n-1} \right]$$

Note: no "negative overtones" are generated, $D_{0,k_+}[fundamental mode] = 0$

QNM frequency shift

Operators	D_{0,k_+}	$D_{0,k_{-}}$	D_{1,k_+}	$D_{1,k}$
		$\omega_{\mathrm{D}}(\nu - 1, n) \ (\nu > 0)$		$\omega_{\rm D}(\nu - 1, n + 1) \ (\nu > 0)$
Frequencies	$\omega_{\rm D}(\nu+1,n-1)$	$\omega_{\rm DN}(n) \ (\nu = 0)$	$\omega_{\mathrm{D}}(\nu+1,n)$	$\omega_{\rm DN}(n+1)\ (\nu=0)$
		$\omega_{\rm N}(\nu - 1, n) \ (-1 < \nu < 0)$		$\omega_{\rm N}(\nu - 1, n + 1) \ (-1 < \nu < 0)$

where
$$\omega_{\mathrm{D}}\left(\nu,n\right)=\pm\frac{m}{\ell}-i\frac{r_{H}}{\ell^{2}}\left(2n+2+\nu\right),$$
 (Dirichlet B.C.)
$$\omega_{\mathrm{N}}\left(\nu,n\right)=\pm\frac{m}{\ell}-i\frac{r_{H}}{\ell^{2}}\left(2n-\nu\right),$$
 (Neumann B.C.)
$$\omega_{\mathrm{DN}}\left(n\right)=\pm\frac{m}{\ell}-i\frac{r_{H}}{\ell^{2}}\left(2n+1\right),$$
 (Dirichlet-Neumann B.C.)

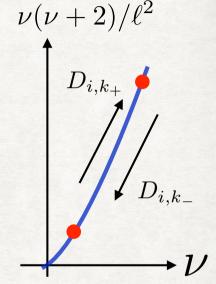
Mass ladder operators change not only mass squared but also indices of overtones

Overtone shift by multiple actions

• Multiple actions $D_{0,k_+-1}D_{0,k_-}$ or $D_{1,k_+-1}D_{1,k_-}$ keep mass squared but QNM frequencies are shifted:

$$ilde{\omega}=\pmrac{m}{\ell}-irac{r_H}{\ell^2}\left[2\left(n-1
ight)+2+
u
ight] \qquad ext{for} \quad D_{0,k_+-1}D_{0,k_-}$$

$$\tilde{\omega} = \pm \frac{m}{\ell} - i \frac{r_H}{\ell^2} \left[2 (n+1) + 2 + \nu \right] \quad \text{for} \quad D_{1,k_+-1} D_{1,k_-}$$



Note: no "negative overtones" are generated from the fundamental mode

All overtones can be generated from the fundamental mode

Regular solutions generated by multiple actions of $D_{2,k_{\pm}},\ D_{3,k_{\pm}}$

$$D_{2,k} = e^{\frac{r_H}{\ell}\varphi} \left(\frac{r^2 - r_H^2}{\ell r_H} \partial_r + \frac{1}{r} \partial_\varphi - k \frac{r}{\ell r_H} \right),$$

$$D_{3,k} = e^{-\frac{r_H}{\ell}\varphi} \left(-\frac{r^2 - r_H^2}{\ell r_H} \partial_r + \frac{1}{r} \partial_\varphi + k \frac{r}{\ell r_H} \right).$$

Factors $e^{\pm \frac{r_H}{\ell} \varphi}$ break the periodicity to φ ; thus, the single action of $D_{2,k_\pm},\ D_{3,k_\pm}$ fails to generate a regular solution

• Multiple actions can remove those singular factors,

e.g.,
$$D_{2,k_{+}-1}D_{3,k_{+}}$$

$$\tilde{\omega}=\pm\frac{m}{\ell}-i\frac{r_{H}}{\ell^{2}}\left[2\left(n-1\right)+2+\left(\nu+2\right)\right] \ \ \text{for Dirichlet B.C.}$$

$$\tilde{\omega}=\pm\frac{m}{\ell}-i\frac{r_{H}}{\ell^{2}}\left[2\left(n+1\right)-\left(\nu+2\right)\right] \ \ \text{for Neumann B.C.}$$

e.g.,
$$D_{2,k_--1}D_{3,k_+}$$

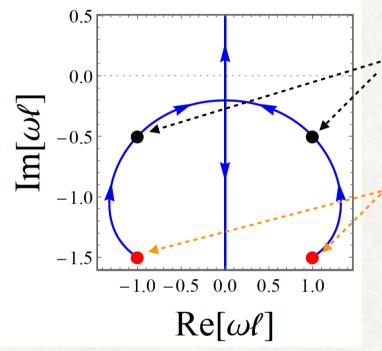
QNM frequency does not change In fact, $D_{2,k_--1}D_{3,k_+}=\mathcal{L}_\xi$ is a symmetry operator

Other boundary condition: Robin case

• Robin B.C. (-1<
u<0): $A_{\mathrm{II}}/A_{\mathrm{I}}=\kappa\;(\kappa\in\mathbb{R})$,

[Ishibashi and Wald, 2004]

$$\phi \simeq A_{\rm I}\left(\omega\right) \left(\frac{r_H}{r}\right)^{-\nu} + A_{\rm II}\left(\omega\right) \left(\frac{r_H}{r}\right)^{\nu+2}$$



Neumann B.C. $(\kappa = 0)$

$$\omega_{\rm N}(0) = \pm \frac{m}{\ell} - i \frac{r_H}{\ell^2} \left[-\nu \right]$$

Dirichlet B.C. $(\kappa = \infty)$

$$\omega_{\rm D}(0) = \pm \frac{m}{\ell} - i \frac{r_H}{\ell^2} [2 + \nu]$$

• Acting the mass ladder operators, $\omega \to \tilde{\omega} = \omega \pm i r_H/\ell^2$ $\kappa \to \tilde{\kappa} \; ({\rm complex \; value})$

At least, for κ so that ω is purely imaginary, $\tilde{\kappa}$ is real, and $\tilde{\omega}$ is also purely imaginary

Summary

We have studied QNMs of massive Klein-Gordon fields in static BTZ spacetimes in terms of mass ladder operators

- Ladder operator is a useful tool to understand mathematical properties of QNMs
- Mass ladder operator change not only mass squared but also QNM frequencies
- In particular, an index of overtones are shifted

All overtones can be generated from fundamental modes by their multiple actions

Other boundary condition: Neumann case

Operators	D_{0,k_+}	$D_{0,k_{-}}$	D_{1,k_+}	$D_{1,k_{-}}$
		$\omega_{\rm N}(\nu - 1, n - 1) \ (\nu > 0)$		$\omega_{\mathcal{N}}(\nu - 1, n) \ (\nu > 0)$
Frequencies	$\omega_{\rm N}(\nu+1,n)$	$\omega_{\rm DN}(n-1) \ (\nu=0)$	$\omega_{\rm N}(\nu+1,n+1)$	$\omega_{\mathrm{DN}}(n) \ (\nu = 0)$
		$\omega_{\rm D}(\nu - 1, n - 1) \ (-1 < \nu < 0)$		$\omega_{\rm D}(\nu - 1, n) \ (-1 < \nu < 0)$

where
$$\omega_{\mathrm{D}}\left(\nu,n\right)=\pm\frac{m}{\ell}-i\frac{r_{H}}{\ell^{2}}\left(2n+2+\nu\right),$$
 (Dirichlet B.C.)
$$\omega_{\mathrm{N}}\left(\nu,n\right)=\pm\frac{m}{\ell}-i\frac{r_{H}}{\ell^{2}}\left(2n-\nu\right),$$
 (Neumann B.C.)
$$\omega_{\mathrm{DN}}\left(n\right)=\pm\frac{m}{\ell}-i\frac{r_{H}}{\ell^{2}}\left(2n+1\right),$$
 (Dirichlet-Neumann B.C.)

BF bound case

Operators	$D_{0,-1}$	$D_{1,-1}$	$D_0^{ m BF}$
Frequencies	$\omega_{\mathrm{D}}(0,n-1)$	$\omega_{\mathrm{D}}(0,n)$	$\omega_{\rm DN}(0) \to \omega_{\rm N}(0,0)$

$$\omega_{\mathrm{D}}(\nu,n) = \pm \frac{m}{\ell} - i \frac{r_H}{\ell^2} (2n + 2 + \nu), \quad \text{(Dirichlet B.C.)}$$

$$\omega_{\mathrm{N}}(\nu,n) = \pm \frac{m}{\ell} - i \frac{r_H}{\ell^2} (2n - \nu), \quad \text{(Neumann B.C.)}$$

$$\omega_{\mathrm{DN}}(n) = \pm \frac{m}{\ell} - i \frac{r_H}{\ell^2} (2n + 1), \quad \text{(Dirichlet-Neumann B.C.)}$$

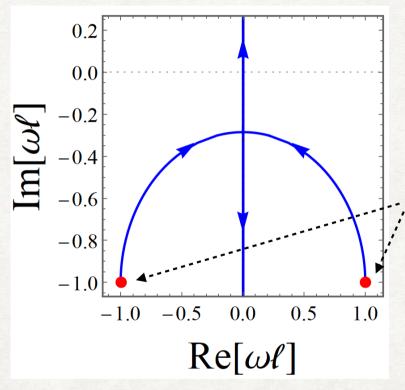
• We find new mass ladder operator only for the fundamental mode in BF bound:

$$D_0^{\mathrm{BF}} \Phi_0 := (\nabla_\mu \zeta_0^\mu) \Phi_0 = e^{r_H t/\ell^2} \frac{\sqrt{r^2 - r_H^2}}{\ell^2 r_H} \Phi_0,$$

Other boundary condition: Robin case with BF bound

[Ishibashi and Wald, 2004] • Robin B.C. $(\nu = -1)$: $A_{\rm II,BF}/A_{\rm I,BF} = 1/\kappa_{\rm BF} \ (\kappa_{\rm BF} \in \mathbb{R})$,

$$\phi(r) = A_{\text{I,BF}} \frac{r_H}{r} + A_{\text{II,BF}} \frac{r_H}{r} \ln\left(\frac{r_H}{r}\right) + \mathcal{O}\left(1/r^3\right),$$



Dirichlet - Neumann B.C. $(\kappa_{\mathrm{BF}} \to -\infty)$ $\omega_{\mathrm{DN}}(0) = \pm \frac{m}{\ell} - i \frac{r_H}{\ell^2}$

$$\omega_{\rm DN}(0) = \pm \frac{m}{\ell} - i \frac{r_H}{\ell^2}$$

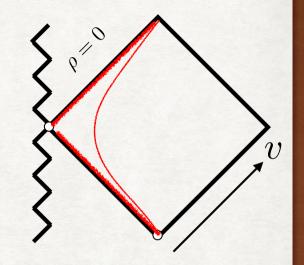
• Acting the mass ladder operators, $\omega \to \tilde{\omega} = \omega \pm i r_H/\ell^2$ $\kappa_{\rm BF} \to \tilde{\kappa}_{\rm BF}$ (complex value)

At least, for κ_{BF} so that ω is purely imaginary, $ilde{\kappa}_{\mathrm{BF}}$ is real, and $ilde{\omega}$ is also purely imaginary

Application: scalars in near-horizon geometry

- We have derived conserved quantities along black hole horizons [TK and Kimura 2021]
 [TK and Kimura 2022]
 by exploiting mass ladder operators near the horizon
- Vicinity of black holes with zero Hawking temperature is highly-symmetric geometry called near-horizon geometry:

$$ds^{2} = \frac{-\lambda_{0}\rho^{2}dv^{2} + 2dvd\rho + \gamma_{0}d\Omega_{n-2}^{2}}{AdS_{2}}$$



Reduction of scalars on near-horizon geometry to that on AdS2:

$$\Box \Phi = 0 \longrightarrow \left[\Box_{AdS_2} - \frac{\ell(\ell+n-3)}{\gamma_0}\right] \phi_{\ell} = 0$$

$$\Phi = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \phi_{\ell}(v,\rho) Y_{\ell m}(\theta,\varphi)$$

Mass ladder operators connect different multipole modes

• We obtain conservation laws along the horizon: $\partial_v \left[\partial_\rho D_1 D_2 \cdots D_\ell \phi_\ell\right]|_{\rho=0} = 0$