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AGT correspondence

AGT correspondence

⇒ On the RHS, all physical quantities determined by the symmetry algebra!

How about gauge theory partition functions?

Can you reconstruct them using only representation theory?
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• This point is better understood using the 5d uplift to N = 1 theories on C2 × S1.

 AGT correspondence involves q-deformed W-algebras.

 Non-perturbative (instanton) partition functions obtained as topological strings

amplitudes on toric Calabi-Yau threefolds.

 They can be computed using the (refined) topological vertex technique.

• The topological vertex is the set of matrix elements of a vertex operator

Cλ,µ,ν = 〈λ|Φ (|µ〉〉 ⊗ |ν〉) = (〈〈λ| ⊗ 〈µ|) Φ∗ |ν〉 .

 Choice of basis actually irrelevant (equivalence between IKV and Awata-Kanno vertices).

[Awata, Feigin, Shiraishi 2011]
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What is a vertex operator?

• The vertex operators of a 2d (chiral) CFT satisfy the primary field property

• We distinguish two types of representations:

- Vertical: ρV conformal transformations acting on the coordinates (basis zn)

- Horizontal: ρH action of the Virasoro algebra on the Fock space (basis J−λ1
· · · J−λ` |∅〉).

 This distinction will come back throughout the talk.

• The Virasoro algebra can be replaced by affine Lie algebras (WZW models), quantum

groups (Integrable Systems), or even toroidal quantum groups (topological strings vertex).

⇒ A vertex operator is an intertwiner between representations ρH and ρV ⊗ ρH .
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• To be specific, the vertex operators of topological strings Φ and Φ∗ are constructed as

intertwiners between 3 representations of the quantum toroidal gl(1) algebra:

• Thus, topological strings amplitudes are analogues of conformal blocks
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Geometric VS Algebraic Engineering

• This construction is in fact very general!

 To undestand why, we need to recall the correspondence with (p, q)-brane webs in which

the CY toric diagram is interpreted as a configuration of branes in type IIB string theory.

6

5

• The two types of representations are attached to different kind of branes:

- Vertical: on D5-branes = COHA action on instanton moduli space ρV = ρ(0,1)

- Horizontal: on NS5-branes (+ n D5) = ‘auxiliary’ Fock space ρH = ρ(1,n)

This correspondence can be extended to many different brane systems and representations!!!
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• In this way, several observables of SUSY gauge theories can be constructed in the

representation theory of a quantum group starting from the knowledge of the brane system.

• The procedure follows from these four steps:

i. Determine the quantum group from the spacetime of the theory:

e.g. Cε → affinization, S1 → trigonometric/elliptic deformation, orbifold → ADE,...

ii. Associate a module to each brane to obtain a network of representations.

iii. Construct an operator T acting on this network by gluing vertex operators Φ and Φ∗.

iv. Derive the gauge theory observables from matrix elements of this operator, e.g.

Partition
Function

Operator acting
on repr. network

qq-character
(BPS loop observable)

Algebra current
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• Over the last few years, this program has been applied successfully to many SUSY QFT:

Theories Quantum Group Reference

5D N = 1 quantum toroidal gl(1) [Awata, Feigin, Shiraishi 2011]

5D N = 1 on Zp-orbifold quantum toroidal gl(p) [Awata, Kanno, et. al. 2017]

5D N = 1 on Zp-orbifold new quantum toroidal algebras! [JEB, Jeong 2019]

4D N = 2 affine Yangian gl(1) [JEB, Zhang 2018]

6D N = (1, 0) elliptic toroidal gl(1) [Zhu 2018] [Foda, Zhu 2018]

3D N = 2∗ quantum toroidal gl(1) [Zenkevich 2018]

3D N = 2 quantum affine sl(2) [JEB 2107.10063]

• Other results include D-type quiver gauge theories [JEB, Fukuda, Matsuo, Zhu 2017],

qq-characters [JEB, Fukuda, Harada, Matsuo, Zhu 2017], R-matrices and KZ-equations [Awata,

Kanno, et. al.]...
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Motivations

A few reasons for developing this technique:

- Emphasize the role of the non-perturbative symmetry

 Correspondences (CFT, integrability), KZ equations, (q-)Painlevé,...

- Develop a diagrammatic technique that simplifies actual calculations

 Generalize the topological vertex technique to other brane systems

- Study of non-Lagrangian theories

- Connect with string theory realizations of QFT and brane systems

 Description of non-perturbative dualities, RG flows,...
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• In this talk we...

- Develop an algebraic description of fundamental hypermultiplets of 5D N = 1 U(N)

gauge theories.

- Extend the algebraic construction to a class of 3D N = 2 theories corresponding to

certain D3/D5/NS5-brane systems.

- Relate the two through the Higgsing mechanism and a limiting procedure.

To do this, we need the notion of shifted quantum groups!
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Outline

I. Introduction

II. Shifted quantum groups

III. Higgsing and pit representations

IV. 3d SUSY gauge theories

V. Discussion
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II. Shifted Quantum Groups
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Main point

• Disclaimer: While this work is about 5d/3d theories realized in type IIB string theory, the

illustrations are simpler in terms of 4d/2d theories in type IIA (no bending of branes). The

latters are obtained by sending the radius R → 0 of the extra compact dimension.

• Hanany-Witten transition for a 4d N = 2 SU(2) theory with one fundamental flavor:

NS5 NS5
D4

D6

D4

D4

NS5 NS5
D4

D6

D4

 On the LHS, the extra D4 brane bring a (trivial) module with weight∝mass, it has an

extra vertex operator too. ⇒ How do we include this information in the RHS?

Need to modify the representations acting on the branes modules!
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Shifted Quantum Groups

• In the Drinfeld presentation of quantum affine/toroidal algebras, a set of currents x±ω (z)

(or eω(z), fω(z)) and ψ±ω (z) is attached to each node ω of the (./affine) Dynkin diagram.

 Relation with RLL presentation [Frenkel, Ding 1993] for qu. affine algebras.

• Algebraic relations can be expressed using a matrix of structure functions Gω,ω′ (z), obtained

from the Cartan matrix, and depending on one/two parameters (denoted q or q1, q2).

• The shifts are introduced by imposing a different expansion for the Cartan currents:

x±ω (z) =
∑
k∈Z

z−kx±ω,k , ψ±ω (z) =
∑
±k≥µ±ω

z−kψ±ω,k .

⇒ More flexibility in the definition of representations!

• We focus here on the quantum affine sl(2) and quantum toroidal gl(1) algebras.

 No index ω. Shift parameters µ = (µ+, µ−) ∈ Z× Z.



Introduction Shifted quantum groups Higgsing and pit representations 3d SUSY gauge theories Discussion

Shifted Quantum Groups

• In the Drinfeld presentation of quantum affine/toroidal algebras, a set of currents x±ω (z)

(or eω(z), fω(z)) and ψ±ω (z) is attached to each node ω of the (./affine) Dynkin diagram.

 Relation with RLL presentation [Frenkel, Ding 1993] for qu. affine algebras.

• Algebraic relations can be expressed using a matrix of structure functions Gω,ω′ (z), obtained

from the Cartan matrix, and depending on one/two parameters (denoted q or q1, q2).

• The shifts are introduced by imposing a different expansion for the Cartan currents:

x±ω (z) =
∑
k∈Z

z−kx±ω,k , ψ±ω (z) =
∑
±k≥µ±ω

z−kψ±ω,k .

⇒ More flexibility in the definition of representations!

• We focus here on the quantum affine sl(2) and quantum toroidal gl(1) algebras.

 No index ω. Shift parameters µ = (µ+, µ−) ∈ Z× Z.



Introduction Shifted quantum groups Higgsing and pit representations 3d SUSY gauge theories Discussion

Shifted Quantum Groups

• In the Drinfeld presentation of quantum affine/toroidal algebras, a set of currents x±ω (z)

(or eω(z), fω(z)) and ψ±ω (z) is attached to each node ω of the (./affine) Dynkin diagram.

 Relation with RLL presentation [Frenkel, Ding 1993] for qu. affine algebras.

• Algebraic relations can be expressed using a matrix of structure functions Gω,ω′ (z), obtained

from the Cartan matrix, and depending on one/two parameters (denoted q or q1, q2).

• The shifts are introduced by imposing a different expansion for the Cartan currents:

x±ω (z) =
∑
k∈Z

z−kx±ω,k , ψ±ω (z) =
∑
±k≥µ±ω

z−kψ±ω,k .

⇒ More flexibility in the definition of representations!

• We focus here on the quantum affine sl(2) and quantum toroidal gl(1) algebras.

 No index ω. Shift parameters µ = (µ+, µ−) ∈ Z× Z.



Introduction Shifted quantum groups Higgsing and pit representations 3d SUSY gauge theories Discussion

Shifted Quantum Groups

• In the Drinfeld presentation of quantum affine/toroidal algebras, a set of currents x±ω (z)

(or eω(z), fω(z)) and ψ±ω (z) is attached to each node ω of the (./affine) Dynkin diagram.

 Relation with RLL presentation [Frenkel, Ding 1993] for qu. affine algebras.

• Algebraic relations can be expressed using a matrix of structure functions Gω,ω′ (z), obtained

from the Cartan matrix, and depending on one/two parameters (denoted q or q1, q2).

• The shifts are introduced by imposing a different expansion for the Cartan currents:

x±ω (z) =
∑
k∈Z

z−kx±ω,k , ψ±ω (z) =
∑
±k≥µ±ω

z−kψ±ω,k .

⇒ More flexibility in the definition of representations!

• We focus here on the quantum affine sl(2) and quantum toroidal gl(1) algebras.

 No index ω. Shift parameters µ = (µ+, µ−) ∈ Z× Z.



Introduction Shifted quantum groups Higgsing and pit representations 3d SUSY gauge theories Discussion

Main properties:

i. The usual quantum group E is recovered as Eµ with µ = (0, 0).

ii. The Drinfeld coproduct defines an homomorphism ∆ : Eµ+µ′ → Eµ ⊗ Eµ′ .

iii. Shifted representation: From any representation ρ of Eµ and a Laurent polynomial

P(z) ∈ C[z±1], we can define to representations ιPρ and ι∗Pρ of Eµ+µP as

ιPρ(x+(z)) = P(z)ρ(x+(z)), ιPρ(x−(z)) = ρ(x−(z)), ιPρ(ψ±(z)) = P(γ̂±1/2z)ρ(ψ±(z)),

ι∗Pρ(x+(z)) = ρ(x+(z)), ι∗Pρ(x−(z)) = P(z)ρ(x−(z)), ι∗Pρ(ψ±(z)) = P(γ̂∓1/2z)ρ(ψ±(z)),

with µP = (n − µ0, µ0) for P(z) = z−µ0
∏n

a=1(1− z/νa).

 These representations act on the same module!

The presence of D6 branes induce a shift of the representations!

zeros of P(z) = positions of D6 = masses hypermultiplets



Introduction Shifted quantum groups Higgsing and pit representations 3d SUSY gauge theories Discussion

Main properties:

i. The usual quantum group E is recovered as Eµ with µ = (0, 0).

ii. The Drinfeld coproduct defines an homomorphism ∆ : Eµ+µ′ → Eµ ⊗ Eµ′ .

iii. Shifted representation: From any representation ρ of Eµ and a Laurent polynomial

P(z) ∈ C[z±1], we can define to representations ιPρ and ι∗Pρ of Eµ+µP as

ιPρ(x+(z)) = P(z)ρ(x+(z)), ιPρ(x−(z)) = ρ(x−(z)), ιPρ(ψ±(z)) = P(γ̂±1/2z)ρ(ψ±(z)),

ι∗Pρ(x+(z)) = ρ(x+(z)), ι∗Pρ(x−(z)) = P(z)ρ(x−(z)), ι∗Pρ(ψ±(z)) = P(γ̂∓1/2z)ρ(ψ±(z)),

with µP = (n − µ0, µ0) for P(z) = z−µ0
∏n

a=1(1− z/νa).

 These representations act on the same module!

The presence of D6 branes induce a shift of the representations!

zeros of P(z) = positions of D6 = masses hypermultiplets



Introduction Shifted quantum groups Higgsing and pit representations 3d SUSY gauge theories Discussion

Main properties:

i. The usual quantum group E is recovered as Eµ with µ = (0, 0).

ii. The Drinfeld coproduct defines an homomorphism ∆ : Eµ+µ′ → Eµ ⊗ Eµ′ .

iii. Shifted representation: From any representation ρ of Eµ and a Laurent polynomial

P(z) ∈ C[z±1], we can define to representations ιPρ and ι∗Pρ of Eµ+µP as

ιPρ(x+(z)) = P(z)ρ(x+(z)), ιPρ(x−(z)) = ρ(x−(z)), ιPρ(ψ±(z)) = P(γ̂±1/2z)ρ(ψ±(z)),

ι∗Pρ(x+(z)) = ρ(x+(z)), ι∗Pρ(x−(z)) = P(z)ρ(x−(z)), ι∗Pρ(ψ±(z)) = P(γ̂∓1/2z)ρ(ψ±(z)),

with µP = (n − µ0, µ0) for P(z) = z−µ0
∏n

a=1(1− z/νa).

 These representations act on the same module!

The presence of D6 branes induce a shift of the representations!

zeros of P(z) = positions of D6 = masses hypermultiplets



Introduction Shifted quantum groups Higgsing and pit representations 3d SUSY gauge theories Discussion

Main properties:

i. The usual quantum group E is recovered as Eµ with µ = (0, 0).

ii. The Drinfeld coproduct defines an homomorphism ∆ : Eµ+µ′ → Eµ ⊗ Eµ′ .

iii. Shifted representation: From any representation ρ of Eµ and a Laurent polynomial

P(z) ∈ C[z±1], we can define to representations ιPρ and ι∗Pρ of Eµ+µP as

ιPρ(x+(z)) = P(z)ρ(x+(z)), ιPρ(x−(z)) = ρ(x−(z)), ιPρ(ψ±(z)) = P(γ̂±1/2z)ρ(ψ±(z)),

ι∗Pρ(x+(z)) = ρ(x+(z)), ι∗Pρ(x−(z)) = P(z)ρ(x−(z)), ι∗Pρ(ψ±(z)) = P(γ̂∓1/2z)ρ(ψ±(z)),

with µP = (n − µ0, µ0) for P(z) = z−µ0
∏n

a=1(1− z/νa).

 These representations act on the same module!

The presence of D6 branes induce a shift of the representations!

zeros of P(z) = positions of D6 = masses hypermultiplets



Introduction Shifted quantum groups Higgsing and pit representations 3d SUSY gauge theories Discussion

• Example of (equivalent) realizations of SU(2) gauge theory with one fundamental flavor:

NS5

NS5

D4 D4 D6ρ
(0,1)
v2

ιPρ
(0,1)
v1

ι∗Pρ
(1,n∗+2)ρ(1,n∗+1)ρ(1,n∗)

ρ(1,n)ιPρ
(1,n+1)ιPρ

(1,n+2)

Φ∗

ΦP

ΦP∗

Φ

⊗ ιPρ
(0,1)
v2

ρ
(0,1)
v1

ι∗Pρ
(1,n∗+2)ι∗Pρ

(1,n∗+1)ρ(1,n∗)

ρ(1,n)ρ(1,n+1)ιPρ
(1,n+2)

ΦP∗

Φ

ΦP∗

Φ

⊗

ρ
(0,1)
v2

ρ
(0,1)
v1

ι∗Pρ
(1,n∗+2)ι∗Pρ

(1,n∗+1)ι∗Pρ
(1,n∗)

ρ(1,n)ρ(1,n+1)ρ(1,n+2)

ΦP∗

Φ

ΦP∗

Φ

⊗

ρ
(0,1)
v2

ρ
(0,1)
v1

ρ(1,n∗+2)ρ(1,n∗+1)ρ(1,n∗)

ιPρ
(1,n)ιPρ

(1,n+1)ιPρ
(1,n+2)

Φ∗

ΦP

Φ∗

ΦP
⊗

ρ
(0,1)
v2

ι∗Pρ
(0,1)
v1

ι∗Pρ
(1,n∗+2)ρ(1,n∗+1)ρ(1,n∗)

ρ(1,n)ιPρ
(1,n+1)ιPρ

(1,n+2)

Φ∗

ΦP

Φ∗

ΦP

⊗ ι∗Pρ
(0,1)
v2 ρ

(0,1)
v1

ι∗Pρ
(1,n∗+2)ι∗Pρ

(1,n∗+1)ρ(1,n∗)

ρ(1,n)ρ(1,n+1)ιPρ
(1,n+2)

Φ∗

ΦP

ΦP∗

Φ

⊗

 The position of the transverse D6 is a conjecture.
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• Main lessons:

The shifts propagate.

Vertex operators at brane junctions have to be modified.

Algebraic realization of Hanany-Witten and Vertical transitions.

ρ(0,1)

ιPρ
(1,n+1) ιPρ

(1,n)
ΦP

⊗

ιPρ
(0,1)

ιPρ
(1,n+1) ρ(1,n)

Φ

⊗

ιPρ
(0,1)

ι∗Pρ
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ρ(1,n)ιPρ
(1,n+1)

ΦP∗

Φ
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v
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(1,n∗+1)ρ(1,n∗)

ρ(1,n)ιPρ
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Φ∗

ΦP

⊗

⇒ We can construct in this way the partition function and fundamental qq-character of 5d

N = 1 U(N) linear quiver gauge theories with a number of (anti)fundamental hypermultiplets.



Introduction Shifted quantum groups Higgsing and pit representations 3d SUSY gauge theories Discussion
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III. Higgsing and pit representations
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Vertical ‘pit’ representations

• The vertical representation acts on the instanton moduli space.

 Instanton configurations are labelled by Young diagrams λ, and the action is

x+(z) |λ〉 =
∑
∈A(λ)

δ(z/χ )C+
λ ( ) |λ+ 〉 ,

x−(z) |λ〉 =
∑
∈R(λ)

δ(z/χ )C−λ ( ) |λ− 〉 ,

ψ±(z) |λ〉 = q
−1/2
3

[∏
∈A(λ)(1− q3χ /z)

∏
∈R(λ)(1− χ /(q3z))∏

∈A(λ)(1− χ /z)
∏
∈R(λ)(1− χ /z)

]
±

|λ〉

where C±λ ( ) are known coefficients (but not enlightening).

 x+(z) add boxes (A(λ) is the set of addable boxes), while x−(z) removes boxes (R(λ) is

the set of removable boxes) and ψ±(z) are diagonal.

 For a box of coordinates (i , j), we set χ = vqi−1
1 qj−1

2 with the weight v ∈ C×.

i

j
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• The shifted vertical representation ιPρV of E(d,0) reads

x+(z) |λ〉 = P(z)
∑
∈A(λ)

δ(z/χ )A+
λ ( ) |λ+ 〉 ,

x−(z) |λ〉 =
∑
∈R(λ)

δ(z/χ )A−λ ( ) |λ− 〉 ,

ψ±(z) |λ〉 = q
−1/2
3

[
P(z)

∏
∈A(λ)(1− q3χ /z)

∏
∈R(λ)(1− χ /(q3z))∏

∈A(λ)(1− χ /z)
∏
∈R(λ)(1− χ /z)

]
±

|λ〉

⇒ If P(z) has a zero at z = vqi−1
1 qj−1

2 , the representation is reducible! The

subrepresentation acts on a module spanned by Young diagrams NOT containing the box (i , j).

 Young diagrams are restricted to a fat hook

i

j

The subrepresentation is called a pit representation!
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• With two pits, we can even obtain finite dimensional representations:

i

j

Here P(z) has two zeros at z = vqi−1
1 and z = vqj−1

2 , Young diagrams are restricted to the

rectangle i × j : there are
(i+j

i

)
states.

⇒ This is a new feature for quantum toroidal algebras, it could be very interesting in the

context of quantum integrable systems!
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Extra remarks

• Final dimensional representations of qu. tor. gl(1) requires µ+ + µ− ≥ 2. The most general

finite dimensional representations are obtained as ιPρV with

P(z) =
∏
∈A(µ)

(1− χ /z) ⇒ Mµ = span {|λ〉〉�λ ⊆ µ}.

• In the same way, “bulge representations” in which a number of boxes are always present are

obtained as ι∗PρV with

P(z) =
∏
∈R(µ)

(1− χ /z),

The submodule is spanned by states |λ〉〉 where λ is restricted to contain µ as a sub-Young

diagram and |µ〉〉 defines a new vacuum (x−(z) |µ〉〉 = 0).
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Higgsing

• In the gauge theory, the quantum group parameters q1, q2 are identified with the

(exponentiated) omega-background parameters (eRε1 , eRε2 ) (R radius of S1).

 The vertical weights v` = eRa` are (exponentiated) Coulomb branch vevs.

 The zeros νa = eRma of the polynomial P(z) are the masses of the hypermultiplets.

⇒ Higgsing corresponds to tune the hypermultiplets mass to ma = a` + (i − 1)ε1 + (j − 1)ε2

and leads to subrepresentations on smaller instanton moduli spaces.

We can propose an algebraic description of the Higgsing phenomenon!
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IV. 3d SUSY gauge theories
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A cartoon for 2d N = (2, 2) gauge theories

NS5 NS5
D4

D4D4

D4

NS5 NS5

Higgsing

Pull NS5

D4

D4

D4

D2

D2

NS5NS5'

D4

D4

D2

D2

NS5' NS5NS5

D4
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3d N = 2 gauge theories

• Consider a class of 3d N = 2 gauge theories on Cε2 × S1 obtained from 5d N = 1 gauge

theories on Cε1 × Cε2 × S1 following a 2-steps procedure:

i. Higgsing at νa = vaq2 which creates a single D3-brane per D5.

NS5

D5

NS5

D5

NS5

D5

D5

NS5

D5

D5

α

α

NS5
D5

D5

D3

D3 NS5

D5

D5

0 1 2 3 4 5 6 7 8 9

Ω-bg ε2 ε2 ε1 ε1 ε3 ε3

(p, q) x x x x x θ θ

NS5 x x x x x x

D5 x x x x x x

D3 x x x x

⇒ 3d N = 4 vector multiplet broken to N = 2 vector ⊕ chiral by Ω-background madj = −ε1.

ii. Send ε1 →∞ to decouple the adjoint chiral multiplet.

⇒ 3d N = 2 vector multiplet ⊕ Nf fund. chiral ⊕ N̄f antifund. chiral.
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• Algebraic description of this procedure:

i. Higgsing with ν = vq2: pit subrepresentation on the vortex moduli space.

k

ii. Limit q1 →∞ (q2 fixed): quantum toroidal gl(1) reduces to (shifted) quantum affine sl(2):

G(z) =
(z − q1)(z − q2)(z − q3)

(z − q−1
1 )(z − q−1

2 )(z − q−1
3 )
→ q−2 z − q2

z − q−2
, q2 → q2.

! It is a formal limit: it holds for the currents, not their modes!

 Mathematical part of the second paper tries to make it rigorous for some representations.
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Engineering 3d N = 2 gauge theories

• We need the following ingredients:

i. Vertical representation (D3): prefundamental representation of [Hernandez-Jimbo 2012]

ii. Horizontal representation (NS5): new twisted Fock representation with ψ+(z) = 0!!!

iii. Vertex operators Φ and Φ∗ solving the intertwining relations

%
(LT )
u,n (e)Φ = Φ

(
%ν ⊗ ι∗Pν %

(LT )
u,n ∆(e)

)
,
(
%ν ⊗ %(LT )

u,n ∆′(e)
)

Φ∗ = Φ∗ιP∗ν %
(LT )
−uν,n+1(e).

⇒ The vortex partition function and fundamental qq-characters of 3d N = 2 gauge theories

constructed using the representation theory of the shifted quantum affine sl(2) algebra.
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Engineering 3d N = 2 gauge theories

• We need the following ingredients:

i. Vertical representation (D3): prefundamental representation of [Hernandez-Jimbo 2012]

 Acts on the vortex moduli space, states |k〉〉 with k ∈ Z≥0

x+(z) |k〉〉 = δ(νq2k/z) |k + 1〉〉,

x−(z) |k〉〉 = −δ(νq2k−2/z)(1− q2k ) |k − 1〉〉,

ψ±(z) |k〉〉 = q2k

[
z(z − νq−2)

(z − νq2k )(z − νq2k−2)

]
±
|k〉〉.
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Engineering 3d N = 2 gauge theories

• We need the following ingredients:

i. Vertical representation (D3): prefundamental representation of [Hernandez-Jimbo 2012]

ii. Horizontal representation (NS5): new twisted Fock representation with ψ+(z) = 0!!!

 Currents are represented by the vertex operators

x+(z) = eQe
∑

k>0
zk

k
(1−q2k )J−k e−

∑
k>0

z−k

k
Jk q−2J0 ,

x−(z) = e−Qe−
∑

k>0
zk

k
(1−q−2k )J−k e

∑
k>0

z−k

k
Jk ,

ψ+(z) = 0, ψ−(z) = e−
∑

k>0
zk

k
(1+q2k )(1−q−2k )J−k q−2J0 ,

 x−(z) coincides with Jing’s t-fermion ⇒ Hall-Littlewood polynomials!!!
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V. Discussion
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Epilogue

To summarize...

• Fundamental hypermultiplets of 5d N = 1 gauge theories are realized in the algebraic

formalism using shifted representations.

• Higgsing is associated to ‘pit’ representations.

• A class of 3d N = 2 gauge theories can be ‘engineered’ using representations of the shifted

quantum affine sl(2) algebra.

• These representations are the limits of the vertical/horizontal representations of the

quantum toroidal gl(1) algebra as q1 →∞ with q2 fixed.



Introduction Shifted quantum groups Higgsing and pit representations 3d SUSY gauge theories Discussion

Epilogue

To summarize...

• Fundamental hypermultiplets of 5d N = 1 gauge theories are realized in the algebraic

formalism using shifted representations.

• Higgsing is associated to ‘pit’ representations.

• A class of 3d N = 2 gauge theories can be ‘engineered’ using representations of the shifted

quantum affine sl(2) algebra.

• These representations are the limits of the vertical/horizontal representations of the

quantum toroidal gl(1) algebra as q1 →∞ with q2 fixed.



Introduction Shifted quantum groups Higgsing and pit representations 3d SUSY gauge theories Discussion

Epilogue

To summarize...

• Fundamental hypermultiplets of 5d N = 1 gauge theories are realized in the algebraic

formalism using shifted representations.

• Higgsing is associated to ‘pit’ representations.

• A class of 3d N = 2 gauge theories can be ‘engineered’ using representations of the shifted

quantum affine sl(2) algebra.

• These representations are the limits of the vertical/horizontal representations of the

quantum toroidal gl(1) algebra as q1 →∞ with q2 fixed.



Introduction Shifted quantum groups Higgsing and pit representations 3d SUSY gauge theories Discussion

Epilogue

To summarize...

• Fundamental hypermultiplets of 5d N = 1 gauge theories are realized in the algebraic

formalism using shifted representations.

• Higgsing is associated to ‘pit’ representations.

• A class of 3d N = 2 gauge theories can be ‘engineered’ using representations of the shifted

quantum affine sl(2) algebra.

• These representations are the limits of the vertical/horizontal representations of the

quantum toroidal gl(1) algebra as q1 →∞ with q2 fixed.



Introduction Shifted quantum groups Higgsing and pit representations 3d SUSY gauge theories Discussion

Director’s cuts

Some important results have been omitted in this talk, including:

Relations between various representations (incl. vector repr.) of the toroidal algebra:

Limit of the vertical representation without Higgsing

Definition of twisted Fock representations (ψ+(z) = 0) for quantum toroidal gl(1).

...
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Sequels?

Application of the 3D algebraic construction?

 Integrability: [Gadde, Gukov, Putrov 2014]? Nekrasov-Shatashvili limit ε2 → 0?

 Finite AGT correspondence? W-algebras and twisted Fock representation?

 Algebraic description of mirror symmetry? (Miki’s automorphism)

Addressing more complicated defect

 Use the orbifold description of defects and (generalized) quantum toroidal gl(n)

Toward a fully algebraic description of brane systems?

 Higher dimensional theories and higher genus quantum groups.

 Treat more general backgrounds by combining different quantum groups.

 Other observables? Using integrability results?

Thank you!
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