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e Consider the linear system on z-plane
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where F'(z) € GL,, A; and B; are constant matrices.
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e Consider the linear system on z-plane

A (A A
dz zk—1

A
= +---+1+A0—|—Blz—|—3222+--->F,
z z
where F'(z) € GL,, A; and B; are constant matrices.
e The asymptotics behavior of its solution F'(z) can differ in
different sectors surrounding the essential pole z = 0.
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Stokes matrices of ODEs with second order poles

e Consider the linear system on z-plane

ar u A
ol T Y 2
dz <z2+ z> ’

F(z) € GLy, u = diag(u1, ..., un), and A € gl,.
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Stokes matrices of ODEs with second order poles

e Consider the linear system on z-plane

dF u A

2 (28 F

dz <22 + z> ’
F(z) € GLy, u = diag(u1, ..., un), and A € gl,.
o Any fundamental solution F(z) € GL, has asymptotics

. -====F()

e;Z:’H--F( )~Ty asz— 0inleft/right planes Hy., ;7 StokesiElE
I
| /—\
‘~‘>ji ° ﬁ;ﬁ'/
o The different asymptotics of F(z) are measured by the ratio Z=0

for some invertible constant matrices T%. ’
Si(Au)=T, - T7,

called Stokes matrix, similarly define S_(A, u).
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Example: 2 by 2

e We consider

dF_ 1 u1 0 1 t1 a
dz_<,22<0 w ) P20 tz))F'
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Example: 2 by 2

e We consider
dF . 1 up 0 1 t1 a
-Gt 2 )08 2 ))E

Then

et2

et a((ug—u))1—*2
S+(A,u) = L(1=A1+t)T(I=X2+t1)
0

Here A1, Ao are eigenvalues of ( tbl ta2 >
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dz 22 2z

In Frobenius manifolds/Gromov-Witten theory, stability
conditions, nonlinear isomonodromy equation, geometry on
moduli spaces, quantum field theory, cluster algebras...
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dr u A
@ (LA F
dz <z2+z>

In Frobenius manifolds/Gromov-Witten theory, stability
conditions, nonlinear isomonodromy equation, geometry on
moduli spaces, quantum field theory, cluster algebras...

I. the analysis aspect: an asymptotic solution to the
Riemann-Hilbert problem/connection problem of the underlying
nonlinear isomonodromy equations.

II. the algebraic aspect: a realization of quantum groups and
crystals.

III. the geometric aspect: the Stokes matrices in the WKB

approximation via the periods on spectral curves,
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The analytic aspect of the Stokes phenomenon:
Riemann-Hilbert problem and isomonodromy
deformation equations
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Asymptotic solution to Riemann-Hilbert problem

RH problem : (u, A) — Sy (u, A)
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e'2

t1 a((ug—uy))*1—*2
RH problem : (u, A) — S4(u, A) = ( 80 TI=A+2)L(1=32+61) >

Theorem (Xu, RH problem as u; << ug << -+ << uy,)

Set {)\Ek)}izl ,,,,, k the eigenvalues of the k-th principal submatriz of A € gl,,.
Then as ug/ug+1 — 0 for allk =1,....,n — 1 in u = diag(u1, ..., un), the
sub-diagonals of S (u, A) are
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k k k k
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where k =1,...,m — 1 and the other entries are given by explicit algebraic
combinations of the sub-diagonal ones.
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e By the isomonodromy property, the leading term gives a
model in the study of Stokes phenomenon.
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Asymptotic solution to Riemann-Hilbert problem

t1 a((ug—uy))*1—*2
RH problem : (u, A) — S4(u, A) = ( 60 TI=A+2)L(1=32+61) >

62

Theorem (Xu, RH problem as u; << ug << -+ << uy,)

Set {)\gk)}izl ,,,,, k the eigenvalues of the k-th principal submatriz of A € gl,,.
Then as ug/ug+1 — 0 for allk =1,....,n — 1 in u = diag(u1, ..., un), the
sub-diagonals of S (u, A) are

2 k k k
s _zk:Hle,l;éiF(Az( ') T 12 0 T = A8) .m(k)+o(10g(’u2* Q)
bkl = T TD A TRt r D —A®y ™ s — ]

=1

where k =1,...,m — 1 and the other entries are given by explicit algebraic
combinations of the sub-diagonal ones.

e By the isomonodromy property, the leading term gives a

model in the study of Stokes phenomenon.

e Solve a connection problem for the isomonodromy equation.
Generalizing the result for Painlevé VI by Jimbo. 7/18



The algebraic aspect of the Stokes phenomenon:
quantum groups and crystals
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Stokes matrices of ODEs in noncommutative rings

o U(gl,): generator {E;;}, relation [Ejj, Ey] = 0;5Eiy — 01 Fg;j.
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Stokes matrices of ODEs in noncommutative rings

o U(gl,): generator {E;;}, relation [Ejj, Ey] = 0;5Eiy — 01 Fg;j.
e n X n matrix T' = (Tj;) with entries valued in U(gl,)

j—‘ij:Eij7 fOTlS’L,]S?’L

For any u € byeg(R) n by n diagonal matrices with distinct real
eigenvalues, consider

djzh(£+f).ﬁ

dz 22 2z

for a n x n matrix function F'(z) with entries in U (gl,)[[%]].

e Denote the (quantum) Stokes matrices Spy(u) = (sz(j-[)), with
entries s{” in U/(gl,,)[[]]-
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Drinfeld-Jimbo quantum group Uj(gl,,)

A unital associative algebra over C[[A]] with generators
g™, e;, fi, 1< j<n,1<i<n—1 and relations (where we set
q=e?)
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q9—q

—hi+hit1

q
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and for |i — j| # 1, [e;, 5] =0 = [fi, f5]-
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A unital associative algebra over C[[A]] with generators
g™, e;, fi, 1< j<n,1<i<n—1 and relations (where we set
q=e?)

]

hi—hiy1 _ q

q9—q

—hi+hit1

q
[€i7fj] = 52] 1 )

e for |i —j| =1,
efej — (q+q Meiejei + eje =0,

F2fi—(g+a Ofififi + fif2 =0,

and for |i — j| # 1, [e;, 5] =0 = [fi, f5]-
As h — 0, it becomes the universal eveloping algebra U(gl,,).
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The algebraic aspect of (quantum) Stokes matrices

Theorem (Xu)
For any u € breg(R), the map

vn(u) : Un(gl,) = UGLIA 5 eims s, fi s sO)

is an algebra isomorphism (sgjj-[) are the entries of Spt(u)).
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The algebraic aspect of (quantum) Stokes matrices

Theorem (Xu)
For any u € breg(R), the map

vn(u) : Un(gly) = ULIRD 5 eims sCi, fims 800,

is an algebra isomorphism (SSF) are the entries of Spt(u)).

e In other word, the subdiagonal entries of Stokes matrices of

P on(e+D).F
dz 22 2z

satisfy the quantum Serre relation/ Yang-Baxter equation.

e Realizations of quantum symmetric pairs, Yangians.

e Poisson structures on the space of (classical) Stokes matrices
found by Boalch.
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WKB analysis and crystals

e WKB analysis: h2% - V(2)y =0.
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WKB analysis and crystals

e WKB analysis: hQ% - V(2)y =0.
e The algebraic characterization of the WKB approximation as
h— —ooin 4 = h(z% + %) - F: for any L(\), the entries

s (u) of Spi(u) are in End(L())).

)

Conjecture (Xu, proved in a special case)

For any u € byeg, there exists a canonical basis {vr(u)} of L(A),
operators ép(u) and fr(u) fori=1,...,n—1 such that as
q= el -0

sl(;)ﬂ(u) ~vr(u) = ¢°éx(vr(u)) + lower order terms,

;) ~

S,(cf,_)l’k(u) ~vr(u) = ¢ frx(vr(u)) + lower order terms.

Furthermore, the datum ({vr(u)},éx(w), fr(w)) is a gl,—crystal.

e Crystal limit ¢ — 0 in Uy(gl,,), Kashiwara and Lusztig.
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The geometric aspect of the Stokes phenomenon:
WKB approximation and spectral curves
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The geometry in the WKB approximation
e WKB analysis: h%dz—w — V(2)1 = 0. The h — 0 hehavior is

dz?

related to the Stokes graphs on z-plane determined by V' (x).
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The geometry in the WKB approximation
e WKB analysis: h%dz—w — V(2)1 = 0. The h — 0 hehavior is

dz?
related to the Stokes graphs on z-plane determined by V' (x).
e Set € a small real parameter, consider
dF u A
— ==+ —)F.
“dz <22 * z)

e Problem: between the asymptotics of S(u, A;¢) as ¢ — 0 and
the geometry of the spectral curve

2mie 271

ty AR27 1) 1 max(Aq,A\9)
(I = o= e e e €
S(A,uze) = PO-SZ0T (-3 |~
tg

0 e=




A fake analysis

e solutions of E% = (% + é)F have the WKB type expansion,

z

w(z)
F(z,e) ~e )+ Z¢k€ as & — 0, (1)

where w(z) = diag(wi, ...,wy) is a diagonal matrix, and v(z) is a
n X n matrix with columns vy,.
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A fake analysis

e solutions of E% = (% + é)F have the WKB type expansion,

z

w(z)
F(z,e) ~e )+ Z¢k€ as & — 0, (1)

where w(z) = diag(wy, ...,wy) is a diagonal matrix, and v(z) is a
n X n matrix with columns vy,.
e Leading asymptotics: dwy/dz and vi(z) satisfy

dwy, u A
)= (F+ D) u)

ie., w(z) = diag([) Adt,...., [ Adt).

e Stokes phenomenon takes place in the asymptotics ¢ — 0 in a
way that the approximation in (1) is not uniformly valid w.r.t z
around 0. Then the asymptotics of Stokes matrices as ¢ — 0
should be encoded by certain periods on the spectral curve.
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Main conjecture

e A coordinate chart on the space of upper triangular matrices
from cluster algebra theory: {A }1<Z<]<n the minor formed by
intersecting columns ¢ — 7 + 1 to ¢ and the first j rows.
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e Spectral curve I'(u, A) of genus %
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Conjecture (Alekseev-X-Zhou)

For generic u and A, there exists a canonical set of cycles
{C’,i(k)}lgigkgn on I'(u, A) such that

. (k) =

e analytic difficult (left); e the discrete choice of cycles (right).
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Proof of the conjecture near a limiting point

e Fixing uq, ..., up—1, let u, — oo,
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Theorem (Alekseev-X-Zhou)

As ug/ugy1 sufficiently small, the cycles C Z] 1V on
I['(u, A) such that

. . (k) . ) _ .
ell—r}(l) <€ U1<<h~r2<un(log}A2 (S(A7 e €>) D U1<<h'r'n<<un /C.(k) w

e Conjecture lim._q (5(log|A§k)(S(A,u;5))‘)) = fci(k) w.
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Thank you very much!
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