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Orientifold Calabi-Yau Manifolds
and Type IIB String Vacua
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Flux Compactification I

From string to the real wold: 10D → 4D
What we want: N = 1 Supersymmetry with chiral spectrum
Best under control: N = 1 Flux Compactification

Background Flux (in Type II):
Neveu-Schwarz flux: H3 = dB2, dH3 = 0.
Ramond flux: Fp+1 = dCp, dFp+1 = 0.

Metric flux: Fij
k from T-dual of Hijk.

Non-geometric flux: T-duality with Buscher rules.

Hijk
Tk←−−→ Fij

k Tj←−→ Qi
jk Ti←−−→ Rijk .
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Flux Compactification II

Four dimensional N = 1 supersymmetry flux compactification:
Het string on CY3

Type IIA/B on CY3 with orientifold (include Type I ∼= Type IIB
orientifold with O9−plane) ✓
F-theory on CY4

M-theory on CY3 × S1/Z2 or on M7 with G2 holonomy

⇒ Calabi-Yau threefold CY3 or fourfold CY4.
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Calabi-Yau Space

Q: What is Calabi-Yau?

Calabi-Yau n-folds is a complex n-dimentional compacted Kähler Manifold
satisfied:

Its first chern class vanish, i.e c1(M) = 0 ∈ H2(M,Z).
The normal bundle KM = ∧nT∗(1, 0)(M) is trivial since
c1(KM) = −c1(M)

There exist a unique no where vanishing holomophic n-form,
Ωn ∈ Ωn,0(M), dΩn = 0

The Ricci tensor vanish, i.e. Rmn = 0

The holonomy group of M is SU(n)
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Orientifold
Q: Why orientifold?

Type IIB is N = 2. Break half SUSY to get N = 1.

When considering the flux and D-brane, introduce O-plane for tadpole
cancelation.
Many string phenomenology is built in Type IIB Calabi-Yau orientifold
with O3/O7-plane.

O =

{
Ωp σ with σ∗(J) = J , σ∗(Ω3) = Ω3 , O5/O9

(−)FL Ωp σ with σ∗(J) = J , σ∗(Ω3) = −Ω3, O3/O7

each σ defines a new CY in the orbifold limit unless it is free action.
In Type IIB orientifold, Complex,dilaton moduli decoupled with Kähler
moduli.

Complex and dilaton moduli can be stabilized by background
fluxes at tree level. Gukov/Vafa/Witten

Kähler moduli can be stabilized by non-perturbative effects
(KKLT, Large Volume scenario). Kachru/Kallosh/Linde/Trivedi,

Balasubramanian/Berglund/Colon/Quevedo
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How to Construct Calabi-Yau Database

Toric Calabi-Yau Borisov, Batyrev, Cox, Kreuzer, Skarke …...

Hypersurface ↪→ 473,800,776 reflexive polyhedra in 4D
Kreuzer,Skarke,Altman,Gray,He,Jejjala,Nelson,…
Hypersurface ↪→ weighted project space Kreuzer,Skarke,…

Complete Intersection Calabi-Yau (CICY)
Complete intersection hypersurfaces ↪→ Product of projective spaces
7,890 configuration matrices for CY3
Hubsch,Candelas,Dale,Lutaken,Schimmrigk,Green,…
921,497 configuration matrices for CY4 Gray,Haupt,Lukas,…
Generalized Complete Intersection Calabi-Yau Manifolds (gCICY)
Anderson, Apruzzi, XG, Gray, Lee, 15’
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Calabi-Yau 3-folds Database

CICY (# 7890), gCICY (# > O(103)) and toric CY (# > O(1010)).
Candelas/Dale/Lutken/Schimmrigk, Anderson/XG/Gray/Lee, Anderson/Apruzzi/XG/Gray/Lee, Kreuzer/
Skarke, Altman/Gray/He/Jejjala/Nelson

Orientifold involution

σ =

{
Reflection : { xi ↔ −xi, · · · } h1,1

− (X) = 0

Exchange involution : { xi ↔ xj, · · · } h1,1
− (X) ̸= 0

h1,1
− (X) 6= 0 is important to solve the chirality issue for global model

building (Combine partical physics and moduli stabilization and inflation
in a single set-up). Blumenhagen/Moster/Plauschinn, Cicoli/Mayrhofer/Valandro/Quevedo/

Krippendorf, Balasubramanian/Berglund/Braun/Garcia-Etxebarria, Grimm/Weigand/Kerstan · · ·

D-brane at singularity
Fluxed Instanton
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Searching and Classification of Orientifold CY3s

Based in the favorable CICY database Anderson/XG/Gray/Lee, orientifold CICYs
has been studied recently. Carta/Moritz/Westphal

In toric CY database Altman/Gray/He/Jejjala/Nelson, exchange involution is
studied for h1,1 ≤ 4 (# ∼ O(103)) XG /Shukla and now for h1,1 ≤ 6 with
fully classification of exchange involutions, fix-point locus and free action.

Altman/Carifio/ XG /Nelson

Among total 646903 CYs with h1,1(X) ≤ 6, only 5% of them admits a
proper divisor exchange orientifold.
Most of oreintifold CYs admitting an O3/O7 system, 60% of them
admitting a string vacua.
Suitable for Machine Learning to extend our result to higher h1,1 to
search and classify orientifold CYs. XG /Zhou

Based on our works, some new progress is under going. Crino/Quevedo/
Schachner/Valandro
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Toric Variety
Definition: Set d,m ∈ N and n = d + m, a d−dim Toric Variety ∆◦ is defined
by the coset space of homogenous coordinates xi, i = 1, . . .n:

∆◦ =
Cn − Z
(C∗)m

where Z is the zero-set. (C∗)m defines an equivelant relation through the
charge matrix Q1

i :

(x1, . . . , xn) ∼ (λQa
1x1, . . . , λQa

n xn) ∀a = 1, . . . ,m, ∀λ ∈ C∗,

Definition: Let Z be the zero set of a toric variety ∆◦. The Stanley-Reisner
ideal I is the minimal ideal containing square free monomials corresponding to
the different subsets of the zero set:

I∆◦ =

{ k∏
j=1

xij | {xij = 0} ∈ Zi, i = 1, . . . ,n.
}
.

We use (∆◦ ≡ 5,N) to denote the Toric variety. In PALP and SAGE, they call
∆◦ dual-Polytopy. In fact, we can have two ways to define the toric variety:

coordinates xi in charge matrix Q. ⇔ vertex in Dual-Lattice Polytopy ∆◦.
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Triangulations

Usually, a toric variety has some singularity, need to be resolved.
Replace the isolated singularity by higher dimension curve is called
Resolution of singularity. Using Pn to do it is called Blow-up. For a given
singularity there may exist several resolution ways. The different ways
may be connected by so-called Flop Transition.
There are other methods to resolve the singularity such as deformation.
So we can see that resulotion is associated to decomposite the varity to
some smaller pieces. This is called Triangulations or Simplicial
Decomposition. A Maximal Triangulation means there is no further
triangulations which can get more cone.
Usually, we call the dual-Polytopy ∆◦ ≡ (5, N) together with their
triangulation information the Ambient Space A.
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Toric Calabi-Yau Hypersurface

THM: If a toric variety is Calabi-Yau manifold, it is non-compact.

THM: Set Toric Variety ∆◦ defined by x1, . . . , xn and the associated GLSM
charge Qa

1, . . . ,Qa
n. Set G1, . . . ,Gc are the homogenous polynomial in ∆◦,

then the complete intersection hypersurfaces S is given by:

S = {G1 = 0} ∩ · · · ∩ {Gc = 0}.

Furthermore,

S is Compact Calabi−Yau ⇔ ||G1||a + · · ·+ ||Gc||a = Qa
1 + · · ·+ Qa

n, ∀a.

i.e, the sum of the degree of homogenous polynormail is equal to the sum of
charge of homogenous coordinates in ∆◦.
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Polynomial Representations of Toric CYs
Definition: The Polytope (∆,M) dual of ∆◦ = (5,N) is defined by:

∆ = {m ∈ MR = Zd | 〈vi|m〉 ≥ −1, ∀vi ∈ 5} ⊂ MR.

(∆,M) is also called the Newton polytope. If ∆ is still an integer lattice
polytopy, we call it Reflexive.
For (∆,M), the compact smooth Calabi-Yau anticanonical hypersurface can be
defined by the vanishing of a homogeneous polynomial {P = 0}.

P =
∑

m∈∆

amMm = 0, where Mm =

d∏
i=1

x⟨m,vi⟩+1
i .

Example:. The dual-polytopy and polytopy of P2 and its polynomial
representation:

x

y

z

H! , NL

x
3

x
2

y

x
2

z

x y
2

y
3

y
2

z

y z
2

z
3

x z
2

xyz

HD, M)
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Polytopes, Triangulations and Geometries

Favorable Description: When Toric divisor classes on the Calabi-Yau
hypersurface X are all descended from ambient space A.

h1,1(X) = dim(H1,1(X)) ∼= dim(Pic(A)) = h1,1(A)

MPCP: Maximal Projective Crepant Partial (MPCP) desingularization
involves the triangulation of the polar dual reflexive polytope ∆∗, which
contains at least one fine, star, regular triangulation (FSRT).
Wall’s theorem: The compact Calabi-Yau 3-folds are classified by the
Hodge numbers, the intersection numbers, and the second Chern Class.

=⇒ Geometry-wise description: Glue together the various phases of the
complete Kähler cone corresponding to a distinct Calabi–Yau threefold
geometry.
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Proper Involution σ: NID

σ : xi ↔ xj =⇒ σ∗ : Di ↔ Dj.
In favorable case, restricts strightforward to the Calabi-Yau hypersurface.
D± = Di ±Dj ∈ H1,1

± (X/σ∗)

Proper Involutions:
Non-Trivial Identity Divisor: H•(Di) ∼= H•(Dj) with different wights O(D).

Completely Rigid Divisors:
h•(D) = {h0,0(D), h0,1(D), h0,2(D), h1,1(D)} = {1, 0, 0, h1,1(D)}.
Wilson Divisors: h•(W) = {1, h1,0, 0, h1,1}. h1,0

+ = 1 characterize
the zero modes of poly-instanton, which can not be lifted by
background fluxes.
Deformation divisors such as K3.
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Proper Involution σ: Consistent

Symmetry of Stanley-Reisner Ideal ISR(A): To ensure the involution to
be an automorphism of A, leaving invariant the exceptional divisors from
resolved singularities.
Symmetry of the linear ideal Ilin(A): To ensures the defining polynomial
of CY remains homogeneous under involution.

A•(A) ∼=
Z(D1, · · · ,Dk)

Ilin(A) + ISR(A)
.

Due to the favorability condition on the Calabi-Yau threefold hypersurface we have

A1(A) ∼= H1,1(A) ∼= Pic(A) ∼= Pic(X) ∼= H1,1(X) ∼= A1(X) ,

thus the toric triple intersection tensor defined in the Chow ring of X.

dijk =

∫
X

Di ∧ Dj ∧ Dk ≡ Di · Dj · Dk · X and X = −KA =
k∑

i=1

Di

=⇒ Triple intersection tensor is invariant under involution σ.
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Types of Proper Involution σ

Triangulation-wise proper involution: The involutions present at the
triangulation level - that is, within a single chamber of the Kähler cone of
a given geometry.
Geometry-wise proper involution: The involutions which are globally
consistent across all disjoint phases of the Kähler cone for each unique
Calabi-Yau geometry.
Each of the geometry-wise proper involutions may correspond to several
triangulation-wise involutions which can span an entire CY geometry.
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Fixed Orientifold Planes I : Invariant CY Hypersurface
Polynomial

A =
Ck ∖ Z

(C∗)k−4 ×G
,

The geometry can be described by {x1, ..., xk} and their C∗ equivalence classes

(x1, ..., xk) ∼ (λWi1x1, ..., λWik xk) ,

P =
∑

m∈∆

amMm = 0, where Mm =

k∏
i=1

x⟨m,ni⟩+1
i .

Define the set of monomials M = {Mm|m ∈ ∆}. Then for Mm,Mm′ ∈M, we
identify three cases:

1 σ(Mm) = Mm ⇒ am is generic,
2 σ(Mm) = Mm′ , m 6= m′ ⇒ am = am′ ,
3 σ(Mm) 6∈ M ⇒ am = 0.

=⇒ P 7→ Psymm, such that σ(Psymm) = Psymm in addition with σ∗J = J.
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Fixed Orientifold Planes I : Invariant CY Hypersurface
Polynomial

A =
Ck ∖ Z

(C∗)k−4 ×G
,

The geometry can be described by {x1, ..., xk} and their C∗ equivalence classes

(x1, ..., xk) ∼ (λWi1x1, ..., λWik xk) ,

P =
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m∈∆

amMm = 0, where Mm =

k∏
i=1

x⟨m,ni⟩+1
i .

Define the set of monomials M = {Mm|m ∈ ∆}. Then for Mm,Mm′ ∈M, we
identify three cases:

1 σ(Mm) = Mm ⇒ am is generic,
2 σ(Mm) = Mm′ , m 6= m′ ⇒ am = am′ ,
3 σ(Mm) 6∈ M ⇒ am = 0.

=⇒ P 7→ Psymm, such that σ(Psymm) = Psymm in addition with σ∗J = J.
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Fixed Orientifold Planes II :
Minimal Generators G

G: generated by homogeneous polynomials y(x1, ..., xk) that are (anti-)invariant
under σ.

G = G0 ∪ G+ ∪ G− .

The unexchanged coordinates in G0 are known from our choice of
involution.
To finding the non-trivial even and odd parity generators in G+ and G−,
we must consider all possible non-trivial “sub-involutions” given by the
non-empty subsets of {σ1, ..., σn} ⊆ σ of size 1 ≤ m ≤ n.

y±(a) = xa1
i1 xa2

i2 · · · x
am
im ± xa1

j1 xa2
j2 · · · x

am
jm ,

The condition for homogeneity, in terms of the columns wis and wjs of
the weight matrix W is given by:

a1(wi1 − wj1) + a2(wi2 − wj2) + · · ·+ am(wim − wjm) = 0 .
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Fixed Orientifold Planes III : Naive Fixed Point Loci

Segre embedding: {x1, ..., xk} 7→ {y1, ..., yk′} ≡ G and construct a new
weight matrix W̃ for {yi}.
The exchange involution has transfomed into reflection.
Point-wise fixed point for codim-1 divisor: σ : y 7→ −y, so that
D = {y = 0} is fixed.
Point-wise fixed point for codim larger than one: check whether the
involution forces a subset of generators F ⊆ G to vanish simultaneously.
In fact, check F ∩ G− 6= ∅.

Redundancy: The torus C∗ actions provide r = rank(W̃) additional
degrees of freedom for the generators to avoid being forced to zero.
In each subset of generators F , we check for this by solving the system of
equations

λ
W̃1i
1 λ

W̃2i
2 · · ·λW̃rir = σ(yi)/yi, i = 1, ..., k′ .

By the construction of the generator yi, the right-hand side is equal to
±1. The set is point-wise fixed if this equation is solvable in the λi.
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Fixed Orientifold Planes IV : ISR and CY Transversality

Check whether each point-wise fixed loci lie in Stanley-Reisner ideal ISR.
The definition of ISR leads A to be spllited into different patches: Ui.
For a given fixed set F ≡ {y1, · · · , yp}, we compute in each sector Ui the
dimension of the ideal generated by

Ifixed
ip = 〈Ui,Psymm, y1, ..., yp〉 .

If dim Ifixed
ip < 0 for all Ui, then F does not intersect the X.

For each subset that is not discarded, we repeat this calculation for the
ideal with one fixed set generator dim Ifixed

i1 , and then two dim Ifixed
i2 ,

etc. until dim Ifixed
iℓ = dim Ifixed

ip when adding more generators to the
ideal no longer changes the dimension for any region Ui. Then, the
intersection {y1 = · · · = yℓ = 0} of these generators gives the final
point-wise fixed locus, with redundancies eliminated.
An O3 plane corresponds to a codimension-3 point-wise fixed subvariey,
an O5 plane has codimension-2, an O7 plane has codimension-1.
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Fixed Orientifold Planes V : Smoothness

Check whether the invariant Calabi-Yau hypersurface defined by Psymm is
smooth. This is important to determine whether an involution is a free
action. We do this by checking by setting up the ideals

Ismooth
i = 〈Ui, Psymm,

∂Psymm

∂x1
, ...,

∂Psymm

∂xk
〉.

for each region Ui allowed by the ISR, and computing the dimension. If
dim Ismooth

i < 0 for all Ui, then the invariant Calabi-Yau hypersurface is
smooth.
If no O-planes exist and the invariant Calabi-Yau hypersurface is smooth,
then the involution defines a Z2 free action on X.
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Tadpole Cancelation and String Vacua

Cancel the D7-brane tadpole by simply placing eight D7-branes on top of
the O7-plane.
D3-brane tadpole condition simplified to:

ND3 +
Nflux
2

+ Ngauge =
NO3

4
+

χ(DO7)

4
≡ −Qloc

D3.

with Nflux =
1

(2π)4α
′2

∫
H3 ∧ F3, Ngauge = −

∑
a

1
8π2

∫
Da

trF2
a , and ND3,

NO3 the number of D3-branes, O3-planes respectively.
String Vacua: The D3-tadpole cancelation condition requires the total
D3-brane charge Qloc

D3 of the seven-brane stacks and O3-planes to be an
integer. If the involution passes this naive tadpole cancellation check, we
will denote our geometry as a “naive orientifold Type IIB string vacua”.
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Hodge Number Splitting
Under the involution, the dimensions of Hodge numbers split

Hp,q(X/σ∗) = Hp,q
+ (X/σ∗) ⊕Hp,q

− (X/σ∗) .

Example: h1,1(X) = 3, admitting a proper orientifold involution
σ∗ : D2 ↔ D3. Suppose the divisor classes {D1,D2,D3} form a basis for
H1,1(X;Z). Then, the Kähler form can be expanded as

J = t1J1 + t2J2 + t3J3 = t1D1 + t2D2 + t3D3 ,

with t1, t2, t3 ∈ Z.

J = σ∗J = t1D1 + t2D3 + t3D2 = t1J1 + t3J2 + t2J3 .

Then we note that we must have t2 = t3 = t+, for some t+ ∈ Z. Defining
the even and odd parity eigendivisors D± = D2 ±D3, we can write

J = t1D1 + t+D+ .

so h1,1
+ (X/σ∗) = 2 and h1,1

− (X/σ∗) = 1

We can count the new h2,1(X/σ∗) if it is smooth.
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Example: h1,1(X) = 4, h2,1(X) = 64.

x1 x2 x3 x4 x5 x6 x7 x8
0 0 0 1 0 1 0 0
0 0 1 0 0 0 1 0
0 1 0 0 1 0 0 1
1 0 0 1 0 0 1 1

.

• ISR = 〈x1x8, x3x7, x4x6, x1x4x7, x2x3x5, x2x5x6, x2x5x8 〉
• The linear ideal, which fixes toric divisor redundancies, is given by

Ilin = ⟨ −D1 − D2 − D3 − D4 + 0 + D6 + D7 + D8,
+ 0 + 0 + D3 + D4 + 0 − D6 − D7 0,
− D1 0 − D3 − D4 − D5 + D6 + D7 + D8,
+ 0 + 0 + 0 + D4 + D5 − D6 + 0 − D8 ⟩ ,

and a basis in H1,1(X;Z) given by J1 = D1, J2 = D2, J3 = D3, J4 = D6.
h•(D1) = {1, 0, 0, 9}, h•(D2) = h•(D4) = h•(D5) = h•(D7) = {1, 0, 1, 21}

h•(D3) = h•(D6) = {1, 0, 0, 12}, h•(D8) = {1, 0, 2, 30}

• Only geometry-wise proper involution: σ : x3 ↔ x6, x4 ↔ x7
• σ∗Ω3 = −Ω3. One would expect O3/O7-system.
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Orientifold Planes I : Minimal Generators G
G0 = {x1, x2, x5, x8} .
σ1 : x3 ↔ x6 ⇒ G+ = {x3x6}, G− = ∅
σ2 : x4 ↔ x7 ⇒ G+ = {x4x7}, G− = ∅
σ : x3 ↔ x6, x4 ↔ x7: xm

3 xn
4 ± xm

6 xn
7 for m,n ∈ Z.

The homogeneity of this binomial is determined by the following
condition on the weights

m(Wi3 −Wi4) + n(Wi6 −Wi7) = 0 .

The kernel is generated by the vector (m,n) = (1, 1), so
G+ = {x3x4 + x6x7} and G− = {x3x4 − x6x7}.
Serge embbeding:

y1 = x1, y2 = x2, y3 = x5, y4 = x8, y5 = x3x6,
y6 = x4x7, y7 = x3x4 + x6x7, y8 = x3x4 − x6x7 .

y1 y2 y3 y4 y5 y6 y7 y8
0 0 0 0 1 1 1 1 λ1

0 1 1 1 0 0 0 0 λ2

1 0 0 1 0 2 1 1 λ3
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Orientifold Planes II: Naive Fixed Loci

y8 7→ −y8: F1 = {y8 = 0} is a point-wise fixed, codimension-1 subvariety.
Check whether any subset F ≡ {y1, · · · , yp} of the generators can
neutralize the odd parity of y8, becoming fixed themselves in the process.
We begin our scan with the largest set of generators and work our way
down. The largest set we can choose has 4 generators, since their
simultaneous vanishing defines a set of isolated points on A.

Consider F2 = {y1 = y2 = y3 = y7 = 0} to be fixed, we must use the
three independent C∗ actions to neutralize the odd parity of y8 while
leaving everything else invariant.

(y4, y5, y6,−y8) ∼ (λ2λ3y4, λ1y5, λ1λ
2
3y6, λ1λ3y8) = (y4, y5, y6, y8)

where λ1, λ2, λ3 ∈ C∗.

λ2λ3 = 1 λ1 = 1 λ1λ
2
3 = 1. λ1λ3 = −1 .

=⇒ (λ1, λ2, λ3) = (1,−1,−1) and so F2 is indeed a point-wise fixed set.
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Orientifold Planes III: True Loci & String Vacua
The fixed point set F2 = {y1 = y2 = y3 = y7 = 0} can be written in
terms of the original coordinates {x1 = x2 = x5 = 0} ∩ {x3x4 = −x6x7}.
Substitutions in Psymm:

Psymm = a48(x23x4x6x38 + x3x26x7x38) = a48x3x6x38y7 .

x2x3x5 ∈ ISR =⇒ x3 ̸= 0, x2x5x6 ∈ ISR =⇒ x6 ̸= 0,
x2x5x8 ∈ ISR =⇒ x8 ̸= 0

=⇒ y7 = 0 for Psymm vanishing, which is a redundancy.

F′
2 = {y1 = y2 = y3 = 0}

There are 17 Ui, by checking F1 and F′
2 as

Ifixed
ij = 〈Ui, Psymm, Fj〉

we can determine F1 is an O7 plane, while F′
2 is an O3 plane locus.

In fact, there are only one O7 and one O3-plane, and we have:

ND3 +
Nflux
2

+ Ngauge =
NO3

4
+

χ(DO7)

4
=

1 + 39

4
= 10 .

Geometry-wise “naive orientifold type IIB string vacua”.
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Hodge Number Splitting

Holomorphicity condition =⇒ Hp,q(X/σ∗) = Hp,q
+ (X/σ∗) ⊕Hp,q

− (X/σ∗)

Favrability =⇒ H1,1(A) ∼= Pic(A) ∼= Pic(X) ∼= H1,1(X)
We can always expand the Kähler form in terms of the divisor classes.

J = t1J1 + t2J2 + t3J3 + t4J4 = t1D5 + t2D6 + t3D7 + t4D8

The Kähler form must be invariant under the pullback of involution,

J = σ∗J = t1D5 + t2D3 + t3D4 + t4D8 = t1J1 + t2D3 + t3D4 + t4J4 (1)

=⇒ D3 = J1 + J3 − J4 and D4 = −J1 + J2 + J4 ..

t1 + t2 − t3 = t1, t3 = t2, t2 = t3, −t2 + t3 + t4 = t4 .

h1,1
+ (X/σ∗) = 3, h1,1

− (X/σ∗) = 1

The result is basis independent.
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Database
http://www.rossealtman.com/toriccy
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Example
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Why ML?

Whether ML can pick out the orientifold property of a CYs.
It was conjectured that the orientifold symmetry (at least the involution
symmetry) on the CYs is already encoded in the polytope structure.
Hard for higher h1,1. Three difficulties.
Rare Signal (around 5% for h1,1 ≤ 6). It would be great even if we just
train our machine to narrow down the candidate pool and increase the
successful rate by one order.
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Convolutional Neural Network (CNN)

Training data: 22960 polytopes, among them 1402 can result in an
orientifold CYs and 996 can end up with a naive string vacua.
Enlarge the data by 120 permutations: 2755200 training data.
Layers (excluded the input layer):

- one 2D convolution layer, with 25 filters, kernel size 3× 3 and
ReLU activation function,

- one flatten layer, with default setup,
- two full-connected layers (dense layers), both with 100 neurons

and ReLU activation functions,
- one dropout layer, with a dropout rate of 0.1,
- one output layer (dense layer), with 2 neurons and Softmax

activation function.
Loss function: Categorical Corssentropy.
Optimizer: Adam, with default learning rate.
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Accuracy of classifier
Accuracy for unresolved data: 99.906% for orientifold & 99.802% for vacua.

Accuracy for resolved data: 99.907% for orientifold & 99.897% for vacua.
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Result of ML
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Probability histograms for training data
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Prediction for higher h1,1 (h1,1 = 7)
Initial data: 50376 unresolved polytopes � trained data (2755200)
The trained model with parameters fixed.
After classifier, among the polytopes with h1,1 = 7, 2086 of them may
end up with orientifold CYs
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Result of Trained Model
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Example of prediction
h1,1 = 7, h2,1 = 53, which was labeled as “orientifold ” and “vacua”.

0 1 −1 −1 −1 0 0 −1 0 −1 1
0 1 −1 0 −1 0 0 −1 −1 0 0
0 0 −1 −1 −1 −1 0 0 0 0 1
−1 1 0 −1 −1 0 1 −1 0 −1 1

After explicitly triangulations, one can get the following topological data.

h•(D1) = h•(D2) = {1, 0, 1, 20}, h•(D10) = h•(D11) = {1, 0, 1, 22}
h•(D4) = h•(D8) = h•(D9) = {1, 0, 0, 8}

It contains several possible involutions.
If we choose: {D1 ↔ D2,D4 ↔ D9,D10 ↔ D11}, we get four O7 plane with
locus: [D4D10 − D9D11], [D3], [D5], [D6]
One can check it indeed satisfy the naive string vacua condition by:

36 + 9 + 7 + 12

4
= 16.

If we choose another involution: {D4 ↔ D9,D10 ↔ D11} we get four O7 plane
and one O3 plane. However, it does not satisfy the naive string vacua condition.
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Remarks for higher h1,1

Hard to check for higher h1,1. Need to combine some other method of
thiangulations. Demirtas/Long/McAllister/Stillman

Favorable vs. Unfavorable Polytopes.
Supervised training by generating enough initial orientifold CYs (we only
need 30% of the data to train to get a high accuracy for h1,1 ≤ 6). Use a
subset of the database to learn something more complicated.

More complicated neural network may needed like Generative Adversarial
Network (GAN) or Variational Autoencoder (VAE), which are in principle
unsupervised training.
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Conclusion
Based on the favorable CY3 constructed from Kreuzer-Skarke list, we
push our upper bound to h11 = 6 by exact calculation.
Instead of maximal triangulations, we consider all possible maximal
projective crepant partial desingularizations (MPCP). The number of
triangulations we analyzed increases from 2968 to 646903.

We identify the topology of each divisors and determine the involutions
which are globally consistent across all disjoint phases of the Kähler cone
for each unique CY.
Identify free action of involution and all possible fixed loci under
non-trivial actions, thereby determining the type and location of O-planes.
Classify the naive orientifold string vacua by considering the D3 tadpole
cancelation condition.
Determine the Hodge number splitting under these involutions.
The ML method gives a very high precision (99.96%) for identifying the
polytopes which can result in an orientifold CY. This indicate the
orientifold symmetry may encoded in the polytope structure itself.
The ML method predict the polytopes which can result in an orientifold
CY for higher h11.
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Conclusion
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We identify the topology of each divisors and determine the involutions
which are globally consistent across all disjoint phases of the Kähler cone
for each unique CY.
Identify free action of involution and all possible fixed loci under
non-trivial actions, thereby determining the type and location of O-planes.
Classify the naive orientifold string vacua by considering the D3 tadpole
cancelation condition.
Determine the Hodge number splitting under these involutions.

The ML method gives a very high precision (99.96%) for identifying the
polytopes which can result in an orientifold CY. This indicate the
orientifold symmetry may encoded in the polytope structure itself.
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Identify free action of involution and all possible fixed loci under
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T hanks for your attention!
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