The analytic, algebraic and geometric aspects of the Stokes phenomenon

Xiaomeng Xu Peking University

HEP-TH Seminar 7月6日, 2022

Xiaomeng Xu Peking University The analytic, algebraic and geometric aspects of the S

Example

(a).
$$e^{1/z}$$
 on left/right planes.

Example

(a). $e^{1/z}$ on left/right planes. (b). ${}_1F_1(\alpha,\beta;z) := \sum_{n=0}^{\infty} \frac{\alpha^{(n)}z^{-n}}{\beta^{(n)}n!}$, on left/right planes where $\alpha^{(n)} := \alpha \cdots (\alpha + n - 1)$,

Example

(a).
$$e^{1/z}$$
 on left/right planes.
(b). ${}_{1}F_{1}(\alpha,\beta;z) := \sum_{n=0}^{\infty} \frac{\alpha^{(n)}z^{-n}}{\beta^{(n)}n!}$, on left/right planes
where $\alpha^{(n)} := \alpha \cdots (\alpha + n - 1)$,

$${}_{1}F_{1}(\alpha,\beta;z) \sim \frac{\Gamma(\beta)}{\Gamma(\beta-\alpha)} (-z)^{\alpha} (1+O(z)) + \frac{\Gamma(\beta)}{\Gamma(\alpha)} e^{-\frac{1}{z}} z^{-\alpha+\beta} (1+O(z)) + \frac{\Gamma(\beta)}{\Gamma(\alpha)} e^{-\frac{1}{z}} z^{-\frac{1}{z}} (1+O(z)) + \frac{\Gamma(\beta)}{\Gamma(\alpha)} e^{-\frac{1}{z}} z^{-\frac{1}{z}} (1+O(z)) + \frac{\Gamma(\beta$$

Example

(a).
$$e^{1/z}$$
 on left/right planes.
(b). ${}_{1}F_{1}(\alpha,\beta;z) := \sum_{n=0}^{\infty} \frac{\alpha^{(n)}z^{-n}}{\beta^{(n)}n!}$, on left/right planes
where $\alpha^{(n)} := \alpha \cdots (\alpha + n - 1)$,
 $\Gamma(\beta)$

$${}_{1}F_{1}(\alpha,\beta;z) \sim \frac{\Gamma(\beta)}{\Gamma(\beta-\alpha)}(-z)^{\alpha}(1+O(z)) + \frac{\Gamma(\beta)}{\Gamma(\alpha)}e^{-\frac{1}{z}}z^{-\alpha+\beta}(1+O(z))$$

• Consider the linear system on z-plane

$$\frac{dF}{dz} = \left(\frac{A_k}{z^k} + \frac{A_{k-1}}{z^{k-1}} + \dots + \frac{A_1}{z} + A_0 + B_1 z + B_2 z^2 + \dots\right) F,$$

where $F(z) \in GL_n$, A_i and B_i are constant matrices.

 $2 \, / \, 18$

(日)、(四)、(三)、(三)、(三)

Example

(a).
$$e^{1/z}$$
 on left/right planes.
(b). $_1F_1(\alpha,\beta;z) := \sum_{n=0}^{\infty} \frac{\alpha^{(n)}z^{-n}}{\beta^{(n)}n!}$, on left/right planes
where $\alpha^{(n)} := \alpha \cdots (\alpha + n - 1)$,
 $\Gamma(\beta) \qquad \Gamma(\beta) = 1 = 12$

$${}_{1}F_{1}(\alpha,\beta;z) \sim \frac{\Gamma(\beta)}{\Gamma(\beta-\alpha)}(-z)^{\alpha}(1+O(z)) + \frac{\Gamma(\beta)}{\Gamma(\alpha)}e^{-\frac{1}{z}}z^{-\alpha+\beta}(1+O(z))$$

 \bullet Consider the linear system on z-plane

$$\frac{dF}{dz} = \left(\frac{A_k}{z^k} + \frac{A_{k-1}}{z^{k-1}} + \dots + \frac{A_1}{z} + A_0 + B_1 z + B_2 z^2 + \dots\right) F,$$

where $F(z) \in \operatorname{GL}_n$, A_i and B_i are constant matrices. • The asymptotics behavior of its solution F(z) can differ in different sectors surrounding the essential pole z = 0.

Stokes matrices of ODEs with second order poles

 \bullet Consider the linear system on z-plane

$$\frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{A}{z}\right)F,$$

 $F(z) \in \operatorname{GL}_n, u = \operatorname{diag}(u_1, ..., u_n), \text{ and } A \in \mathfrak{gl}_n.$

Stokes matrices of ODEs with second order poles

 \bullet Consider the linear system on z-plane

$$\frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{A}{z}\right)F_z$$

 $F(z) \in \operatorname{GL}_n, u = \operatorname{diag}(u_1, ..., u_n), \text{ and } A \in \mathfrak{gl}_n.$

• Any fundamental solution $F(z) \in GL_n$ has asymptotics

 $e^{\frac{u}{z}}z^{-[A]} \cdot F(z) \sim T_{\pm}$ as $z \to 0$ in left/right planes \mathbb{H}_{\pm} ,

for some invertible constant matrices T_{\pm} .

• The different asymptotics of F(z) are measured by the ratio

$$S_+(A, u) = T_+ \cdot T_-^{-1},$$

called Stokes matrix, similarly define $S_{-}(A, u)$.

Example: 2 by 2

 \bullet We consider

$$\frac{dF}{dz} = \left(\frac{1}{z^2} \left(\begin{array}{cc} u_1 & 0\\ 0 & u_2 \end{array}\right) + \frac{1}{z} \left(\begin{array}{cc} t_1 & a\\ b & t_2 \end{array}\right)\right) F.$$

Example: 2 by 2

\bullet We consider

$$\frac{dF}{dz} = \left(\frac{1}{z^2} \left(\begin{array}{cc} u_1 & 0\\ 0 & u_2 \end{array}\right) + \frac{1}{z} \left(\begin{array}{cc} t_1 & a\\ b & t_2 \end{array}\right)\right)F.$$

Then

$$S_{+}(A, u) = \begin{pmatrix} e^{t_{1}} & \frac{a((u_{2}-u_{1}))^{t_{1}-t_{2}}}{\Gamma(1-\lambda_{1}+t_{1})\Gamma(1-\lambda_{2}+t_{1})} \\ 0 & e^{t_{2}} \end{pmatrix}$$

Here λ_1, λ_2 are eigenvalues of $\begin{pmatrix} t_1 & a \\ b & t_2 \end{pmatrix}$.

(日)、(部)、(E)、(E)、 E

$$\frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{A}{z}\right)F$$

$$\frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{A}{z}\right)F$$

In Frobenius manifolds/Gromov-Witten theory, stability conditions, nonlinear isomonodromy equation, geometry on moduli spaces, quantum field theory, cluster algebras...

$$\frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{A}{z}\right)F$$

In Frobenius manifolds/Gromov-Witten theory, stability conditions, nonlinear isomonodromy equation, geometry on moduli spaces, quantum field theory, cluster algebras...

I. the analysis aspect: an asymptotic solution to the Riemann-Hilbert problem/connection problem of the underlying nonlinear isomonodromy equations.

$$\frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{A}{z}\right)F$$

In Frobenius manifolds/Gromov-Witten theory, stability conditions, nonlinear isomonodromy equation, geometry on moduli spaces, quantum field theory, cluster algebras...

I. the analysis aspect: an asymptotic solution to the Riemann-Hilbert problem/connection problem of the underlying nonlinear isomonodromy equations.

II. the algebraic aspect: a realization of quantum groups and crystals.

イロト イロト イヨト イヨト 三日

$$\frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{A}{z}\right)F$$

In Frobenius manifolds/Gromov-Witten theory, stability conditions, nonlinear isomonodromy equation, geometry on moduli spaces, quantum field theory, cluster algebras...

I. the analysis aspect: an asymptotic solution to the Riemann-Hilbert problem/connection problem of the underlying nonlinear isomonodromy equations.

II. the algebraic aspect: a realization of quantum groups and crystals.

III. the geometric aspect: the Stokes matrices in the WKB approximation via the periods on spectral curves,

Part I

The analytic aspect of the Stokes phenomenon: Riemann-Hilbert problem and isomonodromy deformation equations

RH problem : $(u, A) \mapsto S_+(u, A)$

RH problem :
$$(u, A) \mapsto S_+(u, A) = \begin{pmatrix} e^{t_1} & \frac{a((u_2 - u_1))^{t_1 - t_2}}{\Gamma(1 - \lambda_1 + t_1)\Gamma(1 - \lambda_2 + t_1)} \\ 0 & e^{t_2} \end{pmatrix}.$$

RH problem :
$$(u, A) \mapsto S_+(u, A) = \begin{pmatrix} e^{t_1} & \frac{a((u_2 - u_1))^{t_1 - t_2}}{\Gamma(1 - \lambda_1 + t_1)\Gamma(1 - \lambda_2 + t_1)} \\ 0 & e^{t_2} \end{pmatrix}.$$

Theorem (Xu, RH problem as $u_1 \ll u_2 \ll \cdots \ll u_n$)

Set $\{\lambda_i^{(k)}\}_{i=1,...,k}$ the eigenvalues of the k-th principal submatrix of $A \in \mathfrak{gl}_n$. Then as $u_k/u_{k+1} \to 0$ for all k = 1, ..., n-1 in $u = \operatorname{diag}(u_1, ..., u_n)$, the sub-diagonals of $S_+(u, A)$ are

RH problem :
$$(u, A) \mapsto S_+(u, A) = \begin{pmatrix} e^{t_1} & \frac{a((u_2 - u_1))^{t_1 - t_2}}{\Gamma(1 - \lambda_1 + t_1)\Gamma(1 - \lambda_2 + t_1)} \\ 0 & e^{t_2} \end{pmatrix}.$$

Theorem (Xu, RH problem as $u_1 \ll u_2 \ll \cdots \ll u_n$)

Set $\{\lambda_i^{(k)}\}_{i=1,...,k}$ the eigenvalues of the k-th principal submatrix of $A \in \mathfrak{gl}_n$. Then as $u_k/u_{k+1} \to 0$ for all k = 1, ..., n-1 in $u = \operatorname{diag}(u_1, ..., u_n)$, the sub-diagonals of $S_+(u, A)$ are

$$S_{k,k+1} = \sum_{i=1}^{k} \frac{\prod_{l=1,l\neq i}^{k} \Gamma(\lambda_{l}^{(k)} - \lambda_{i}^{(k)})}{\prod_{l=1}^{k+1} \Gamma(\lambda_{l}^{(k+1)} - \lambda_{i}^{(k)})} \frac{\prod_{l=1,l\neq i}^{k} \Gamma(\lambda_{l}^{(k)} - \lambda_{i}^{(k)})}{\prod_{l=1}^{k-1} \Gamma(\lambda_{l}^{(k-1)} - \lambda_{i}^{(k)})} \cdot m_{i}^{(k)} + O(\frac{\log(u_{2} - u_{1})}{u_{2} - u_{1}}),$$

where k = 1, ..., n - 1 and the other entries are given by explicit algebraic combinations of the sub-diagonal ones.

(□) (圖) (E) (E) (E)

RH problem :
$$(u, A) \mapsto S_+(u, A) = \begin{pmatrix} e^{t_1} & \frac{a((u_2 - u_1))^{t_1 - t_2}}{\Gamma(1 - \lambda_1 + t_1)\Gamma(1 - \lambda_2 + t_1)} \\ 0 & e^{t_2} \end{pmatrix}.$$

Theorem (Xu, RH problem as $u_1 \ll u_2 \ll \cdots \ll u_n$)

Set $\{\lambda_i^{(k)}\}_{i=1,...,k}$ the eigenvalues of the k-th principal submatrix of $A \in \mathfrak{gl}_n$. Then as $u_k/u_{k+1} \to 0$ for all k = 1, ..., n-1 in $u = \operatorname{diag}(u_1, ..., u_n)$, the sub-diagonals of $S_+(u, A)$ are

$$S_{k,k+1} = \sum_{i=1}^{k} \frac{\prod_{l=1,l\neq i}^{k} \Gamma(\lambda_{l}^{(k)} - \lambda_{i}^{(k)})}{\prod_{l=1}^{k+1} \Gamma(\lambda_{l}^{(k+1)} - \lambda_{i}^{(k)})} \frac{\prod_{l=1,l\neq i}^{k} \Gamma(\lambda_{l}^{(k)} - \lambda_{i}^{(k)})}{\prod_{l=1}^{k-1} \Gamma(\lambda_{l}^{(k-1)} - \lambda_{i}^{(k)})} \cdot m_{i}^{(k)} + O(\frac{\log(u_{2} - u_{1})}{u_{2} - u_{1}}),$$

where k = 1, ..., n - 1 and the other entries are given by explicit algebraic combinations of the sub-diagonal ones.

• By the isomonodromy property, the leading term gives a model in the study of Stokes phenomenon.

<ロト < 部 > < 目 > < 目 > < 目 > のQC

RH problem :
$$(u, A) \mapsto S_+(u, A) = \begin{pmatrix} e^{t_1} & \frac{a((u_2 - u_1))^{t_1 - t_2}}{\Gamma(1 - \lambda_1 + t_1)\Gamma(1 - \lambda_2 + t_1)} \\ 0 & e^{t_2} \end{pmatrix}.$$

Theorem (Xu, RH problem as $u_1 \ll u_2 \ll \cdots \ll u_n$)

Set $\{\lambda_i^{(k)}\}_{i=1,...,k}$ the eigenvalues of the k-th principal submatrix of $A \in \mathfrak{gl}_n$. Then as $u_k/u_{k+1} \to 0$ for all k = 1, ..., n-1 in $u = \operatorname{diag}(u_1, ..., u_n)$, the sub-diagonals of $S_+(u, A)$ are

$$S_{k,k+1} = \sum_{i=1}^{k} \frac{\prod_{l=1,l\neq i}^{k} \Gamma(\lambda_{l}^{(k)} - \lambda_{i}^{(k)})}{\prod_{l=1}^{k+1} \Gamma(\lambda_{l}^{(k+1)} - \lambda_{i}^{(k)})} \frac{\prod_{l=1,l\neq i}^{k} \Gamma(\lambda_{l}^{(k)} - \lambda_{i}^{(k)})}{\prod_{l=1}^{k-1} \Gamma(\lambda_{l}^{(k-1)} - \lambda_{i}^{(k)})} \cdot m_{i}^{(k)} + O(\frac{\log(u_{2} - u_{1})}{u_{2} - u_{1}}),$$

where k = 1, ..., n - 1 and the other entries are given by explicit algebraic combinations of the sub-diagonal ones.

• By the isomonodromy property, the leading term gives a model in the study of Stokes phenomenon.

• Solve a connection problem for the isomonodromy equation. Generalizing the result for Painlevé VI by Jimbo. 7/18

Part II

The algebraic aspect of the Stokes phenomenon: quantum groups and crystals

• $U(\mathfrak{gl}_n)$: generator $\{E_{ij}\}$, relation $[E_{ij}, E_{kl}] = \delta_{jk}E_{il} - \delta_{li}E_{kj}$.

- $U(\mathfrak{gl}_n)$: generator $\{E_{ij}\}$, relation $[E_{ij}, E_{kl}] = \delta_{jk}E_{il} \delta_{li}E_{kj}$.
- $n \times n$ matrix $T = (T_{ij})$ with entries valued in $U(\mathfrak{gl}_n)$

$$T_{ij} = E_{ij}, \quad for \ 1 \le i, j \le n.$$

- $U(\mathfrak{gl}_n)$: generator $\{E_{ij}\}$, relation $[E_{ij}, E_{kl}] = \delta_{jk}E_{il} \delta_{li}E_{kj}$.
- $n \times n$ matrix $T = (T_{ij})$ with entries valued in $U(\mathfrak{gl}_n)$

$$T_{ij} = E_{ij}, \quad for \ 1 \le i, j \le n.$$

For any $u \in \mathfrak{h}_{reg}(\mathbb{R})$ n by n diagonal matrices with distinct real eigenvalues, consider

$$\frac{dF}{dz} = \hbar \left(\frac{u}{z^2} + \frac{T}{z}\right) \cdot F,$$

for a $n \times n$ matrix function F(z) with entries in $U(\mathfrak{gl}_n)[[\hbar]]$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- $U(\mathfrak{gl}_n)$: generator $\{E_{ij}\}$, relation $[E_{ij}, E_{kl}] = \delta_{jk}E_{il} \delta_{li}E_{kj}$.
- $n \times n$ matrix $T = (T_{ij})$ with entries valued in $U(\mathfrak{gl}_n)$

$$T_{ij} = E_{ij}, \quad for \ 1 \le i, j \le n.$$

For any $u \in \mathfrak{h}_{reg}(\mathbb{R})$ n by n diagonal matrices with distinct real eigenvalues, consider

$$\frac{dF}{dz} = \hbar \left(\frac{u}{z^2} + \frac{T}{z}\right) \cdot F,$$

for a $n \times n$ matrix function F(z) with entries in $U(\mathfrak{gl}_n)[[\hbar]]$.

• Denote the (quantum) Stokes matrices $S_{\hbar\pm}(u) = (s_{ij}^{(\pm)})$, with entries $s_{ij}^{(\pm)}$ in $U(\mathfrak{gl}_n)[[\hbar]]$.

Drinfeld-Jimbo quantum group $U_{\hbar}(\mathfrak{gl}_n)$

A unital associative algebra over $\mathbb{C}[[\hbar]]$ with generators $q^{\pm h_j}, e_i, f_i, 1 \leq j \leq n, 1 \leq i \leq n-1$ and relations (where we set $q = e^{\hbar/2}$):

Drinfeld-Jimbo quantum group $U_{\hbar}(\mathfrak{gl}_n)$

۲

A unital associative algebra over $\mathbb{C}[[\hbar]]$ with generators $q^{\pm h_j}, e_i, f_i, 1 \leq j \leq n, 1 \leq i \leq n-1$ and relations (where we set $q = e^{\hbar/2}$):

$$[e_i, f_j] = \delta_{ij} \frac{q^{h_i - h_{i+1}} - q^{-h_i + h_{i+1}}}{q - q^{-1}};$$

• for |i - j| = 1, $e_i^2 e_j - (q + q^{-1}) e_i e_j e_i + e_j e_i^2 = 0$, $f_i^2 f_j - (q + q^{-1}) f_i f_j f_i + f_j f_i^2 = 0$, and for $|i - j| \neq 1$, $[e_i, e_j] = 0 = [f_i, f_j]$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つへの

Drinfeld-Jimbo quantum group $U_{\hbar}(\mathfrak{gl}_n)$

۲

A unital associative algebra over $\mathbb{C}[[\hbar]]$ with generators $q^{\pm h_j}, e_i, f_i, 1 \leq j \leq n, 1 \leq i \leq n-1$ and relations (where we set $q = e^{\hbar/2}$):

$$[e_i, f_j] = \delta_{ij} \frac{q^{h_i - h_{i+1}} - q^{-h_i + h_{i+1}}}{q - q^{-1}};$$

• for |i - j| = 1, $e_i^2 e_j - (q + q^{-1}) e_i e_j e_i + e_j e_i^2 = 0$, $f_i^2 f_j - (q + q^{-1}) f_i f_j f_i + f_j f_i^2 = 0$, and for $|i - j| \neq 1$, $[e_i, e_j] = 0 = [f_i, f_j]$. As $\hbar \to 0$, it becomes the universal eveloping algebra $U(\mathfrak{gl}_n)$.

Theorem (Xu)

For any $u \in \mathfrak{h}_{reg}(\mathbb{R})$, the map

$$\nu_{\hbar}(u): U_{\hbar}(\mathfrak{gl}_n) \to U(\mathfrak{gl}_n)[[\hbar]] ; \quad e_i \mapsto s_{i,i+1}^{(+)}, \quad f_i \mapsto s_{i-1,i}^{(-)}$$

is an algebra isomorphism $(s_{ij}^{(\pm)})$ are the entries of $S_{\hbar\pm}(u)$.

Theorem (Xu)

For any $u \in \mathfrak{h}_{reg}(\mathbb{R})$, the map

$$\nu_{\hbar}(u): U_{\hbar}(\mathfrak{gl}_n) \to U(\mathfrak{gl}_n)[[\hbar]] ; \quad e_i \mapsto s_{i,i+1}^{(+)}, \quad f_i \mapsto s_{i-1,i}^{(-)}$$

is an algebra isomorphism $(s_{ij}^{(\pm)})$ are the entries of $S_{\hbar\pm}(u)$.

• In other word, the subdiagonal entries of Stokes matrices of

$$\frac{dF}{dz} = \hbar \left(\frac{u}{z^2} + \frac{T}{z}\right) \cdot F,$$

satisfy the quantum Serre relation/ Yang-Baxter equation.

11/18

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Theorem (Xu)

For any $u \in \mathfrak{h}_{reg}(\mathbb{R})$, the map

$$\nu_{\hbar}(u): U_{\hbar}(\mathfrak{gl}_n) \to U(\mathfrak{gl}_n)[[\hbar]] ; \quad e_i \mapsto s_{i,i+1}^{(+)}, \quad f_i \mapsto s_{i-1,i}^{(-)}$$

is an algebra isomorphism $(s_{ij}^{(\pm)})$ are the entries of $S_{\hbar\pm}(u)$.

• In other word, the subdiagonal entries of Stokes matrices of

$$\frac{dF}{dz} = \hbar \left(\frac{u}{z^2} + \frac{T}{z}\right) \cdot F,$$

satisfy the quantum Serre relation/ Yang-Baxter equation.

• Realizations of quantum symmetric pairs, Yangians.

Theorem (Xu)

For any $u \in \mathfrak{h}_{reg}(\mathbb{R})$, the map

$$\nu_{\hbar}(u): U_{\hbar}(\mathfrak{gl}_n) \to U(\mathfrak{gl}_n)[[\hbar]] ; \quad e_i \mapsto s_{i,i+1}^{(+)}, \quad f_i \mapsto s_{i-1,i}^{(-)}$$

is an algebra isomorphism $(s_{ij}^{(\pm)})$ are the entries of $S_{\hbar\pm}(u)$.

• In other word, the subdiagonal entries of Stokes matrices of

$$\frac{dF}{dz} = \hbar \left(\frac{u}{z^2} + \frac{T}{z}\right) \cdot F,$$

satisfy the quantum Serre relation/ Yang-Baxter equation.

- Realizations of quantum symmetric pairs, Yangians.
- Poisson structures on the space of (classical) Stokes matrices found by Boalch.

WKB analysis and crystals

• WKB analysis:
$$\hbar^2 \frac{d^2\psi}{dz^2} - V(z)\psi = 0.$$

WKB analysis and crystals

• WKB analysis:
$$\hbar^2 \frac{d^2\psi}{dz^2} - V(z)\psi = 0.$$

- The algebraic characterization of the WKB approximation as $\hbar \to -\infty$ in $\frac{dF}{dz} = \hbar \left(\frac{u}{z^2} + \frac{T}{z} \right) \cdot F$: for any $L(\lambda)$, the entries
- $s_{ii}^{(\pm)}(u)$ of $S_{\hbar\pm}(u)$ are in $\operatorname{End}(L(\lambda))$.

WKB analysis and crystals

- WKB analysis: $\hbar^2 \frac{d^2 \psi}{dz^2} V(z)\psi = 0.$
- The algebraic characterization of the WKB approximation as $\hbar \to -\infty$ in $\frac{dF}{dz} = \hbar \left(\frac{u}{z^2} + \frac{T}{z}\right) \cdot F$: for any $L(\lambda)$, the entries $s_{ij}^{(\pm)}(u)$ of $S_{\hbar\pm}(u)$ are in $\operatorname{End}(L(\lambda))$.

Conjecture (Xu, proved in a special case)

For any $u \in \mathfrak{h}_{reg}$, there exists a canonical basis $\{v_I(u)\}$ of $L(\lambda)$, operators $\tilde{e}_k(u)$ and $\tilde{f}_k(u)$ for i = 1, ..., n - 1 such that as $q = e^{\hbar} \to 0$

$$s_{k,k+1}^{(+)}(u) \cdot v_I(u) = q^c \tilde{e}_k(v_I(u)) + lower \text{ order terms},$$

$$s_{k+1,k}^{(-)}(u) \cdot v_I(u) = q^{c'} \tilde{f}_k(v_I(u)) + lower \text{ order terms}.$$

Furthermore, the datum $(\{v_I(u)\}, \tilde{e}_k(u), \tilde{f}_k(u))$ is a \mathfrak{gl}_n -crystal.

• Crystal limit $q \to 0$ in $U_q(\mathfrak{gl}_n)$, Kashiwara and Lusztig.

Part III

The geometric aspect of the Stokes phenomenon: WKB approximation and spectral curves

The geometry in the WKB approximation

• WKB analysis: $\frac{1}{\hbar^2} \frac{d^2 \psi}{dz^2} - V(z)\psi = 0$. The $\hbar \to 0$ hehavior is related to the Stokes graphs on z-plane determined by V(x).

The geometry in the WKB approximation

• WKB analysis: $\frac{1}{\hbar^2} \frac{d^2 \psi}{dz^2} - V(z)\psi = 0$. The $\hbar \to 0$ hehavior is related to the Stokes graphs on z-plane determined by V(x).

• Set ε a small real parameter, consider

$$\varepsilon \frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{A}{z}\right)F.$$

The geometry in the WKB approximation

• WKB analysis: $\frac{1}{\hbar^2} \frac{d^2 \psi}{dz^2} - V(z)\psi = 0$. The $\hbar \to 0$ hehavior is related to the Stokes graphs on z-plane determined by V(x).

• Set ε a small real parameter, consider

$$\varepsilon \frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{A}{z}\right)F.$$

• Problem: between the asymptotics of $S(u, A; \varepsilon)$ as $\varepsilon \to 0$ and the geometry of the spectral curve

$$\det\left[\lambda - \left(\frac{u}{z^2} + \frac{A}{z}\right)\right] = 0.$$

A fake analysis

• solutions of
$$\varepsilon \frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{A}{z}\right)F$$
 have the WKB type expansion,

$$F(z,\varepsilon) \sim e^{\frac{\omega(z)}{\varepsilon}}(v(z) + \sum \phi_k \varepsilon^k), \quad as \ \varepsilon \to 0,$$
 (1)

where $\omega(z) = \text{diag}(\omega_1, ..., \omega_n)$ is a diagonal matrix, and v(z) is a $n \times n$ matrix with columns v_k .

A fake analysis

• solutions of $\varepsilon \frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{A}{z}\right)F$ have the WKB type expansion,

$$F(z,\varepsilon) \sim e^{\frac{\omega(z)}{\varepsilon}}(v(z) + \sum \phi_k \varepsilon^k), \quad as \ \varepsilon \to 0,$$
 (1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ・ クタウ

15/18

where $\omega(z) = \text{diag}(\omega_1, ..., \omega_n)$ is a diagonal matrix, and v(z) is a $n \times n$ matrix with columns v_k .

• Leading asymptotics: $d\omega_k/dz$ and $v_k(z)$ satisfy

$$\frac{d\omega_k}{dz} \cdot v_k(z) = \left(\frac{u}{z^2} + \frac{A}{z}\right) \cdot v_k(z),$$

i.e., $\omega(z) = \operatorname{diag}(\int_{p_1}^z \lambda dt, \dots, \int_{p_n}^z \lambda dt).$

A fake analysis

• solutions of $\varepsilon \frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{A}{z}\right)F$ have the WKB type expansion,

$$F(z,\varepsilon) \sim e^{\frac{\omega(z)}{\varepsilon}}(v(z) + \sum \phi_k \varepsilon^k), \quad as \ \varepsilon \to 0,$$
 (1)

where $\omega(z) = \text{diag}(\omega_1, ..., \omega_n)$ is a diagonal matrix, and v(z) is a $n \times n$ matrix with columns v_k .

• Leading asymptotics: $d\omega_k/dz$ and $v_k(z)$ satisfy

$$\frac{d\omega_k}{dz} \cdot v_k(z) = \left(\frac{u}{z^2} + \frac{A}{z}\right) \cdot v_k(z),$$

i.e., $\omega(z) = \operatorname{diag}(\int_{p_1}^z \lambda dt, \dots, \int_{p_n}^z \lambda dt).$

• Stokes phenomenon takes place in the asymptotics $\varepsilon \to 0$ in a way that the approximation in (1) is not uniformly valid w.r.t z around 0. Then the asymptotics of Stokes matrices as $\varepsilon \to 0$ should be encoded by certain periods on the spectral curve.

Main conjecture

• A coordinate chart on the space of upper triangular matrices from cluster algebra theory: $\{\Delta_i^{(j)}\}_{1 \le i \le j \le n}$ the minor formed by intersecting columns i - j + 1 to i and the first j rows.

Main conjecture

- A coordinate chart on the space of upper triangular matrices from cluster algebra theory: $\{\Delta_i^{(j)}\}_{1 \le i \le j \le n}$ the minor formed by intersecting columns i - j + 1 to i and the first j rows. • Spectral curve $\Gamma(u, A)$ of genus $\frac{(n-1)(n-2)}{2}$

$$\det\left[\lambda - \left(\frac{u}{z^2} + \frac{A}{z}\right)\right] = 0.$$

Main conjecture

- A coordinate chart on the space of upper triangular matrices from cluster algebra theory: $\{\Delta_i^{(j)}\}_{1 \le i \le j \le n}$ the minor formed by intersecting columns i j + 1 to i and the first j rows.
- Spectral curve $\Gamma(u, A)$ of genus $\frac{(n-1)(n-2)}{2}$

$$\det\left[\lambda - \left(\frac{u}{z^2} + \frac{A}{z}\right)\right] = 0.$$

Conjecture (Alekseev-X-Zhou)

For generic u and A, there exists a canonical set of cycles $\{C_i^{(k)}\}_{1 \le i \le k \le n}$ on $\Gamma(u, A)$ such that

$$\lim_{\varepsilon \to 0} \left(\varepsilon \log \left| \Delta_i^{(k)}(S(A, u, \varepsilon)) \right| \right) = \int_{C_i^{(k)}(u, A)} \omega.$$

• analytic difficult (left); • the discrete choice of cycles (right).

• Fixing $u_1, ..., u_{n-1}$, let $u_n \to \infty$,

- Fixing $u_1, ..., u_{n-1}$, let $u_n \to \infty$,
- As $u_1 << \cdots << u_n$, denote by $\{V_i^{(k)}\}_{1 \le i \le k \le n}$ the distinguish vanishing cycles.

- Fixing $u_1, ..., u_{n-1}$, let $u_n \to \infty$,
- As $u_1 << \cdots << u_n$, denote by $\{V_i^{(k)}\}_{1 \le i \le k \le n}$ the distinguish vanishing cycles.

Theorem (Alekseev-X-Zhou)

As u_k/u_{k+1} sufficiently small, the cycles $C_i^{(k)} = \sum_{j=1}^i V_{k-j}^{(k)}$ on $\Gamma(u, A)$ such that

$$\lim_{\varepsilon \to 0} \left(\varepsilon \lim_{u_1 \ll \dots \ll u_n} (\log \bigl| \Delta_i^{(k)}(S(A, u; \varepsilon)) \bigr|) \right) = \lim_{u_1 \ll \dots \ll u_n} \int_{C_i^{(k)}} \omega$$

- Fixing $u_1, ..., u_{n-1}$, let $u_n \to \infty$,
- As $u_1 << \cdots << u_n$, denote by $\{V_i^{(k)}\}_{1 \le i \le k \le n}$ the distinguish vanishing cycles.

Theorem (Alekseev-X-Zhou)

As u_k/u_{k+1} sufficiently small, the cycles $C_i^{(k)} = \sum_{j=1}^i V_{k-j}^{(k)}$ on $\Gamma(u, A)$ such that

$$\lim_{\varepsilon \to 0} \left(\varepsilon \lim_{u_1 \ll \dots \ll u_n} (\log \bigl| \Delta_i^{(k)}(S(A, u; \varepsilon)) \bigr|) \right) = \lim_{u_1 \ll \dots \ll u_n} \int_{C_i^{(k)}} \omega$$

• Conjecture $\lim_{\varepsilon \to 0} \left(\varepsilon (\log |\Delta_i^{(k)}(S(A, u; \varepsilon))|) \right) = \int_{C_i^{(k)}} \omega \cdot \varepsilon = 0$

Thank you very much!