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Flux Compactification |

From string to the real wold: 10D — 4D
What we want: N = 1 Supersymmetry with chiral spectrum
Best under control: N =1 Flux Compactification
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Flux Compactification |

From string to the real wold: 10D — 4D
What we want: A/ = 1 Supersymmetry with chiral spectrum
Best under control: N =1 Flux Compactification

Background Flux (in Type II):

@ Neveu-Schwarz flux:  Hs = dB», dH3 = 0.

@ Ramond flux: Fpy1 =dCy, dFpi1 =0.

@ Metric flux: Fi]-k from T-dual of Hyj.

@ Non-geometric flux:  T-duality with Buscher rules.

T}, kT ik, Ti ijk
Hyp +—— Fyi° <> Q/° +—— R".
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Flux Compactification Il

Four dimensional N' = 1 supersymmetry flux compactification:
@ Het string on CY3
@ Type IIA/B on CY3 with orientifold (include Type | 2 Type |IB
orientifold with O9—plane) v
@ F-theory on CYy
@ M-theory on CY3 x S'/Zs3 or on M” with Go holonomy
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Flux Compactification Il

Four dimensional N' = 1 supersymmetry flux compactification:
@ Het string on CY3
@ Type IIA/B on CY3 with orientifold (include Type | 2 Type |IB
orientifold with O9—plane) v
@ F-theory on CYy
@ M-theory on CY3 x S'/Zs3 or on M” with Go holonomy
= Calabi-Yau threefold C'Y3 or fourfold C'Ys.
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Calabi-Yau Space

Q: What is Calabi-Yau?
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Calabi-Yau Space

Q: What is Calabi-Yau?
Calabi-Yau n-folds is a complex n-dimentional compacted Kahler Manifold
satisfied:

@ lts first chern class vanish, i.e ¢ (M) =0 € H*(M,Z).

@ The normal bundle Ky = A"T*(1,0)(M) is trivial since
a(Ku) = —a (M)

@ There exist a unique no where vanishing holomophic n-form,
Q, € Q™ (M), d2, =

@ The Ricci tensor vanish, i.e. Ry, =0

@ The holonomy group of M is SU(n)
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Orientifold
Q: Why orientifold?
@ Type IIB is N' = 2. Break half SUSY to get N = 1.
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Orientifold
Q: Why orientifold?
@ Type IIB is N' = 2. Break half SUSY to get N = 1.

@ When considering the flux and D-brane, introduce O-plane for tadpole
cancelation.
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Orientifold
Q: Why orientifold?
@ Type IIB is ' = 2. Break half SUSY to get A/ = 1.

@ When considering the flux and D-brane, introduce O-plane for tadpole
cancelation.

@ Many string phenomenology is built in Type IIB Calabi-Yau orientifold
with O3/ O7-plane.

Qo with o*(J)=J, o"(Q3)=Qs, 05/09
= (_)FLQFU with o*(J)=J, o*(Qs)=—-Qs, 03/07

each o defines a new CY in the orbifold limit unless it is free action.
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Orientifold

Q: Why orientifold?

Type 1B is N' = 2. Break half SUSY to get V' = 1.

When considering the flux and D-brane, introduce O-plane for tadpole
cancelation.

Many string phenomenology is built in Type [IB Calabi-Yau orientifold
with O3/ O7-plane.

Qo with o*(J)=J, o"(Q3)=Qs, 05/09
(D)0 with o* () =J, " (Qs) = —Qs, 03/07
each o defines a new CY in the orbifold limit unless it is free action.
In Type IIB orientifold, Complex,dilaton moduli decoupled with Kahler

moduli.

e Complex and dilaton moduli can be stabilized by background
fluxes at tree level. Gukov/vafa/witten

o Kahler moduli can be stabilized by non-perturbative effects
(KKLT, Large Volume scenario). Kachru/Kallosh/Linde/Trivedi,

Balasubramanian/Berglund/Colon/Quevedo
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How to Construct Calabi-Yau Database

o TO”C Calabl—YaU Borisov, Batyrev, Cox, Kreuzer, Skarke .....
e Hypersurface — 473,800,776 reflexive polyhedra in 4D

Kreuzer,Skarke,Altman,Gray,He, Jejjala,Nelson, ..
@ Hypersurface — weighted project space Kreuzer,Skarke,..

e Complete Intersection Calabi-Yau (CICY)

Conclusion
[e]e]

o Complete intersection hypersurfaces <— Product of projective spaces

7,890 configuration matrices for CY3
Hubsch,Candelas,Dale,Lutaken,Schimmrigk,Green, ...
921,497 configuration matrices for CY4 Gray,Haupt,Lukas, .

o Generalized Complete Intersection Calabi-Yau Manifolds (gCICY)
Anderson, Apruzzi, XG, Gray, Lee, 15’
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Calabi-Yau 3-folds Database

@ CICY (# 7890), gCICY (# > 0(10%)) and toric CY (# > O(10'9)).
Candelas/Dale/Lutken/Schimmrigk, Anderson/XG/Gray/Lee, Anderson/Apruzzi/XG/Gray/Lee, Kreuzer/
Skarke, Altman/Gray/He/Jejjala/Nelson
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Calabi-Yau 3-folds Database

@ CICY (# 7890), gCICY (# > O(10)) and toric CY (# > O(109)).
Candelas/Dale/Lutken/Schimmrigk, Anderson/XG/Gray/Lee, Anderson/Apruzzi/XG/Gray/Lee, Kreuzer/
Skarke, Altman/Gray/He/Jejjala/Nelson

@ Orientifold involution

Reflection : { z; <> —xz;,- -+ } LX) =0
Exchange involution : { z; <> zj,--- } REL(X) #£0
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Calabi-Yau 3-folds Database

@ CICY (# 7890), gCICY (# > O(10)) and toric CY (# > O(109)).
Candelas/Dale/Lutken/Schimmrigk, Anderson/XG/Gray/Lee, Anderson/Apruzzi/XG/Gray/Lee, Kreuzer/
Skarke, Altman/Gray/He/Jejjala/Nelson

@ Orientifold involution

Reflection : { z; <> —xz;,- -+ } LX) =0
Exchange involution : { z; <> zj,--- } hEL(X) #£0

hH'(X) # 0 is important to solve the chirality issue for global model
building (Combine partical physics and moduli stabilization and inflation
ina single set-up). Blumenhagen/Moster/Plauschinn, Cicoli/Mayrhofer/Valandro/Quevedo/

Krippendorf, Balasubramanian/Berglund/Braun/Garcia-Etxebarria, Grimm/Weigand/Kerstan - - -

o D-brane at singularity
e Fluxed Instanton
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Searching and Classification of Orientifold CY3s

@ Based in the favorable CICY database Anderson/XG/Gray/Lee, orientifold CICYs
has been studied recently. Carta/Moritz/Westphal
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Searching and Classification of Orientifold CY3s

@ Based in the favorable CICY database Anderson/XG/Gray/Lee, orientifold CICYs
has been studied recently. Carta/Moritz/Westphal
@ In toric CY database Altman/Gray/He/Jejjala/Nelson, €xchange involution is
studied for bt < 4 (# ~ O(103)) G /Shukia and now for ' < 6 with
fully classification of exchange involutions, fix-point locus and free action.
Altman/Carifio/ XG /Nelson
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Searching and Classification of Orientifold CY3s

@ Based in the favorable CICY database Anderson/XG/Gray/Lee, orientifold CICYs
has been studied recently. Carta/Moritz/Westphal
@ In toric CY database Altman/Gray/He/Jejjala/Nelson, €xchange involution is
studied for bt < 4 (# ~ O(103)) G /Shukia and now for ' < 6 with
fully classification of exchange involutions, fix-point locus and free action.
Altman/Carifio/ XG /Nelson

@ Among total 646903 CYs with A"'(X) < 6, only 5% of them admits a
proper divisor exchange orientifold.

@ Most of oreintifold CYs admitting an O3/ O7 system, 60% of them
admitting a string vacua.
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Searching and Classification of Orientifold CY3s

@ Based in the favorable CICY database Anderson/XG/Gray/Lee, orientifold CICYs
has been studied recently. Carta/Moritz/Westphal
@ In toric CY database Altman/Gray/He/Jejjala/Nelson, €xchange involution is
studied for bt < 4 (# ~ O(103)) G /Shukia and now for ' < 6 with
fully classification of exchange involutions, fix-point locus and free action.
Altman/Carifio/ XG /Nelson

@ Among total 646903 CYs with A"'(X) < 6, only 5% of them admits a
proper divisor exchange orientifold.

@ Most of oreintifold CYs admitting an O3/ O7 system, 60% of them
admitting a string vacua.

@ Suitable for Machine Learning to extend our result to higher 2!*! to
search and classify orientifold CYs. XG /Zhou

@ Based on our works, some new progress is under going. Crino/Quevedo/
Schachner/Valandro
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Toric Geometry
0®000

Toric Variety
Definition: Set d,m € N and n = d+ m, a d—dim Toric Variety A° is defined

by the coset space of homogenous coordinates z;, i =1,...n:
(A
A° =
(C)m

where Z is the zero-set. (C*)™ defines an equivelant relation through the
charge matrix Q;:

(21, 3) ~ A9z, A%g,) Va=1,...,m, VYAeC",

Definition: Let Z be the zero set of a toric variety A°. The Stanley-Reisner
ideal [ is the minimal ideal containing square free monomials corresponding to
the different subsets of the zero set:

k
[AO_{H%}' ‘ {Q}',L]:O}EZ'L, 2—1,,17,}
j=1

We use (A° = 57, N) to denote the Toric variety. In PALP and SAGE, they call
A° dual-Polytopy. In fact, we can have two ways to define the toric variety:

@ coordinates z; in charge matrix . < vertex in Dual-Lattice Polytopy A°.
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Triangulations

Usually, a toric variety has some singularity, need to be resolved.

@ Replace the isolated singularity by higher dimension curve is called
Resolution of singularity. Using P™ to do it is called Blow-up. For a given
singularity there may exist several resolution ways. The different ways
may be connected by so-called Flop Transition.

@ There are other methods to resolve the singularity such as deformation.

@ So we can see that resulotion is associated to decomposite the varity to
some smaller pieces. This is called Triangulations or Simplicial
Decomposition. A Maximal Triangulation means there is no further
triangulations which can get more cone.

@ Usually, we call the dual-Polytopy A° = (57, N) together with their
triangulation information the Ambient Space A.
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Toric Calabi-Yau Hypersurface

THM: If a toric variety is Calabi-Yau manifold, it is non-compact.

THM: Set Toric Variety A° defined by z, ..., z, and the associated GLSM
charge Qf,..., Qn. Set Gi,..., G. are the homogenous polynomial in A°,
then the complete intersection hypersurfaces S is given by:

S={G=0}n---Nn{G.=0}.
Furthermore,
S is Compact Calabi — Yau < ||G1||"+ -+ ||Ge]|" = Q1 + -+ Qn, Va.

i.e, the sum of the degree of homogenous polynormail is equal to the sum of
charge of homogenous coordinates in A°.
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Polynomial Representations of Toric CYs
Definition: The Polytope (A, M) dual of A° = (57, N) is defined by:

A={me Mz =2" | (vlm)>—1, Yv; € v} C M.

(A, M) is also called the Newton polytope. If A is still an integer lattice
polytopy, we call it Reflexive.

For (A, M), the compact smooth Calabi-Yau anticanonical hypersurface can be
defined by the vanishing of a homogeneous polynomial {P = 0}.

d
P= Z amM,, =0, where M, = Hzﬁm’viHl .
meA =1
Example:. The dual-polytopy and polytopy of P? and its polynomial
representation:

(V. N) \ (A, M)
2




Outline

@ Calabi-Yau Manifolds
@ Toric Geometry

© Orientifolds CYs

@ Example

© Classifications

@ Database

@ Machine Learning

«O>» «(Fr «E» «

it
-
[

DA



Calabi-Yau Manifolds Toric Geometry Orientifolds CYs Example Classifications Database Machine Learning  Conclusion
00000000 00000 000000000000 OOOOOO 0000000 000 0000000000 [e]e]

Polytopes, Triangulations and Geometries

@ Favorable Description: When Toric divisor classes on the Calabi-Yau
hypersurface X are all descended from ambient space A.

hl,l(X) = dim(Hl,l(X)) = dim(Pic(A)) = hl’l(_A)

@ MPCP: Maximal Projective Crepant Partial (MPCP) desingularization
involves the triangulation of the polar dual reflexive polytope A*, which
contains at least one fine, star, regular triangulation (FSRT).

@ Wall's theorem: The compact Calabi-Yau 3-folds are classified by the
Hodge numbers, the intersection numbers, and the second Chern Class.

—> Geometry-wise description: Glue together the various phases of the
complete Kahler cone corresponding to a distinct Calabi—Yau threefold
geometry.
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Proper Involution o: NID

oz = o D+ D
@ In favorable case, restricts strightforward to the Calabi-Yau hypersurface.
@ Dy =D;+Dje HY' (X/o¥)

Proper Involutions:

@ Non-Trivial Identity Divisor: H®(D;) = H*(D;) with different wights O(D).

o Completely Rigid Divisors:

h* (D) = {h*°(D), h*' (D), h%*(D), h"' (D)} = {1,0,0, A"' (D)}.

e Wilson Divisors: r*(W) = {1,100, A:1}. h}go = 1 characterize
the zero modes of poly-instanton, which can not be lifted by
background fluxes.

o Deformation divisors such as K3.
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Proper Involution o: Consistent

@ Symmetry of Stanley-Reisner Ideal Zsr(.A): To ensure the involution to
be an automorphism of A, leaving invariant the exceptional divisors from
resolved singularities.

@ Symmetry of the linear ideal Z;;,(.A): To ensures the defining polynomial
of CY remains homogeneous under involution.

Z(D1,- -, Dy)

A= 2D T Zen(A)

IR

Due to the favorability condition on the Calabi-Yau threefold hypersurface we have
AV (A) = HY1(A) = Pic(A) = Pic(X) = HY1(X) = AN(X),

thus the toric triple intersection tensor defined in the Chow ring of X.
dijkz/DiADjADkEDi-Dj'Dk'X and X=—-K4 = ZDZ

—> Triple intersection tensor is invariant under involution o.
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Types of Proper Involution o

@ Triangulation-wise proper involution: The involutions present at the
triangulation level - that is, within a single chamber of the Kahler cone of
a given geometry.

@ Geometry-wise proper involution: The involutions which are globally
consistent across all disjoint phases of the Kahler cone for each unique
Calabi-Yau geometry.

@ Each of the geometry-wise proper involutions may correspond to several
triangulation-wise involutions which can span an entire CY geometry.
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Fixed Orientifold Planes | : Invariant CY Hypersurface

Polynomial
A= ck\z
(CH % a’

The geometry can be described by {z1, ..., 2t} and their C* equivalence classes

(1’1, veey I}c) ~ ()\Wﬂxl, cery )\Wikxk) )

k
P= Z amMy =0,  where M, = Hzﬁm’”’)ﬂ :
meA i=1
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Fixed Orientifold Planes | : Invariant CY Hypersurface

Polynomial
A= ck\z
(CcH"*x g’
The geometry can be described by {z1, ..., 2t} and their C* equivalence classes

(xl, veey :ck) ~ ()\Wﬂxl, cery )\Wikxk) )

k

P= Z amMy =0,  where M, = Hzﬁm’”’)“ :
meA =1

Define the set of monomials M = {My,|m € A}. Then for My, M,y € M, we
identify three cases:

o(Mw) = My = an, is generic,
e o(My) = My, m#m = A = Ay,
Q@ o(Mp)gM =  a,=0.
= P+ Psymm, such that o(Psymm) = Psymm in addition with ¢*J = J.
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Fixed Orientifold Planes Il :
Minimal Generators G

G: generated by homogeneous polynomials y(z1, ..., zx) that are (anti-)invariant

under o.
G=GoUG:+ UG- .
@ The unexchanged coordinates in Go are known from our choice of
involution.

@ To finding the non-trivial even and odd parity generators in G+ and G_,
we must consider all possible non-trivial “sub-involutions” given by the
non-empty subsets of {o1,...,0n} C o of size 1 <m < n.

— 01,02 (‘lm ‘_ll a2 fhn
y+(a) = Tiy Liy L, + Zjy i, L s

The condition for homogeneity, in terms of the columns w;, and w;, of
the weight matrix W is given by:

a1 (Wi, — Wy ) + a2(Wiy — Wi, ) + -+ + am(Wi, —wj,) =0.
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Fixed Orientifold Planes Ill : Naive Fixed Point Loci

@ Segre embedding: {1,..., 2} + {y1, ..., yw } = G and construct a new
weight matrix W for {y;}.

@ The exchange involution has transfomed into reflection.

@ Point-wise fixed point for codim-1 divisor: ¢ : y — —y, so that
D = {y =0} is fixed.

@ Point-wise fixed point for codim larger than one: check whether the
involution forces a subset of generators F C G to vanish simultaneously.
In fact, check FNG_ # 0.

@ Redundancy: The torus C* actions provide r = rank(W) additional
degrees of freedom for the generators to avoid being forced to zero.

@ In each subset of generators F, we check for this by solving the system of
equations

Wi\ Way W,y X
AN N =0 (y) g =1, K

By the construction of the generator y;, the right-hand side is equal to
+1. The set is point-wise fixed if this equation is solvable in the ;.
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Fixed Orientifold Planes IV : Zgz and CY Transversality

@ Check whether each point-wise fixed loci lie in Stanley-Reisner ideal Zgp.

@ The definition of Zgg leads A to be spllited into different patches: Us.

@ For a given fixed set F = {y1,-- -, yp}, we compute in each sector U; the

dimension of the ideal generated by
sz;zeaz = <U17 Psymm: y17 ey yP> N

If dim I{;‘”d < 0 for all U;, then F does not intersect the X.

For each subset that is not discarded, we repeat this calculation for the
ideal with one fixed set generator dim Z//"“?, and then two dim Z/:"*,
etc. until dim Zﬁmd =dim Iif;“d when adding more generators to the
ideal no longer changes the dimension for any region U;. Then, the
intersection {y1 = -+ = yp, = 0} of these generators gives the final
point-wise fixed locus, with redundancies eliminated.

An O3 plane corresponds to a codimension-3 point-wise fixed subvariey,
an O5 plane has codimension-2, an O7 plane has codimension-1.
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Fixed Orientifold Planes V : Smoothness

@ Check whether the invariant Calabi-Yau hypersurface defined by Psymm is

smooth. This is important to determine whether an involution is a free
action. We do this by checking by setting up the ideals

8Psymm 8Psymm>
81‘1 B &nk ’

smooth
Z; = <Ui PSymm7

for each region U; allowed by the Zsgr, and computing the dimension. If
dim Zimo°%" < 0 for all U;, then the invariant Calabi-Yau hypersurface is
smooth.

If no O-planes exist and the invariant Calabi-Yau hypersurface is smooth,
then the involution defines a Z, free action on X.
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Tadpole Cancelation and String Vacua

@ Cancel the D7-brane tadpole by simply placing eight D7-branes on top of
the O7-plane.

@ D3-brane tadpole condition simplified to:

Nn Nos | x(Do7) _ oc
ND3 —+ 2UX + Ngauge = T + % = — lD3-
with N = )4 ooz S H3 A Fs, Neawge = =2, 577 [, trF2, and Nps,

Nos the number of D3-branes, O3-planes respectively.

@ String Vacua: The D3-tadpole cancelation condition requires the total
D3-brane charge Q'35 of the seven-brane stacks and O3-planes to be an
integer. If the involution passes this naive tadpole cancellation check, we
will denote our geometry as a “naive orientifold Type IIB string vacua”.
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Hodge Number Splitting
@ Under the involution, the dimensions of Hodge numbers split
H"(X/o") = HY(X/o") @ H?(X/c™).

@ Example: h'"'(X) = 3, admitting a proper orientifold involution
0™ : Dy <+ Ds. Suppose the divisor classes { D1, D2, D3} form a basis for
H“'(X;Z). Then, the Kahler form can be expanded as

J=tJi + o+ t3J3 =tD1+ t2D2 + t3D3,
with t1, &2, ts € Z.
J=0c"J= t1D1+ toD3 + t3Do = t1J1 + t3Jo + 12 J3.

Then we note that we must have &y = t3 = t4, for some ¢, € Z. Defining
the even and odd parity eigendivisors Dy = Ds £+ D3, we can write

J=tD1 + t+D+ .

so h'(X/o*) =2 and W' (X/o") = 1

@ We can count the new h*!(X/o*) if it is smooth.
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Example: hb1(X) = 4, h?1(X) = 64.

BRI EAES
olo|o|1]o[1]0]oO
0 0 1 0 0 0 1 0
0 1 0 0 1 0 0 1
1 0 0 1 0 0 1 1

® Isp = <IIIS7 T3T7, T4Te, T1T4L7, T2X3T5, T2T5T6, 332335338>
e The linear ideal, which fixes toric divisor redundancies, is given by

Zjin= ( —-D1 — D2 — Dz -—
+ 0+ 0 + D3 +
- D 0 - D3y -
+ 0 + 0 + 0 +

Dy + 0 4+
Dy + 0 -
Dy - Ds +
Dy + Ds -

D¢ + D7 + Ds,

D¢ — D7 0,
D¢ + D7 + Ds,
D¢ + 0 — Dg

and a basis in H"'(X;Z) given by J; = D1, J» = Do, J3 = D3, Jy = Ds.
h*(D1) ={1,0,0,9}, h*(D2) = h*(D4) = h*(Ds) = h*(D7) = {1,0, 1,21}

h*(D3) = h*(Ds) = {1,0,0,12},

h*(Dg) = {1,0,2,30}

e Only geometry-wise proper involution: o : a3 <> s, Ta <> 27

e 0"Q3 = — Q3. One would expect

03/ OT-system.

Conclusion
[e]e]

)
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Orientifold Planes | : Minimal Generators G
Go = {z1, 22, 75, 28} .
011 X3 <> X¢ = Gt ={z3z6}, G- =10
o2 X4 xr = Gy ={mwm}, G- =10
0 X3 > X, X4 4> X7 25xy +agay for myn € Z.
The homogeneity of this binomial is determined by the following
condition on the weights
’m(Wig — W14) + n(wis — Wi?) =0.
The kernel is generated by the vector (m, n) = (1,1), so
g+ = {1’31’4 + 116117} and G_ = {ZE3:L‘4 — ZL'GZE7}.
Serge embbeding:

Yy ==o, Y2=1=2, Y3 =1=T5, Ys =18, Y5 = T3Ts,

Y6 = a7, Y7 = T3T4 + T6T7, Y8 = T3Ta — Tel7 -

Y1 | Y2 | Y3 | Y4 | Ys | Y6 | Y7 | Y8

0 0 0 0 1 1 1 1| XM
0 1 1 1 0 0 0 0 | A2
1 0 0 1 0 2 1 1| A3

Conclusion
[e]e]



Calabi-Yau Manifolds Toric Geometry Orientifolds CYs Example Classifications Database Machine Learning  Conclusion
00000000 00000 000000000000 000800 0000000 000 0000000000 [e]e]

Orientifold Planes Il: Naive Fixed Loci

@ ys — —ys: F1 = {ys = 0} is a point-wise fixed, codimension-1 subvariety.
@ Check whether any subset F = {y1,- -, yp} of the generators can
neutralize the odd parity of ys, becoming fixed themselves in the process.

@ We begin our scan with the largest set of generators and work our way
down. The largest set we can choose has 4 generators, since their
simultaneous vanishing defines a set of isolated points on A.
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Orientifold Planes Il: Naive Fixed Loci

@ ys — —ys: F1 = {ys = 0} is a point-wise fixed, codimension-1 subvariety.

@ Check whether any subset F = {y1,- -, yp} of the generators can

neutralize the odd parity of ys, becoming fixed themselves in the process.

We begin our scan with the largest set of generators and work our way
down. The largest set we can choose has 4 generators, since their
simultaneous vanishing defines a set of isolated points on A.

Consider F> = {y1 = y2» = y3s = yr = 0} to be fixed, we must use the
three independent C* actions to neutralize the odd parity of ys while
leaving everything else invariant.

(ya, Y5, Y6, —¥s) ~ (A2 X3ya, A1ys, A1 A3Y6, M Asys) = (Y. Ys, Yo, ¥s)
where )\1,)\27 A3 € C*.
MAds=1 A =1 MM =1 Mlg=-1.

= (A1, A2, A3) = (1,—1,—1) and so F> is indeed a point-wise fixed set.
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Orientifold Planes Ill: True Loci & String Vacua

@ The fixed point set F» = {y1 = y2 = y3 = y7 = 0} can be written in
terms of the original coordinates {z1 = 22 = 25 = 0} N {z324 = —x627}.
Substitutions in Pgymm:

Poymm = a4s (13247655 + 30520725) = 18237675y -
o I3%5 € Lsp — 3 75 0, ToZsTe € Lsp — Tg 75 0,
ToXsTs € Lgp — Ty 7’5 0

= y7 = 0 for Psymm vanishing, which is a redundancy.
Fy={y1 =y =ys =0}
@ There are 17 U;, by checking Fi and F, as
Igzmi = <U17 Psymmv F]>
we can determine F is an O7 plane, while F% is an O3 plane locus.
@ In fact, there are only one O7 and one O3-plane, and we have:

Naux Nos  x(Dor) 1439
Nauezi - s = ;7 =
g 1 Vees 1 T 1 4

Geometry-wise “naive orientifold type IIB string vacua”.

10.
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Hodge Number Splitting

@ Holomorphicity condition = H"*(X/c™) = HY(X/o™) & H?(X/o™)

@ Favrability = HM1(A) = Pic(A) = Pic(X) = HY1(X)
We can always expand the Kéahler form in terms of the divisor classes.

J=tJ1+ toJo + t3J3 + taJs = t1 D5 + t2Dg + t3D7 + t4Dg
The Kahler form must be invariant under the pullback of involution,
J=0"J=4tDs+ toD3 + t3Dy + t4aDg = t1J1 + toD3 + t3Ds + t4Js (1)
—= D3=J1+J3—Ja and Dy=—-J1+J2+ Js..
t1+t—t3=1t1, tz=t2, l2=1t3, —la+tilz+ta=1ts.
BN (X/o) =3, KMN(X/o") =1

@ The result is basis independent.
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00000000 00000 000000000000 OOOOOO 0800000 000 0000000000
h1(X) 1| 2| 3 4 5 6 Total
# of Favorable Polytopes 5 | 36 | 243 | 1185 | 4897 | 16608 22974
# of Favorable 5 | 48 | 525 | 5330 | 56714 | 584281 || 646903
Triangulations
# of Favorable Geometries 5 39 | 305 | 2000 | 13494 | 84525 100368
% of Eavorabla 80 | 100 | 99.8 | 99.66 | 99.41 | 99.01 | 99.01
Triangulations Scanned

Table 1: The favorable polytopes, triangulations, geometries for h1(X) < 6.

Conclusion
[e]e]
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00000000

hi(X) l1]z2] 8 | a] 5 [ 6 [ o

Triangulation-wise proper NID exchange involutions

# of Polytopes

- - 0 1 25 166 712 2172 3076
contains Involutions
# of Geometri.es contains 0 1 2 273 1559 6590 8449
Involutions
# of Triangulations 0 | 1 | 31 | 405 | 3372 | 21566 | 25375
contains Involutions
# of Involutions 0 [§ 51 516 4085 | 23805 28463
Geometry-wise proper NID exchange involutions
# of Polytope 0o | 1 16 96 | 330 | 958 1401
contains Involutions
# of Geometri'es contains 0 1 17 183 911 3370 4482
Involutions
# of Involutions 0 6 28 259 1219 4148 5660
% of Polytope 0 |278| 658 | 810 | 674 | 577 6.10
contains Involutions
% of Geometries contains | | 956 | 557 | 915 | 675 | 399 447
Involutions

Table 2: Statistic counting on the triangulation/geometry-wide Non-trivial Identical Divi-

sors exchange involutions in favorable polytopes, triangulations and geometries.

Conclusion
[e]e]
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Number of pairs of Non-trivial Identical Divisors (NID) under involutions

hb1(X) H 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 6 H Total
Triangulation-wise proper I
# of Involutions o | 6 | 51 | 516 | 4085 | 23805 28463
del Pezzo surface dP,,, n < 8 o | o | 12| 238 | 2238 | 14507 17090
Rigid surface dP,,, n > 8 o | o | 1a | si2 | ses9 | 3281 33666
(exact-)Wilson surface 0(0) | 00) |50 | 405) | 177 (80) | 744 (a11) || 966 (496)
K3 surface o | o | e | 30 | 619 1976 2960
SD1 surface oo 9]« 418 2190 2664
SD2 surface o | 18| s | 33 109 159 627
del Pezzo and K3 o oo 9 98 572 679
del Pezzo and (Exact-)Wilson || 0(0) | 0(0) | 1(0) [ 28 (0) | 95 (9) | 667 (286) || 701 (295)
K3 and (Exact-)Wilson 00 0@ |80 120 ] a3 | 10109 | 156 20)
del Pezz0, K3 and (Exact-)Wilson || 0(0) | 0(0) [ 0(0) | 0(0) | 28(0) | s7(2 | 115()
Geometry-wise proper Involutions
# of Involutions o [ 6 [ 28 [ 259 [ 1219 1148 5660
del Pezzo surface dPp, n <8 o | o | 8 [ 107 | 63 2660 3409
Rigid surface dP,, n > 8 o | o | 8 [ 29 | 197 6198 8438
(Exact-)Wilson surface 00 [0© [50) [28@ ] a8 | 136 (75) || 217 31)
K3 surface 0o | o [ 28] a5 | 210 527 989
SD1 surface o | o | s | = 102 216 319
SD2 surface 0 18 6 18 39 84 165
del Pezzo and K3 o | oo 0 2% 156 182
del Pezzo and (Exact-)Wilson || 0 (0) | 0(0) | 1(0) | 19(0) | 40(1) | 109 (40) || 169 (41)
K3 and (Exact-)Wilson 0 0@ (s [12@] 1@ | 2@ | a1
del Pezzo, K3 and (Exact-)Wilson || 0(0) | 0(0) [0(0) | 0(0) | 4(0) | 16(2 20 (2)

Conclusion
[e]e]
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Classification of O-plane fixed point locus
h'(X) H 1 | 2 ‘ 3 ‘ 4 ‘ 5 | 6 H Total
Triangulation-wise proper Involutions

# of Involutions 0 6 51 516 4085 | 23772 28430

03 0 0 9 253 2640 | 18193 21083

05 0 6 20 157 1006 3279 4468

o7 0 0 31 328 3005 | 20137 23501

03 and O7 0 0 9 222 2566 | 17826 20623
Free Action 0 0 0 0 0 1 1

Geometry-wise proper Involutions

# of Involutions 0 6 28 259 1219 4148 5660

03 0 0 4 82 557 2611 3254

05 0 6 16 106 488 929 1545

o7 0 0 12 124 691 3082 3909

03 and O7 0 0 4 53 523 2475 3055
Free Action 0 0 0 0 0 i | 1

Table 4:

Classification of O-plane fixed point
triangulation/geometry-wise proper involutions.

locus and free actions under the

Conclusion
[e]e]
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Naive Orientifold Type IIB String Vacua with 03/07-system

Conclusion
[e]e]

hh(X) H 1 ‘ 2 ‘ 3 | 4 ’ 5 | 6 ” Total
Triangulation-wise proper Involutions
# of Involutions 0 6 51 516 4085 23772 28430
Contains 03 & O7 0 0 9 206 2346 15234 17795
Contains Only O3 0 0 0 31 74 355 460
Contains Only O7 0 0 22 102 386 1950 2460
Total String Vacua H 0 ’ 0 31 ‘ 339 | 2806 ‘ 17539 H 20715
Geometry-wise proper Involutions
# of Involutions 0 6 28 259 1219 4148 5660
Contains 03 & O7 0 0 4 48 455 1874 2381
Contains Only O3 0 0 0 29 34 136 199
Contains Only O7 0 0 8 68 149 529 754
‘ Total String Vacua H 0 ‘ 0 ’ 12 ‘ 145 ‘ 638 ‘ 2539 H 3334 ‘
Table 5: Classification of naive orientifold Type IIB string vacua under the

triangulation/geometry-wise proper involutions.
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Hodge number splitting
hl1(X) ” 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ’ 6 H Total
Triangulation-wide proper Involutions
# of Involutions 0 6 51 516 4085 | 23805 28463
1 = 6 51 477 3682 | 20985 25201
2 = - 0 39 483 2618 3140
2.0 3 - = = 0 0 202 202
# of h™
4 & i = = 0 0 0
5 — — = - - 0 0
Geometry-wide proper Involutions
# of Involutions 0 6 28 259 1219 4148 5660
1 N 6 28 277 1048 3413 4772
2 - - 0 32 171 661 864
11 3 = = = 0 0 74 74
# of h™
4 - . . N 0 0 0
5 = = = = - 0 0

Table 6: Classification of h!(X/o*) splitting under the triangulation/geometry-wise

proper involutions.

Conclusion
[e]e]
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Calabi-Yau Manifolds Toric G

Database

http://www.rossealtman.com/toriccy

Toric Calabi-Yau Database

New: Orientifold CY3!

We have added a large class of Calabi-Yau orientifolds, their orientifold planes, and
even-/odd-parity Hodge numbers (see ). Please cite us!

Search functionality for orientifolds is still in progress, but the data can now be
downloaded in bulk from . Files with the extension *. invol. json contain all
orientifold data.

This database is based on: arXiv:1411.1418, arXiv:1706.09070, and most recently arXiv:2111.03078. Please cite us!
Contact Ross Altman with questions.

Constructed with support from the National Science Foundation under grant NSF/CCF-1048082, EAGER: CiC: A String
Cartography.
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Example

Polytope #: 566
Geometry #: 1
Triangulation #: 1

Involution #: 1

e hll: 4

h21: 64

Invol: {D3 -> D6,D6 -> D3,D4 -> D7,D7 -> D4}

Geometry-wise Invol: true

Volume Parity: -1
# Sym CY Terms: 48

Sym CY Poly: In this case, all of the terms are symmetric, so this is the same as CY Poly. We
avoid repeating it for brevity.

hlil+: 3
e hll-: 1
OPlanes:

{ "OIDEAL" : [ "x3*x4-x6*x7" ], "ODIM" : 7 },
{ "OIDEAL" : [ "x1", "x2", "x5" ], "ODIM" : 3 }
]

Naive String Vacua: True
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Why ML?

@ Whether ML can pick out the orientifold property of a CYs.

@ It was conjectured that the orientifold symmetry (at least the involution
symmetry) on the CYs is already encoded in the polytope structure.
Hard for higher h>'. Three difficulties.

@ Rare Signal (around 5% for h'"' < 6). It would be great even if we just
train our machine to narrow down the candidate pool and increase the
successful rate by one order.
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Convolutional Neural Network (CNN)

@ Training data: 22960 polytopes, among them 1402 can result in an
orientifold CYs and 996 can end up with a naive string vacua.

@ Enlarge the data by 120 permutations: 2755200 training data.

@ Layers (excluded the input layer):

one 2D convolution layer, with 25 filters, kernel size 3 x 3 and
ReLU activation function,

one 