Shifted quantum groups

Higgsing and pit representations

3d SUSY gauge theories 00000 Discussion 0000

Shifted quantum groups and matter multiplets

in SUSY gauge theories

Jean-Emile Bourgine

University of Melbourne (ACEMS)

Joint HEP-TH Seminar (SUDA?)

17-08-2022

[Based on [JEB 2107.10063, 2205.01309]]

Higgsing and pit representations 000000 3d SUSY gauge theories

Discussion 0000

AGT correspondence

3d SUSY gauge theories

Discussion 0000

AGT correspondence

Quantum Group -

 \Rightarrow On the RHS, *all* physical quantities determined by the symmetry algebra!

How about gauge theory partition functions? Can you reconstruct them using only representation theory?

W-algebra

- Introduction
 Shifted quantum groups
 Higgsing and pit representations
 3d SUSY gauge theories

 0●00000000
 000000
 000000
 000000
- This point is better understood using the 5d uplift to $\mathcal{N} = 1$ theories on $\mathbb{C}^2 \times S^1$.
- → AGT correspondence involves q-deformed W-algebras.
- Non-perturbative (instanton) partition functions obtained as **topological strings** amplitudes on toric Calabi-Yau threefolds.
- ---- They can be computed using the (refined) topological vertex technique.

- Introduction
 Shifted quantum groups
 Higgsing and pit representations
 3d SUSY gauge theories

 ○●○○○○○○○○
 ○○○○○○○
 ○○○○○○
 ○○○○○○
 - This point is better understood using the 5d uplift to $\mathcal{N} = 1$ theories on $\mathbb{C}^2 \times S^1$.
 - ~ AGT correspondence involves q-deformed W-algebras.
 - Non-perturbative (instanton) partition functions obtained as topological strings amplitudes on toric Calabi-Yau threefolds.
 - ---- They can be computed using the (refined) topological vertex technique.

• The topological vertex is the set of matrix elements of a vertex operator

$$\mathcal{C}_{\lambda,\mu,
u} = \langle \lambda | \Phi(|\mu\rangle\rangle \otimes |\nu\rangle) = (\langle\!\langle \lambda | \otimes \langle \mu | \rangle \Phi^* | \nu\rangle.$$

~-> Choice of basis actually irrelevant (equivalence between IKV and Awata-Kanno vertices).

[Awata, Feigin, Shiraishi 2011]

Higgsing and pit representations 000000 3d SUSY gauge theories 00000 Discussion 0000

What is a vertex operator?

• The vertex operators of a 2d (chiral) CFT satisfy the primary field property

$$[L_n; V_{\alpha}(z)] = (z^{n+1}\partial_z + h_{\alpha}(n+1)z^n)V_{\alpha}(z)$$

$$\Leftrightarrow (\rho_V \otimes \rho_H \ \Delta(L_n)) V_{\alpha}(z) = V_{\alpha}(z)\rho_H(L_n)$$

$$\bigtriangleup \Delta(L_n) = L_n \otimes 1 + 1 \otimes L_n$$

- We distinguish two types of representations:
 - Vertical: ρ_V conformal transformations acting on the coordinates (basis z^n)
 - Horizontal: ρ_H action of the Virasoro algebra on the Fock space (basis $J_{-\lambda_1} \cdots J_{-\lambda_\ell} |\emptyset\rangle$).
- → This distinction will come back throughout the talk.

Higgsing and pit representations 000000 3d SUSY gauge theories

Discussion 0000

What is a vertex operator?

• The vertex operators of a 2d (chiral) CFT satisfy the primary field property

$$[L_n; V_{\alpha}(z)] = (z^{n+1}\partial_z + h_{\alpha}(n+1)z^n)V_{\alpha}(z)$$

$$\Leftrightarrow (\rho_V \otimes \rho_H \ \Delta(L_n)) V_{\alpha}(z) = V_{\alpha}(z)\rho_H(L_n)$$

$$\bigtriangleup \Delta(L_n) = L_n \otimes 1 + 1 \otimes L_n$$

- We distinguish two types of representations:
 - Vertical: ρ_V conformal transformations acting on the coordinates (basis z^n)
 - Horizontal: ρ_H action of the Virasoro algebra on the Fock space (basis $J_{-\lambda_1} \cdots J_{-\lambda_{\ell}} |\emptyset\rangle$).
- → This distinction will come back throughout the talk.

• The Virasoro algebra can be replaced by affine Lie algebras (WZW models), quantum groups (Integrable Systems), or even toroidal quantum groups (topological strings vertex). \Rightarrow A vertex operator is an intertwiner between representations ρ_H and $\rho_V \otimes \rho_H$.
 Introduction
 Shifted quantum groups
 Higgsing and pit representations
 3d SUSY gauge theories

 0000000000
 000000
 000000
 000000

• To be specific, the vertex operators of topological strings Φ and Φ^* are constructed as intertwiners between 3 representations of the quantum toroidal gl(1) algebra:

• To be specific, the vertex operators of topological strings Φ and Φ^* are constructed as **intertwiners** between 3 representations of the **quantum toroidal** gl(1) **algebra**:

• Thus, topological strings amplitudes are analogues of conformal blocks

$$\langle \alpha_{\infty} | \boxed{\begin{array}{c} V_{\alpha_{1}}(z_{1}) \ V_{\alpha_{2}}(z_{2}) & V_{\alpha_{N}}(z_{N}) \\ & & & \\ \langle \alpha_{\infty} | \boxed{\begin{array}{c} & & \\ & & \\ \end{array}} | \alpha_{0} \rangle \\ \end{array}}$$

Geometric VS Algebraic Engineering

This construction is in fact very general!

To undestand why, we need to recall the correspondence with (p, q)-brane webs in which \rightarrow the CY toric diagram is interpreted as a configuration of branes in type IIB string theory.

Higgsing and pit representations 000000 3d SUSY gauge theories

Discussion 0000

Geometric VS Algebraic Engineering

• This construction is in fact very general!

To undestand why, we need to recall the correspondence with (p, q)-brane webs in which the CY toric diagram is interpreted as a configuration of branes in type IIB string theory.

• The two types of representations are attached to different kind of branes:

- Vertical: on D5-branes = COHA action on instanton moduli space $\rho_V = \rho^{(0,1)}$
- Horizontal: on NS5-branes (+ n D5) = 'auxiliary' Fock space $\rho_H = \rho^{(1,n)}$

Higgsing and pit representations

3d SUSY gauge theories

Discussion 0000

Geometric VS Algebraic Engineering

• This construction is in fact very general!

To undestand why, we need to recall the correspondence with (p, q)-brane webs in which the CY toric diagram is interpreted as a configuration of branes in type IIB string theory.

• The two types of representations are attached to different kind of branes:

- Vertical: on D5-branes = COHA action on instanton moduli space $\rho_V = \rho^{(0,1)}$
- Horizontal: on NS5-branes (+ n D5) = 'auxiliary' Fock space $\rho_H = \rho^{(1,n)}$

This correspondence can be extended to many different brane systems and representations!!!

Shifted quantum groups 000000 Higgsing and pit representations 000000 3d SUSY gauge theories

Discussion 0000

• In this way, several observables of SUSY gauge theories can be constructed in the

representation theory of a quantum group starting from the knowledge of the brane system.

Shifted quantum groups 000000 Higgsing and pit representations 000000 3d SUSY gauge theories 00000 Discussion 0000

• In this way, several observables of SUSY gauge theories can be constructed in the

representation theory of a quantum group starting from the knowledge of the brane system.

• The procedure follows from these four steps:

Higgsing and pit representations 000000 3d SUSY gauge theories 00000 Discussion 0000

• In this way, several **observables** of SUSY gauge theories can be constructed in the representation theory of a quantum group starting from the knowledge of the **brane system**.

- The procedure follows from these four steps:
- i. Determine the $\ensuremath{\textbf{quantum group}}$ from the spacetime of the theory:

e.g. $\mathbb{C}_{\epsilon} \rightarrow \text{affinization}, S^1 \rightarrow \text{trigonometric/elliptic deformation, orbifold} \rightarrow \text{ADE},...$

Higgsing and pit representations 000000 3d SUSY gauge theories 00000 Discussion 0000

• In this way, several observables of SUSY gauge theories can be constructed in the representation theory of a quantum group starting from the knowledge of the brane system.

- The procedure follows from these four steps:
- i. Determine the quantum group from the spacetime of the theory:

e.g. $\mathbb{C}_{\epsilon} \rightarrow \text{affinization}, S^1 \rightarrow \text{trigonometric/elliptic deformation, orbifold} \rightarrow \text{ADE},...$

ii. Associate a module to each brane to obtain a network of representations.

Higgsing and pit representations 000000

3d SUSY gauge theories 00000 Discussion 0000

• In this way, several observables of SUSY gauge theories can be constructed in the representation theory of a quantum group starting from the knowledge of the brane system.

- The procedure follows from these four steps:
- i. Determine the quantum group from the spacetime of the theory:

e.g. $\mathbb{C}_{\epsilon} \rightarrow \text{affinization}, S^1 \rightarrow \text{trigonometric/elliptic deformation, orbifold} \rightarrow \text{ADE},...$

- ii. Associate a module to each brane to obtain a network of representations.
- iii. Construct an operator ${\cal T}$ acting on this network by gluing vertex operators Φ and $\Phi^*.$

Higgsing and pit representations 000000 3d SUSY gauge theories 00000 Discussion 0000

• In this way, several observables of SUSY gauge theories can be constructed in the representation theory of a quantum group starting from the knowledge of the brane system.

- The procedure follows from these four steps:
- i. Determine the quantum group from the spacetime of the theory:

e.g. $\mathbb{C}_{\epsilon} \rightarrow$ affinization, $S^1 \rightarrow$ trigonometric/elliptic deformation, orbifold \rightarrow ADE,...

ii. Associate a module to each brane to obtain a network of representations.

iii. Construct an operator T acting on this network by gluing vertex operators Φ and Φ^* .

iv. Derive the gauge theory observables from matrix elements of this operator, e.g.

Introduction

3d SUSY gauge theories

Discussion 0000

• Over the last few years, this program has been applied successfully to many SUSY QFT:

Theories	Quantum Group	Reference
$5 D \ \mathcal{N} = 1$	quantum toroidal $\mathfrak{gl}(1)$	[Awata, Feigin, Shiraishi 2011]
5D $\mathcal{N}=1$ on \mathbb{Z}_p -orbifold	quantum toroidal $\mathfrak{gl}(p)$	[Awata, Kanno, et. al. 2017]
5D $\mathcal{N}=1$ on \mathbb{Z}_p -orbifold	new quantum toroidal algebras!	[JEB, Jeong 2019]
$4D \mathcal{N}=2$	affine Yangian $\mathfrak{gl}(1)$	[JEB, Zhang 2018]
$6D\ \mathcal{N} = (1,0)$	elliptic toroidal $\mathfrak{gl}(1)$	[Zhu 2018] [Foda, Zhu 2018]
$3D\ \mathcal{N}=2^*$	quantum toroidal $\mathfrak{gl}(1)$	[Zenkevich 2018]
$3D \ \mathcal{N} = 2$	quantum affine $\mathfrak{sl}(2)$	[JEB 2107.10063]

• Other results include D-type quiver gauge theories [JEB, Fukuda, Matsuo, Zhu 2017], qq-characters [JEB, Fukuda, Harada, Matsuo, Zhu 2017], R-matrices and KZ-equations [Awata, Kanno, et. al.]...

3d SUSY gauge theories

Discussion 0000

Motivations

A few reasons for developing this technique:

- Emphasize the role of the non-perturbative symmetry
 - ~> Correspondences (CFT, integrability), KZ equations, (q-)Painlevé,...
- Develop a diagrammatic technique that simplifies actual calculations
 - \rightsquigarrow Generalize the topological vertex technique to other brane systems
- Study of non-Lagrangian theories
- Connect with string theory realizations of QFT and brane systems
 - \rightsquigarrow Description of non-perturbative dualities, RG flows,...

Introduction	Shifted quantum groups	Higgsing and pit representations	3d SUSY gauge theories	Disc
000000000	000000	000000	00000	00

- In this talk we...
 - Develop an algebraic description of fundamental hypermultiplets of 5D $\mathcal{N} = 1$ U(N) gauge theories.
 - Extend the algebraic construction to a class of 3D N = 2 theories corresponding to certain D3/D5/NS5-brane systems.
 - Relate the two through the Higgsing mechanism and a limiting procedure.

- In this talk we...
 - Develop an algebraic description of fundamental hypermultiplets of 5D $\mathcal{N} = 1$ U(N) gauge theories.
 - Extend the algebraic construction to a class of 3D ${\cal N}=2$ theories corresponding to certain D3/D5/NS5-brane systems.
 - Relate the two through the Higgsing mechanism and a limiting procedure.

To do this, we need the notion of **shifted** quantum groups!

Shifted quantum groups 000000 Higgsing and pit representations

3d SUSY gauge theories

Discussion 0000

Outline

I. Introduction

II. Shifted quantum groups

III. Higgsing and pit representations

IV. 3d SUSY gauge theories

V. Discussion

Shifted quantum groups

Higgsing and pit representations

3d SUSY gauge theories 00000

Discussion 0000

II. Shifted Quantum Groups

Shifted quantum groups 000000 Higgsing and pit representations 000000 3d SUSY gauge theories

Discussion 0000

Main point

• Disclaimer: While this work is about 5d/3d theories realized in type IIB string theory, the illustrations are simpler in terms of 4d/2d theories in type IIA (no bending of branes). The latters are obtained by sending the radius $R \rightarrow 0$ of the extra compact dimension.

Main point

• Disclaimer: While this work is about 5d/3d theories realized in type IIB string theory, the illustrations are simpler in terms of 4d/2d theories in type IIA (no bending of branes). The latters are obtained by sending the radius $R \rightarrow 0$ of the extra compact dimension.

• Hanany-Witten transition for a 4d $\mathcal{N} = 2 SU(2)$ theory with one fundamental flavor:

 \rightarrow On the LHS, the extra D4 brane bring a (trivial) module with weight \propto mass, it has an extra vertex operator too. \Rightarrow How do we include this information in the RHS?

Main point

• Disclaimer: While this work is about 5d/3d theories realized in type IIB string theory, the illustrations are simpler in terms of 4d/2d theories in type IIA (no bending of branes). The latters are obtained by sending the radius $R \rightarrow 0$ of the extra compact dimension.

• Hanany-Witten transition for a 4d $\mathcal{N} = 2 SU(2)$ theory with one fundamental flavor:

 \rightarrow On the LHS, the extra D4 brane bring a (trivial) module with weight \propto mass, it has an extra vertex operator too. \Rightarrow How do we include this information in the RHS?

Need to modify the representations acting on the branes modules!

Shifted quantum groups

Higgsing and pit representations 000000

3d SUSY gauge theories

Discussion 0000

Shifted Quantum Groups

• In the Drinfeld presentation of quantum affine/toroidal algebras, a set of currents $x_{\omega}^{\pm}(z)$

(or $e_{\omega}(z)$, $f_{\omega}(z)$) and $\psi_{\omega}^{\pm}(z)$ is attached to each node ω of the (./affine) Dynkin diagram.

→→ Relation with RLL presentation [Frenkel, Ding 1993] for qu. affine algebras.

Shifted quantum groups

Higgsing and pit representations 000000 3d SUSY gauge theories 00000 Discussion 0000

Shifted Quantum Groups

• In the Drinfeld presentation of quantum affine/toroidal algebras, a set of currents $\chi_{\omega}^{\pm}(z)$ (or $e_{\omega}(z)$, $f_{\omega}(z)$) and $\psi_{\omega}^{\pm}(z)$ is attached to each node ω of the (./affine) Dynkin diagram. \sim Relation with RLL presentation [Frenkel, Ding 1993] for qu. affine algebras.

• Algebraic relations can be expressed using a matrix of structure functions $G_{\omega,\omega'}(z)$, obtained from the Cartan matrix, and depending on one/two parameters (denoted q or q_1, q_2).

Shifted quantum groups

Higgsing and pit representations 000000 3d SUSY gauge theories

Discussion 0000

Shifted Quantum Groups

• In the Drinfeld presentation of quantum affine/toroidal algebras, a set of currents $x_{\omega}^{\pm}(z)$ (or $e_{\omega}(z)$, $f_{\omega}(z)$) and $\psi_{\omega}^{\pm}(z)$ is attached to each node ω of the (./affine) Dynkin diagram. \rightarrow Relation with RLL presentation [Frenkel, Ding 1993] for qu. affine algebras.

• Algebraic relations can be expressed using a matrix of structure functions $G_{\omega,\omega'}(z)$, obtained from the Cartan matrix, and depending on one/two parameters (denoted q or q_1, q_2).

• The shifts are introduced by imposing a different expansion for the Cartan currents:

$$x_{\omega}^{\pm}(z) = \sum_{k \in \mathbb{Z}} z^{-k} x_{\omega,k}^{\pm}, \quad \psi_{\omega}^{\pm}(z) = \sum_{\pm k \ge \mu_{\omega}^{\pm}} z^{-k} \psi_{\omega,k}^{\pm}.$$

 \Rightarrow More flexibility in the definition of representations!

Higgsing and pit representations

3d SUSY gauge theories

Discussion 0000

Shifted Quantum Groups

• In the Drinfeld presentation of quantum affine/toroidal algebras, a set of currents $x_{\omega}^{\pm}(z)$ (or $e_{\omega}(z)$, $f_{\omega}(z)$) and $\psi_{\omega}^{\pm}(z)$ is attached to each node ω of the (./affine) Dynkin diagram. \rightarrow Relation with RLL presentation [Frenkel, Ding 1993] for qu. affine algebras.

• Algebraic relations can be expressed using a matrix of structure functions $G_{\omega,\omega'}(z)$, obtained from the Cartan matrix, and depending on one/two parameters (denoted q or q_1, q_2).

• The shifts are introduced by imposing a different expansion for the Cartan currents:

$$x^{\pm}_{\omega}(z) = \sum_{k \in \mathbb{Z}} z^{-k} x^{\pm}_{\omega,k}, \quad \psi^{\pm}_{\omega}(z) = \sum_{\pm k \ge \mu^{\pm}_{\omega}} z^{-k} \psi^{\pm}_{\omega,k}.$$

⇒ More flexibility in the definition of representations!

- We focus here on the quantum affine sl(2) and quantum toroidal gl(1) algebras.
- \rightsquigarrow No index ω . Shift parameters $\mu = (\mu_+, \mu_-) \in \mathbb{Z} \times \mathbb{Z}$.

Introduction	Shifted quantum groups	Higgsing and pit representations	3d SUSY gauge theories	Discussi
000000000	000000	000000	00000	0000

i. The usual quantum group $\mathcal E$ is recovered as $\mathcal E^{\mu}$ with $\mu = (0,0)$.

Introduction	Shifted quantum groups	Higgsing and pit representations	3d SUSY gauge theories	Discussion
000000000	000000	000000	00000	0000

- i. The usual quantum group $\mathcal E$ is recovered as $\mathcal E^{\mu}$ with $\mu = (0,0)$.
- ii. The Drinfeld coproduct defines an homomorphism $\Delta: \mathcal{E}^{\mu+\mu'} \to \mathcal{E}^{\mu} \otimes \mathcal{E}^{\mu'}.$

Introduction	Shifted quantum groups	Higgsing and pit representations	3d SUSY gauge theories	Discussion
000000000	000000	000000	00000	0000

- i. The usual quantum group $\mathcal E$ is recovered as $\mathcal E^{\mu}$ with $\mu = (0,0)$.
- ii. The Drinfeld coproduct defines an homomorphism $\Delta : \mathcal{E}^{\mu+\mu'} \to \mathcal{E}^{\mu} \otimes \mathcal{E}^{\mu'}$.
- iii. Shifted representation: From any representation ρ of \mathcal{E}^{μ} and a Laurent polynomial $P(z) \in \mathbb{C}[z^{\pm 1}]$, we can define to representations $\iota_{P}\rho$ and $\iota_{P}^{*}\rho$ of $\mathcal{E}^{\mu+\mu_{P}}$ as

$$\begin{split} \iota_{P}\rho(x^{+}(z)) &= P(z)\rho(x^{+}(z)), \quad \iota_{P}\rho(x^{-}(z)) = \rho(x^{-}(z)), \quad \iota_{P}\rho(\psi^{\pm}(z)) = P(\hat{\gamma}^{\pm 1/2}z)\rho(\psi^{\pm}(z)), \\ \iota_{P}^{*}\rho(x^{+}(z)) &= \rho(x^{+}(z)), \quad \iota_{P}^{*}\rho(x^{-}(z)) = P(z)\rho(x^{-}(z)), \quad \iota_{P}^{*}\rho(\psi^{\pm}(z)) = P(\hat{\gamma}^{\pm 1/2}z)\rho(\psi^{\pm}(z)), \\ \text{with } \mu_{P} &= (n - \mu_{0}, \mu_{0}) \text{ for } P(z) = z^{-\mu_{0}} \prod_{a=1}^{n} (1 - z/\nu_{a}). \end{split}$$

~> These representations act on the same module!

Introduction	Shifted quantum groups	Higgsing and pit representations	3d SUSY gauge theories	Discussion
000000000	000000	000000	00000	0000

- i. The usual quantum group $\mathcal E$ is recovered as $\mathcal E^{\mu}$ with $\mu = (0,0)$.
- ii. The Drinfeld coproduct defines an homomorphism $\Delta : \mathcal{E}^{\mu+\mu'} \to \mathcal{E}^{\mu} \otimes \mathcal{E}^{\mu'}$.
- iii. Shifted representation: From any representation ρ of \mathcal{E}^{μ} and a Laurent polynomial $P(z) \in \mathbb{C}[z^{\pm 1}]$, we can define to representations $\iota_{P}\rho$ and $\iota_{P}^{*}\rho$ of $\mathcal{E}^{\mu+\mu_{P}}$ as

$$\begin{split} \iota_{P}\rho(x^{+}(z)) &= P(z)\rho(x^{+}(z)), \quad \iota_{P}\rho(x^{-}(z)) = \rho(x^{-}(z)), \quad \iota_{P}\rho(\psi^{\pm}(z)) = P(\hat{\gamma}^{\pm 1/2}z)\rho(\psi^{\pm}(z)), \\ \iota_{P}^{*}\rho(x^{+}(z)) &= \rho(x^{+}(z)), \quad \iota_{P}^{*}\rho(x^{-}(z)) = P(z)\rho(x^{-}(z)), \quad \iota_{P}^{*}\rho(\psi^{\pm}(z)) = P(\hat{\gamma}^{\pm 1/2}z)\rho(\psi^{\pm}(z)), \\ \text{with } \mu_{P} &= (n - \mu_{0}, \mu_{0}) \text{ for } P(z) = z^{-\mu_{0}} \prod_{a=1}^{n} (1 - z/\nu_{a}). \end{split}$$

~> These representations act on the same module!

The presence of D6 branes induce a shift of the representations! zeros of P(z) = positions of D6 = masses hypermultiplets

n	Shifted quantum groups	Higgsing and pit representations	3d SUSY gauge theories
0000	000000	000000	00000

• Example of (equivalent) realizations of SU(2) gauge theory with one fundamental flavor:

→ The position of the transverse D6 is a conjecture.

Higgsing and pit representations 000000 3d SUSY gauge theories

Discussion 0000

- Main lessons:
 - The shifts propagate.

Introd	luction	
000	0000	000

3d SUSY gauge theories

Discussion 0000

- Main lessons:
 - The shifts propagate.
 - Vertex operators at brane junctions have to be modified.

Representations	Algebras	Intertwiner
$\iota_P \rho_v^{(0,1)} \otimes \rho_u^{(1,n)} \to \iota_P \rho_{u'}^{(1,n+1)}$	$\mathcal{E}^{\mu_P}\otimes\mathcal{E} ightarrow\mathcal{E}^{\mu_P}$	Φ
$\iota_P^* \rho_v^{(0,1)} \otimes \rho_u^{(1,n)} \to \iota_P \rho_{u'}^{(1,n+1)}$	$\mathcal{E}^{\mu_P}\otimes\mathcal{E} ightarrow\mathcal{E}^{\mu_P}$	Φ^P
$\rho_{v}^{(0,1)} \otimes \iota_{P}^{*} \rho_{u}^{(1,n)} \to \iota_{P}^{*} \rho_{u'}^{(1,n+1)}$	$\mathcal{E}\otimes\mathcal{E}^{oldsymbol{\mu}_P} ightarrow\mathcal{E}^{oldsymbol{\mu}_P}$	Φ
$\rho_{\nu}^{(0,1)} \otimes \iota_{P} \rho_{u}^{(1,n)} \to \iota_{P} \rho_{u'}^{(1,n+1)}$	$\mathcal{E}\otimes\mathcal{E}^{oldsymbol{\mu}_P} ightarrow\mathcal{E}^{oldsymbol{\mu}_P}$	Φ^P
$\iota_P^* \rho_{u'}^{(1,n+1)} \to \iota_P^* \rho_v^{(0,1)} \otimes \rho_u^{(1,n)}$	$\mathcal{E}^{oldsymbol{\mu}_P} o \mathcal{E}^{oldsymbol{\mu}_P} \otimes \mathcal{E}$	Φ*
$\iota_P^*\rho_{u'}^{(1,n+1)} \to \iota_P\rho_v^{(0,1)} \otimes \rho_u^{(1,n)}$	$\mathcal{E}^{oldsymbol{\mu}_P} o \mathcal{E}^{oldsymbol{\mu}_P} \otimes \mathcal{E}$	Φ^{P*}
$\iota_P \rho_{u'}^{(1,n+1)} \to \rho_v^{(0,1)} \otimes \iota_P \rho_u^{(1,n)}$	$\mathcal{E}^{\mu_P} o \mathcal{E} \otimes \mathcal{E}^{\mu_P}$	Φ*
$\iota_P^*\rho_{u'}^{(1,n+1)} \to \rho_v^{(0,1)} \otimes \iota_P^*\rho_u^{(1,n)}$	$\mathcal{E}^{\mu_P} ightarrow \mathcal{E} \otimes \mathcal{E}^{\mu_P}$	Φ^{P*}

Introdu	ction	
0000	000	000

3d SUSY gauge theories

Discussion 0000

- Main lessons:
 - The shifts propagate.
 - Vertex operators at brane junctions have to be modified.
 - Algebraic realization of Hanany-Witten and Vertical transitions.

Intr	odu	ctio	n	
00	00	00	000	00

3d SUSY gauge theories 00000

Discussion 0000

- Main lessons:
 - The shifts propagate.
 - Vertex operators at brane junctions have to be modified.
 - Algebraic realization of Hanany-Witten and Vertical transitions.

⇒ We can construct in this way the partition function and fundamental qq-character of 5d N = 1 U(N) linear quiver gauge theories with a number of (anti)fundamental hypermultiplets.

Shifted quantum groups 000000 Higgsing and pit representations

3d SUSY gauge theories

Discussion 0000

III. Higgsing and pit representations

Shifted quantum group 000000 Higgsing and pit representations 00000

3d SUSY gauge theories 00000 Discussion 0000

Vertical 'pit' representations

• The vertical representation acts on the instanton moduli space.

 \rightsquigarrow Instanton configurations are labelled by Young diagrams $\lambda,$ and the action is

$$\begin{split} x^{+}(z) \left| \lambda \right\rangle &= \sum_{\square \in \mathcal{A}(\lambda)} \delta(z/\chi_{\square}) C_{\lambda}^{+}(\square) \left| \lambda + \square \right\rangle, \\ x^{-}(z) \left| \lambda \right\rangle &= \sum_{\square \in \mathcal{R}(\lambda)} \delta(z/\chi_{\square}) C_{\lambda}^{-}(\square) \left| \lambda - \square \right\rangle, \\ \psi^{\pm}(z) \left| \lambda \right\rangle &= q_{3}^{-1/2} \left[\frac{\prod_{\square \in \mathcal{A}(\lambda)} (1 - q_{3}\chi_{\square}/z) \prod_{\square \in \mathcal{R}(\lambda)} (1 - \chi_{\square}/(q_{3}z))}{\prod_{\square \in \mathcal{A}(\lambda)} (1 - \chi_{\square}/z) \prod_{\square \in \mathcal{R}(\lambda)} (1 - \chi_{\square}/z)} \right]_{\pm} \left| \lambda \right\rangle \end{split}$$

where $C_{\lambda}^{\pm}(\Box)$ are known coefficients (but not enlightening).

 $\rightarrow x^+(z)$ add boxes ($A(\lambda)$ is the set of addable boxes), while $x^-(z)$ removes boxes ($R(\lambda)$ is the set of removable boxes) and $\psi^{\pm}(z)$ are diagonal.

 \rightsquigarrow For a box \Box of coordinates (i, j), we set $\chi_{\Box} = vq_1^{i-1}q_2^{j-1}$ with the weight $v \in \mathbb{C}^{\times}$.

Shifted quantum group: 000000 Higgsing and pit representations $\texttt{OO} \bullet \texttt{OOO}$

3d SUSY gauge theories 00000

Discussion 0000

• The shifted vertical representation $\iota_P \rho_V$ of $\mathcal{E}^{(d,0)}$ reads

$$x^{+}(z) |\lambda\rangle = P(z) \sum_{\Box \in A(\lambda)} \delta(z/\chi_{\Box}) A^{+}_{\lambda}(\Box) |\lambda + \Box\rangle,$$

$$\mathsf{x}^{-}(z) \ket{\lambda} = \sum_{\square \in R(\lambda)} \delta(z/\chi_{\square}) \mathsf{A}_{\lambda}^{-}(\square) \ket{\lambda - \square},$$

$$\psi^{\pm}(z) |\lambda\rangle = q_{3}^{-1/2} \left[P(z) \frac{\prod_{\square \in \mathcal{A}(\lambda)} (1 - q_{3}\chi_{\square}/z) \prod_{\square \in \mathcal{R}(\lambda)} (1 - \chi_{\square}/(q_{3}z))}{\prod_{\square \in \mathcal{A}(\lambda)} (1 - \chi_{\square}/z) \prod_{\square \in \mathcal{R}(\lambda)} (1 - \chi_{\square}/z)} \right]_{\pm} |\lambda\rangle$$

 \Rightarrow If P(z) has a zero at $z = vq_1^{i-1}q_2^{j-1}$, the representation is reducible! The

subrepresentation acts on a module spanned by Young diagrams **NOT** containing the box (i, j). \rightarrow Young diagrams are restricted to a fat hook

ntroduction	Shifted quantum groups	Higgsing and pit representations	3d SUSY gauge theories	Discussio
000000000	000000	000000	00000	0000

• With two pits, we can even obtain finite dimensional representations:

Here P(z) has two zeros at $z = vq_1^{i-1}$ and $z = vq_2^{j-1}$, Young diagrams are restricted to the rectangle $i \times j$: there are $\binom{i+j}{i}$ states.

 \Rightarrow This is a new feature for quantum toroidal algebras, it could be very interesting in the context of quantum integrable systems!

Shifted quantum groups 000000 Higgsing and pit representations $\texttt{OOOO} \bullet \texttt{O}$

3d SUSY gauge theories

Discussion 0000

Extra remarks

• Final dimensional representations of qu. tor. $\mathfrak{gl}(1)$ requires $\mu_+ + \mu_- \ge 2$. The most general finite dimensional representations are obtained as $\iota_{P}\rho_V$ with

$$P(z) = \prod_{\mathbf{I} \in \mathcal{A}(\mu)} (1 - \chi_{\mathbf{I}}/z) \quad \Rightarrow \quad \mathcal{M}_{\mu} = \operatorname{span} \{|\lambda\rangle\!\rangle / \lambda \subseteq \mu\}.$$

Shifted quantum groups

Higgsing and pit representations $\texttt{OOOO} \bullet \texttt{O}$

3d SUSY gauge theories

Discussion 0000

Extra remarks

• Final dimensional representations of qu. tor. $\mathfrak{gl}(1)$ requires $\mu_+ + \mu_- \ge 2$. The most general finite dimensional representations are obtained as $\iota_P \rho_V$ with

$$P(z) = \prod_{\mathbf{I} \in A(\mu)} (1 - \chi_{\mathbf{I}}/z) \quad \Rightarrow \quad \mathcal{M}_{\mu} = \operatorname{span} \{ |\lambda \rangle \! / \lambda \subseteq \mu \}.$$

• In the same way, "bulge representations" in which a number of boxes are always present are obtained as $\iota_{P}^{*}\rho_{V}$ with

$$\mathsf{P}(z) = \prod_{\blacksquare \in R(\mu)} (1 - \chi_\blacksquare/z),$$

The submodule is spanned by states $|\lambda\rangle\rangle$ where λ is restricted to contain μ as a sub-Young diagram and $|\mu\rangle\rangle$ defines a new vacuum (x⁻(z) $|\mu\rangle\rangle = 0$).

on	Shifted	quantum	groups
0000	0000	00	

Higgsing and pit representations $00000 \bullet$

3d SUSY gauge theories 00000 Discussion 0000

Higgsing

• In the gauge theory, the quantum group parameters q_1, q_2 are identified with the

(exponentiated) omega-background parameters $(e^{R\epsilon_1}, e^{R\epsilon_2})$ (*R* radius of S^1).

 \rightsquigarrow The vertical weights $v_{\ell} = e^{Ra_{\ell}}$ are (exponentiated) Coulomb branch vevs.

 \rightarrow The zeros $\nu_a = e^{Rm_a}$ of the polynomial P(z) are the masses of the hypermultiplets.

Higgsing

• In the gauge theory, the quantum group parameters q_1, q_2 are identified with the

(exponentiated) omega-background parameters $(e^{R\epsilon_1}, e^{R\epsilon_2})$ (*R* radius of S^1).

 \rightsquigarrow The vertical weights $v_\ell = e^{Ra_\ell}$ are (exponentiated) Coulomb branch vevs.

 \rightarrow The zeros $\nu_a = e^{Rm_a}$ of the polynomial P(z) are the masses of the hypermultiplets.

⇒ Higgsing corresponds to tune the hypermultiplets mass to $m_a = a_\ell + (i-1)\epsilon_1 + (j-1)\epsilon_2$ and leads to subrepresentations on smaller instanton moduli spaces.

Higgsing

ullet In the gauge theory, the quantum group parameters q_1,q_2 are identified with the

(exponentiated) omega-background parameters $(e^{R\epsilon_1}, e^{R\epsilon_2})$ (*R* radius of S^1).

 \rightsquigarrow The vertical weights $v_{\ell} = e^{Ra_{\ell}}$ are (exponentiated) Coulomb branch vevs.

 \rightsquigarrow The zeros $\nu_a = e^{Rm_a}$ of the polynomial P(z) are the masses of the hypermultiplets.

⇒ Higgsing corresponds to tune the hypermultiplets mass to $m_a = a_\ell + (i-1)\epsilon_1 + (j-1)\epsilon_2$ and leads to subrepresentations on smaller instanton moduli spaces.

We can propose an algebraic description of the Higgsing phenomenon!

Shifted quantum groups 000000 Higgsing and pit representations

3d SUSY gauge theories

Discussion 0000

IV. 3d SUSY gauge theories

Shifted quantum groups 000000 Higgsing and pit representations 000000 3d SUSY gauge theories

Discussion 0000

A cartoon for 2d $\mathcal{N} = (2,2)$ gauge theories

Shifted quantum groups

Higgsing and pit representations 000000 3d SUSY gauge theories

Discussion 0000

3d $\mathcal{N} = 2$ gauge theories

• Consider a class of 3d $\mathcal{N}=2$ gauge theories on $\mathbb{C}_{\epsilon_2} \times S^1$ obtained from 5d $\mathcal{N}=1$ gauge

theories on $\mathbb{C}_{\epsilon_1} \times \mathbb{C}_{\epsilon_2} \times S^1$ following a 2-steps procedure:

3d $\mathcal{N} = 2$ gauge theories

• Consider a class of 3d $\mathcal{N} = 2$ gauge theories on $\mathbb{C}_{\epsilon_2} \times S^1$ obtained from 5d $\mathcal{N} = 1$ gauge theories on $\mathbb{C}_{\epsilon_1} \times \mathbb{C}_{\epsilon_2} \times S^1$ following a 2-steps procedure:

i. Higgsing at $\nu_a = v_a q_2$ which creates a single D3-brane per D5.

 \Rightarrow 3d $\mathcal{N} =$ 4 vector multiplet broken to $\mathcal{N} =$ 2 vector \oplus chiral by Ω -background $m_{adj} = -\epsilon_1$.

Discussion 0000

3d $\mathcal{N} = 2$ gauge theories

• Consider a class of 3d $\mathcal{N} = 2$ gauge theories on $\mathbb{C}_{\epsilon_2} \times S^1$ obtained from 5d $\mathcal{N} = 1$ gauge theories on $\mathbb{C}_{\epsilon_1} \times \mathbb{C}_{\epsilon_2} \times S^1$ following a 2-steps procedure:

i. Higgsing at $\nu_a = v_a q_2$ which creates a single D3-brane per D5.

 \Rightarrow 3d $\mathcal{N} =$ 4 vector multiplet broken to $\mathcal{N} =$ 2 vector \oplus chiral by Ω -background $m_{adj} = -\epsilon_1$.

ii. Send $\epsilon_1 \rightarrow \infty$ to decouple the adjoint chiral multiplet.

 \Rightarrow 3d $\mathcal{N} = 2$ vector multiplet $\oplus N_f$ fund. chiral $\oplus \overline{N}_f$ antifund. chiral.

luction	Shifted quantum groups	Higgsing and pit representations	3d SUSY gauge theories
0000000	000000	000000	00000

- Algebraic description of this procedure:
- i. Higgsing with $\nu = vq_2$: pit subrepresentation on the vortex moduli space.

troduction	Shifted quantum groups	Higgsing and pit representations	3d SUSY gauge theories	Discussion
00000000	000000	000000	00000	0000

- Algebraic description of this procedure:
- i. Higgsing with $\nu = vq_2$: pit subrepresentation on the vortex moduli space.

ii. Limit $q_1 \rightarrow \infty$ (q_2 fixed): quantum toroidal $\mathfrak{gl}(1)$ reduces to (shifted) quantum affine $\mathfrak{sl}(2)$:

$$G(z) = \frac{(z-q_1)(z-q_2)(z-q_3)}{(z-q_1^{-1})(z-q_2^{-1})(z-q_3^{-1})} \to q^{-2}\frac{z-q^2}{z-q^{-2}}, \quad q_2 \to q^2.$$

It is a **formal** limit: it holds for the currents, not their modes!

---- Mathematical part of the second paper tries to make it rigorous for some representations.

Shifted quantum groups 000000 Higgsing and pit representations 000000 3d SUSY gauge theories

Discussion 0000

Engineering 3d $\mathcal{N}=2$ gauge theories

• We need the following ingredients:

Higgsing and pit representations 000000 3d SUSY gauge theories

Discussion 0000

Engineering 3d $\mathcal{N} = 2$ gauge theories

- We need the following ingredients:
- i. Vertical representation (D3): prefundamental representation of [Hernandez-Jimbo 2012]
- \rightsquigarrow Acts on the vortex moduli space, states |k
 angle with $k\in\mathbb{Z}^{\geq0}$

$$\begin{split} & x^{+}(z) |k\rangle \rangle = \delta(\nu q^{2k}/z) |k+1\rangle \rangle, \\ & x^{-}(z) |k\rangle \rangle = -\delta(\nu q^{2k-2}/z)(1-q^{2k}) |k-1\rangle \rangle, \\ & \psi^{\pm}(z) |k\rangle \rangle = q^{2k} \left[\frac{z(z-\nu q^{-2})}{(z-\nu q^{2k})(z-\nu q^{2k-2})} \right]_{\pm} |k\rangle \rangle. \end{split}$$

Higgsing and pit representations 000000 Discussion 0000

Engineering 3d $\mathcal{N} = 2$ gauge theories

- We need the following ingredients:
- i. Vertical representation (D3): prefundamental representation of [Hernandez-Jimbo 2012]
- ii. Horizontal representation (NS5): new twisted Fock representation with $\psi^+(z) = 0!!!$
- \rightsquigarrow Currents are represented by the vertex operators

$$\begin{aligned} x^{+}(z) &= e^{Q} e^{\sum_{k>0} \frac{z^{k}}{k} (1-q^{2k}) J_{-k}} e^{-\sum_{k>0} \frac{z^{-k}}{k} J_{k}} q^{-2J_{0}}, \\ x^{-}(z) &= e^{-Q} e^{-\sum_{k>0} \frac{z^{k}}{k} (1-q^{-2k}) J_{-k}} e^{\sum_{k>0} \frac{z^{-k}}{k} J_{k}}, \\ \psi^{+}(z) &= 0, \quad \psi^{-}(z) = e^{-\sum_{k>0} \frac{z^{k}}{k} (1+q^{2k}) (1-q^{-2k}) J_{-k}} q^{-2J_{0}}, \end{aligned}$$

 \rightarrow x⁻(z) coincides with Jing's t-fermion \Rightarrow Hall-Littlewood polynomials!!!

Higgsing and pit representations 000000 Discussion 0000

Engineering 3d $\mathcal{N} = 2$ gauge theories

- We need the following ingredients:
- i. Vertical representation (D3): prefundamental representation of [Hernandez-Jimbo 2012]
- ii. Horizontal representation (NS5): new twisted Fock representation with $\psi^+(z) = 0!!!$
- iii. Vertex operators Φ and Φ^* solving the intertwining relations

$$\varrho_{u,n}^{(LT)}(e)\Phi = \Phi\left(\varrho_{\nu} \otimes \iota_{\mathcal{P}_{\nu}}^{*}\varrho_{u,n}^{(LT)}\Delta(e)\right), \quad \left(\varrho_{\nu} \otimes \varrho_{u,n}^{(LT)}\Delta'(e)\right)\Phi^{*} = \Phi^{*}\iota_{\mathcal{P}_{\nu}^{*}}\varrho_{-u\nu,n+1}^{(LT)}(e).$$

 \Rightarrow The vortex partition function and fundamental qq-characters of 3d $\mathcal{N} = 2$ gauge theories constructed using the representation theory of the shifted quantum affine $\mathfrak{sl}(2)$ algebra.

Shifted quantum groups 000000 Higgsing and pit representations

3d SUSY gauge theories

Discussion •000

V. Discussion

Epilogue

To summarize...

• Fundamental hypermultiplets of 5d $\mathcal{N}=1$ gauge theories are realized in the algebraic formalism using shifted representations.

Introduction	
0000000000	

3d SUSY gauge theories 00000

Discussion 0000

Epilogue

To summarize...

- Fundamental hypermultiplets of 5d $\mathcal{N}=1$ gauge theories are realized in the algebraic formalism using shifted representations.
- Higgsing is associated to 'pit' representations.

ntrodu	ctio	n	
0000	00	0000	

3d SUSY gauge theorie 00000

Discussion 0000

Epilogue

To summarize...

• Fundamental hypermultiplets of 5d $\mathcal{N}=1$ gauge theories are realized in the algebraic formalism using shifted representations.

• Higgsing is associated to 'pit' representations.

• A class of 3d N = 2 gauge theories can be 'engineered' using representations of the shifted quantum affine $\mathfrak{sl}(2)$ algebra.

In	tr	00	lu	ct	io	n				
0	0	0	0	0	0	0	0	0	0	

Epilogue

To summarize...

- Fundamental hypermultiplets of 5d $\mathcal{N}=1$ gauge theories are realized in the algebraic formalism using shifted representations.
- Higgsing is associated to 'pit' representations.

• A class of 3d N = 2 gauge theories can be 'engineered' using representations of the shifted quantum affine $\mathfrak{sl}(2)$ algebra.

• These representations are the limits of the vertical/horizontal representations of the quantum toroidal $\mathfrak{gl}(1)$ algebra as $q_1 \to \infty$ with q_2 fixed.

• ...

Shifted quantum groups 000000 Higgsing and pit representations 000000

3d SUSY gauge theories 00000 Discussion 0000

Director's cuts

Some important results have been omitted in this talk, including:

• Relations between various representations (incl. vector repr.) of the toroidal algebra:

- Limit of the vertical representation without Higgsing
- Definition of twisted Fock representations ($\psi^+(z) = 0$) for quantum toroidal $\mathfrak{gl}(1)$.

Higgsing and pit representations

3d SUSY gauge theorie

Discussion 0000

Sequels?

- Application of the 3D algebraic construction?
 - \rightsquigarrow Integrability: [Gadde, Gukov, Putrov 2014]? Nekrasov-Shatashvili limit $\epsilon_2 \rightarrow 0$?
 - → Finite AGT correspondence? W-algebras and twisted Fock representation?
 - → Algebraic description of mirror symmetry? (Miki's automorphism)

Higgsing and pit representations

Sequels?

- Application of the 3D algebraic construction?
 - \rightsquigarrow Integrability: [Gadde, Gukov, Putrov 2014]? Nekrasov-Shatashvili limit $\epsilon_2 \rightarrow 0$?
 - → Finite AGT correspondence? W-algebras and twisted Fock representation?
 - → Algebraic description of mirror symmetry? (Miki's automorphism)
- Addressing more complicated defect
 - \rightarrow Use the orbifold description of defects and (generalized) quantum toroidal $\mathfrak{gl}(n)$

Higgsing and pit representations 000000 Discussion 0000

Sequels?

- Application of the 3D algebraic construction?
 - \rightsquigarrow Integrability: [Gadde, Gukov, Putrov 2014]? Nekrasov-Shatashvili limit $\epsilon_2 \rightarrow 0$?
 - → Finite AGT correspondence? W-algebras and twisted Fock representation?
 - → Algebraic description of mirror symmetry? (Miki's automorphism)
- Addressing more complicated defect
 - \rightarrow Use the orbifold description of defects and (generalized) quantum toroidal $\mathfrak{gl}(n)$
- Toward a fully algebraic description of brane systems?
 - ---- Higher dimensional theories and higher genus quantum groups.
 - →→ Treat more general backgrounds by combining different quantum groups.
 - → Other observables? Using integrability results?

Higgsing and pit representations 000000 Discussion 0000

Sequels?

- Application of the 3D algebraic construction?
 - \rightsquigarrow Integrability: [Gadde, Gukov, Putrov 2014]? Nekrasov-Shatashvili limit $\epsilon_2 \rightarrow 0$?
 - → Finite AGT correspondence? W-algebras and twisted Fock representation?
 - → Algebraic description of mirror symmetry? (Miki's automorphism)
- Addressing more complicated defect
 - \rightarrow Use the orbifold description of defects and (generalized) quantum toroidal $\mathfrak{gl}(n)$
- Toward a fully algebraic description of brane systems?
 - ---- Higher dimensional theories and higher genus quantum groups.
 - → Treat more general backgrounds by combining different quantum groups.
 - → Other observables? Using integrability results?

Thank you!