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Wilson loops

Wilson loops were introduced to characterize confinement in QCD [Wilson, 1974]

WI[C] = TrPexp {— i%cdm“Aﬂ(:v)}.

In 4d N =4 SYM the ordinary Wilson loop can be naturally generalized to the
Maldacena-Wilson loop [Maldacena, 1998§]

~—

W[C] = TrP exp [—i?idT (A at + qb;@“’]a'c])} (1

Origin: ordinary Wilson loop in 10d N'=1 SYM theory
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Wilson loops in holography

e Wilson loop < string in the bulk of AdS ending on the contour of the loop [Rey,
Yee, 1998] [Maldacena, 1998|

e Vacuum expectation value <+ string worldsheet path integral

(W[C]) =Tr DX exp(—gs[X]) e eXp(_gAmin)'
AX=C u u
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BPS Wilson loops

e BPS Wilson loops are Wilson loops which preserve some supercharges in
supersymmetric gauge field theories.

e Their expectation values can be computed exactly using supersymmetric
localization technique |Pestun, 07].

e A famous example is the circular 1/2 BPS Wilson loop in N' =4 SYM.
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Localization

e The expectation value of a circular BPS Wilson loop in N = 4 SYM with gauge
group SU(N) can be reduced to computation to a Gaussian matrix model.
|[Erickson, Semenoff and Zarembo, 00| [Drukker and Gross, 00|

1 1 IN 1 A A
(W) = /DMNTreM exp ()\Ter) = *L}v—1(*ﬁ)6w

N
o A o) \Fx—ieﬁ
VA ™

o VA= fﬁ/(Qw)AAdST Aags, = —2m is the regularized area of AdS; minimal surface.
[Berenstein, Corrado, Fischler, Maldacena, 98] [Drukker, Gross, Ooguri, 99]

e This can be derived by using the supersymmetric localization.
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Fermionic BPS Wilson loops in three dimensions

e BPS Wilson loops in 3d superconformal Chern-Simons-matter theory are more

complicated.

e Bosonic Wilson loops: couples to the gauge field and the scalar field |Gaiotto,
Yin, 07]

e Fermionic Wilson loops: couples to bosonic and fermionic fields [Drukker,
Trancanelli, 09].

e The motivation of our work is to explore similar fermionic BPS Wilson loops in

four dimensions.
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Chiral multiplet: ¢, ¢, F

Supersymmetry transformations:
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Bosonic BPS Wilson loops in N/ = 2 Chern-Simons-matter theories

Vector multiplet: A,, o, x, D
Chiral multiplet: ¢, ¢, F

Supersymmetry transformations:

1 _
0A, = 50‘7#6 + EVuA), (2)

b0 = —(Re+eN), (3)

Bosonic BPS Wilson line on z# = 87 [Gaiotto, Yin, 07]:

Whes = P exp <—i/dTLbos> v Lbos = Apdt + o|i|. (4)

Bosonic BPS Wilson lines exist in theories with more supersymmetries. They

always preserve two Poincaré and two conformal supercharges.
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ABJM theory

e ABJM theory is 3d N = 6 theory with gauge group U(N) x U(N) and
Chern-Simons level (k, —k). [Aharony, Bergman, Jakeris, Maldacena, 08|

e It contains four complex scalars ¢; and four Dirac spinors ¢! in bifundamental

/ll—’l

|
Y -k

representation (N, N).
@ 5
k

e It is holographically dual to M-theory on AdSy x S”/Z;, or type IIA string
theory on AdSy x CP3.

o] AY &



Bosonic 1/6 BPS Wilson loops in ABJM theory

[Drukker, Plefka, Young 08| [Chen, Wu, 08] [Rey, Suyama, Yamaguchi, 08]
A 1/6 BPS Wilson line along z# = 74} takes the form
Whos = P exp <—i/dTAbOS(T)> ,
Whes = P exp <—i/d7./21bos(7)> ,
Abos = Apit + %RQ@M@.
Abos = By + 28,7576,

R, = 5,7 = diag(—1,-1,1,1)

It is is basically the same as the bosonic BPS Wilson line in generic ' = 2

Chern-Simons-matter theories.
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1/2 BPS Wilson line in ABJM theory

e However, the study of dual fundamental string solutions in AdS, x CP?
[Drukker, Plefka, Young, 08][Rey, Suyama, Yamaguchi, 08] indicates that there
should be 1/2 BPS Wilson loops in ABJM theory.
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1/2 BPS Wilson line in ABJM theory

e However, the study of dual fundamental string solutions in AdS; x CP?
[Drukker, Plefka, Young, 08][Rey, Suyama, Yamaguchi, 08] indicates that there
should be 1/2 BPS Wilson loops in ABJM theory.

e Such Wilson loops were finally constructed in [Drukker, Trancanelli, 09] via

including fermions

. A fi
Wije = Pe~iS Lz, Ly = f}
2 A

A= x4ux“+- = MT;6:8718l, fi= \/ =G Jel,

N g 27 i 3 27 - g
A= Byi" + =N glil, o=/ 0’|

10



Localization

e Evaluation of expectation values of bosonic BPS Wilson loops can be reduced to
a matrix model, after using localization techniques. |[Kapustin, Willett, Yaakov, 09]

e Expectation values depends on framing factors. Localization always leads to

framing-one results.

11
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Cohomological equivalence

At classical level, there exists a well defined matrix V' and a supercharge () such
that
W1/2 - Wbos = QV (11)
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Cohomological equivalence

At classical level, there exists a well defined matrix V' and a supercharge () such
that
W1/2 — Whos = QV (11)

The cohomological equivalence at quantum level leads to
(Whos)1 = (W1/2)1 (12)

where the subscript indicates that the identity holds only at framing one.

12



Fermionic BPS Wilson loops in N’ = 2 Chern-Simons-matter theories

[HO, Wu, Zhang, 15]

e We consider 3d A/ = 2 Chern-Simons-matter quiver gauge theory with gauge
group U(N) x U(M).

e There are matter fields in bifundamental representations (N, M) .

13



Fermionic BPS Wilson line along z# = 70

Wier = Pexp <_i/d7—Lfer(7—)> y Lfer = (

A= Auit + o +iaBaugg,
A= A i" + 6 + iafuuge,
flzaﬂwu f2:ﬁdju

You = U.

(13)
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Fermionic BPS Wilson line along z# = 70

Wier = P exp <—i / dTLfer(T)> T — ( A f}

A= A,i" + o + iaBuudg,
A= A i" + 6 + iafuuge,
fi=aayp, fr=pu.
You = U.
The requirement for Wg, to be BPS is [K. Lee, S. Lee, 2010]
dLter = Or A + i[Lger, A

(%)

for some Grassmann odd matrix

14



Line or circle
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Line or circle

o W(s,t) =Pexp (—1 It erfer(T)), SW (s, t) = —iA(s)W (s, t) + iW (s, )A(£)

15



Line or circle

o W(s,t) =Pexp (—i It erfer(T)), SW (s, t) = —iA(s)W (s, t) + iW (s, )A(£)
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Preserve 2 Poincaré + 2 conformal supercharges, same as the bosonic one.
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Line or circle

o W(s,t) =Pexp (—i It erfer(T)), SW (s, t) = —iA(s)W (s, t) + iW (s, )A(£)

e Line: A(d+o00) =0, d (Pexp (—iffooo dTLfer(T))> =0.

Preserve 2 Poincaré + 2 conformal supercharges, same as the bosonic one.

e Circle: A satisfies anti-periodic boundary conditions
A(0) = —A(2m), (16)

to construct BPS Wilson loop, we should take the trace

5 <Tr7> exp <—i /0 ” dTLfer<T)>) 0. (17)

15



It is convenient to define a fermionic transformation @ by § = 0Q and € = uf. Ly,
can be compactly written as

Lfer = Lbos + QG + ZEUG2
A 0 0 —iag (18)
0 A 11510, 0

Lbos =

16



It is convenient to define a fermionic transformation @ by § = 0Q and € = uf. Ly,
can be compactly written as

Lier = Lios + QG + iauG?

0 0 — 18
Lypos = A A , G= ap ( )
0 A i8¢ 0

Cohomological equivalence holds at classical level:
Weer — Whos = QV (19)

It was conjectured that cohomological equivalence holds quantum mechanically.

16



1/6 Fermionic BPS Wilson loops in ABJM theory

Ao+ 2Z2U% 197 v/ 2 (el +Aryl)

Lfer = 3 - i
VEG-8 =518 Bot U6
—14+28%a, —28'a

I —26%a; —-1+28'a

Ul =

1—26%, 2833,
26493 1—258%73
ar = (1,82,0,0), 8" =(8",6%0,0), 7 =(0,0,%,%), &' =(0,0,8% 6%
The Wilson loop is 1/6-BPS, when the parameters satisfy the constraints

_ 34— ol
a120"" =43487° =0
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1/6 Fermionic BPS Wilson loops in ABJM theory

Ao+ 2Z2U% 197 v/ 2 (el +Aryl)

Lfer = 3 - i
VEG-8 =518 Bot U6
—14+28%a, —28'a

I —26%a; —-1+28'a

Ul =

1—26%, 2833,
26493 1—258%73
ar = (1,82,0,0), 8" =(8",6%0,0), 7 =(0,0,%,%), &' =(0,0,8% 6%
The Wilson loop is 1/6-BPS, when the parameters satisfy the constraints

_ 34— ol
a120"" =43487° =0

(20)

For special parameters in the constructions, the Wilson loops become the 1/2-BPS. For

example
o p2 S IS
ay=p3"=1, ay =0 =6 =7;=0

(21)

17



Holographic description [Correa, Giraldo-Rivera, Silva, 19|
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Holographic description [Correa, Giraldo-Rivera, Silva, 19|

e Fermionic 1/2 BPS Wilson loops — Dirichlet boundary condition
e Bosonic 1/6 BPS Wilson loops — Neumann boundary condition

e Fermionic 1/6 BPS Wilson loops — mixed boundary condition

18



Fermionic BPS Wilson loops in four

dimensions




N = 2 superconformal SU(N) x SU(N) quiver theory
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N = 2 superconformal SU(N) x SU(N) quiver theory

e Let us consider a marginal deformation of the Zs orbifold of the N' =4 SYM.
[Rey, Suyama, 10]
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N = 2 superconformal SU(N) x SU(N) quiver theory

e Let us consider a marginal deformation of the Zsy orbifold of the N' =4 SYM.
[Rey, Suyama, 10]
e The fields in the two N = 2 vector multiplets can be arranged into 2 x 2 block

matrices:
AD o
A, = 0 A,(E) , w=20,...,5
(22)
VS
>\oc = 0 )\((12) , Q= 172)

where A, with m =0, ..., 3 is the gauge field and A4 5 are two real scalars.
The SO(1,5) Weyl spinors A\; and Ay have chirality —1 for T'°12345 and satisfy
the reality condition A\* = —e®? )\Cﬁ.



N = 2 superconformal SU(N) x SU(N) quiver theory

e The matter content consists of two bifundamental hypermultiplets with
component fields:

0 q¢®e 0o O
¢ = ) , Y= ;
g 0 @ 0
e Quiver diagram:

>
1 2

(23)

20



N = 2 superconformal SU(N) x SU(N) quiver theory
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N = 2 superconformal SU(N) x SU(N) quiver theory

e The action of the N/ = 2 gauge theory is

1 e -
Syes = / diz <—4Tr(FWF’“’)—;Tr()\OT“D#)\a)—Duan“qa—iu}F“D#zj}

V290 4 Tath—V 299 Taq* N2 — 6% (4 T ¢%) (45 Taq®)

+5GTad) T ) (2)
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N = 2 superconformal SU(N) x SU(N) quiver theory

e The action of the N/ = 2 gauge theory is

1
V290 4 Tath—V 299 Taq* N2 — 6% (4 T ¢%) (45 Taq®)

+1g2<anAqa><quAqﬁ>) . (24)

1 e i
Syes = / diz (—Tr(F,“,F’“’)—;Tr()\OT“DH)\a)—Duan”qa—in“Duw

2

e The coupling constants for the two gauge group factors can be varied
independently while preserving N/ = 2 superconformal symmetry. We assemble
them into a matrix:

gWIy 0

9= > (25)

21



N = 2 superconformal transformation

The action is invariant under the N = 2 superconformal transformation:

§A, = —i€°T yha = iX T q,
8q* = —iV2E™,

8qa = —iV2¢a,

51 = —V/2D O T €0 —2V/2¢%0 o,
5"; = \/igaruDMQQ_Q\/iﬁa@)m

1 . ,

ONE = S FATWE, 42190 TA¢ 65 — igqs T4 0 —240T*0,,
_ 1- _ _ _

ONA = — €O F T —2igqs T q"€P + iggs T € +20° AT,

where £, = 0, + £™T',,,¥, and the index a = 4, 5.

22
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Holographic description

e dual to type IIB string theory on the AdSs x (5°/Zy) geometry [Kachru,
Silverstein, 98]

e It is convenient to parameterize the 't Hooft couplings as:

TA TA

A= —. Mo =
1= 27 or g

(27)
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TA TA
A= 22—
Y79 T o g

e ) is related to the string tension T' = ﬁ via A\ = 472712,
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Holographic description

dual to type IIB string theory on the AdSs x (S°/Zs) geometry [Kachru,
Silverstein, 98]

It is convenient to parameterize the 't Hooft couplings as:

TA TA

A= —. Mo =
1= 27 or g

A is related to the string tension T' = ﬁ via A\ = 472712,

The parameter 6 is proportional to the flux of the NSNS B-field through
collapsed two-cycle of the orbifold.
[Lawrence, Nekrasov, Vafa, 98] [Klebanov, Nekrasov, 99|

(27)
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BPS Wilson lines in Minkowski spacetime

One can define a 1/2 BPS Wilson line along the timelike infinite straight line
™ = 5" as

Whos = Pe' /970120 [0 = gAg — gAs. (28)

The persevered supersymmetries can be parameterized by &, satisfying

[sToln = La. (29)

24
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BPS Wilson lines in Minkowski spacetime

In analogy to the three-dimensional case, let us consider the Wilson line operator

err = Pei f dTLa (30)
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BPS Wilson lines in Minkowski spacetime

In analogy to the three-dimensional case, let us consider the Wilson line operator
err = PeideLa (30)
where the connection L is a supermatrix:

L:L1/2+B+F. (31)
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BPS Wilson lines in Minkowski spacetime

In analogy to the three-dimensional case, let us consider the Wilson line operator

err — PeideL,
where the connection L is a supermatrix:

The matrices B and I’ are defined as

BM
B= ,
0 B®
F =C% + yn,
g(l)[N 0 7](2)IN
= s ’]7 =
0 (@r1y 0

(30)

25



BPS Wilson lines in Minkowski spacetime
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BPS Wilson lines in Minkowski spacetime

e We would like to construct a Wilson line invariant under a given supersymmetry

transformation d¢ parameterized by &, = 0s,.
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BPS Wilson lines in Minkowski spacetime

e We would like to construct a Wilson line invariant under a given supersymmetry
transformation d¢ parameterized by {, = 0sq.

(67

o TOI23455 — o = zo_ _6%33%7 I'sTpsq = sa
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BPS Wilson lines in Minkowski spacetime

e We would like to construct a Wilson line invariant under a given supersymmetry
transformation d¢ parameterized by {, = 0sq.
o [0123455

= —8q, 8¢ = —eaﬁs%, I'sTosa = sa

e It is convenient to define the preserved supercharge Qs as d¢ = V20Q5.
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BPS Wilson lines in Minkowski spacetime

We would like to construct a Wilson line invariant under a given supersymmetry
transformation d¢ parameterized by {, = 0sq.
012345

= —8q, 8¢ = —eaﬁs%, I'sTosa = sa

It is convenient to define the preserved supercharge @, as d¢ = V20Q5.

We demanding L to transform as

QsL = DyG, = Gy — i[Ly /5 + B, G + i{F, G} (35)

26



BPS Wilson lines in Minkowski spacetime

We find
21 2
L=Lijp+——Q,Gs — ——— G2
1/2 + (EQFOSQ) Qs S (garosa) S
Gs = CCFOSaqa - Q(xgarm?a
[sTon =10, (Tsly=—(°
Check

Qs <(SQF08 )Qs s) = 8OGS - i[Ll/QaGs]a

0 (- oy @) = Higanegy @G G}

27
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BPS Wilson lines in Minkowski spacetime

e In four dimensions, [¢] = 3, [¢(] = [n] = —1.
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BPS Wilson lines in Minkowski spacetime

In four dimensions, [¢] = 3, [(] = [7] = —1.

The Wilson line cannot preserve any conformal supercharges.

Generically it only preserves one real Poincaré supercharges Q.

For special parameters in the constructions, it can preserve one more Poincaré

supercharge.

28



Wilson loop preserving two supercharges

We assume the Wilson loop preserves ;. When (¢ @, n(l),F35( @ F35n(2)*) are
all proportional to each other and s, can be decomposed as

Sq = GQBE’BC(I) + caF35C(1)*, (41)
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Wilson loop preserving two supercharges

We assume the Wilson loop preserves ;. When (¢ @, n(l),F35< @ F35n(2)*) are
all proportional to each other and s, can be decomposed as

Sq = eagéﬂc(l) + caf‘35C(1)*, (41)
and the Wilson loop also preserves @), with
U = l_feaﬁéﬁg(l) + kT3¢, (42)

where k is a complex number.

29



Circular BPS Wilson loops in Euclidean space
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e Contour of a circle (20, 2!, 22, 2%) = r(cos 7,sin 7,0, 0)
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Circular BPS Wilson loops in Euclidean space

e Contour of a circle (20, 2%, 22, 2%) = r(cos7,sin 7,0, 0)

e Supercharge O, parameterized by: 6, = 2—\1/5956“ Vo = —2—\%1“0159304

2r 2r
L=Lip+—0r Q.G +i—r G2
12 Zal Tes. 2 1 15l Tps, 0%
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Circular BPS Wilson loops in Euclidean space

e Contour of a circle (20, 2%, 22, 2%) = r(cos7,sin 7,0, 0)

e Supercharge O, parameterized by: 6, = 2—\1/5956“ By = —2—\%1“0159504

2r 2r
L=1L - 909G +i——G? 43
12 ¥ Sl Tosn 200 ¥ 5l Tos O €9

e We find Gy is periodic on the contour. Since L has a natural supermatrix
structure, we can define the Wilson loop by using the supertrace:

Wrier = sTrP exp <z jl{ LdT) . (44)
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Circular BPS Wilson loops in Euclidean space

e Contour of a circle (20, 2%, 22, 2%) = r(cos7,sin 7,0, 0)

Supercharge Q4 parameterized by: 6, = 2—\1/595% By = 2\[ To150s4

2r 2r 9
L= L1/2 + mQSG + ZWGM (43)

e We find Gy is periodic on the contour. Since L has a natural supermatrix
structure, we can define the Wilson loop by using the supertrace:

Wier = sTrP exp < jl{ LdT) . (44)

Cohomological equivalence: Wi — sTrP exp (z $ Ly /2d7') =Q,V
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Circular BPS Wilson loops in Euclidean space

e Contour of a circle (20, 2%, 22, 2%) = r(cos7,sin 7,0, 0)

Supercharge Q4 parameterized by: 6, = 2—\1/595% By = 2\[ To150s4

2r 2r
L=1L S N Y E————
172+ Sl Tpsn 2000 T 5Tl Ts,
e We find Gy is periodic on the contour. Since L has a natural supermatrix

structure, we can define the Wilson loop by using the supertrace:

Wier = sTrP exp < jl{ LdT) .

Cohomological equivalence: Wi — sTrP exp (z $ Ly /2d7') =9,V

The Wilson loop generally preserves one complex supercharge (3 at most).

(43)

(44)
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Fermionic BPS Wilson loops in N = 4 super Yang-Mills theory
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Fermionic BPS Wilson loops in N = 4 super Yang-Mills theory

e Generally, fermionic BPS Wilson loops along a timelike infinite straight line
preserve one real supercharge.
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Fermionic BPS Wilson loops in N = 4 super Yang-Mills theory

e Generally, fermionic BPS Wilson loops along a timelike infinite straight line
preserve one real supercharge.

e Fermionic BPS Wilson loops along an FEuclidean circle preserve one complex
supercharge. Since there is only one node in its N’ = 2 quiver diagram, we
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Fermionic BPS Wilson loops in N = 4 super Yang-Mills theory

e Generally, fermionic BPS Wilson loops along a timelike infinite straight line
preserve one real supercharge.

e Fermionic BPS Wilson loops along an FEuclidean circle preserve one complex
supercharge. Since there is only one node in its N’ = 2 quiver diagram, we

should employ more than one copy of the connection:

B S
L=1®Lys+ WM ® QsAs + W(M ® Ag)? (45)
0o M7
MS = ! (46)
M5 0

e There are Wilson loops preserving two supercharges.
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Summary

We constructed fermionic BPS Wilson loops in A = 2 quiver theory with gauge
group SU(N) x SU(N) and N =4 SYM.

Fermionic Wilson loops along lines in four dimensions break the scale invariance.

They preserve a small part of the supercharges preserving by the bosonic ones.

Fermionic WL is always in the same ()-cohomology class of a bosonic ones.
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Outlook

Cohomological equivalence at the quantum level?

Holographic dual?

e Other contour?

Role in the study of integrability?
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Outlook

Cohomological equivalence at the quantum level?

Holographic dual?

e Other contour?

Role in the study of integrability?

Thanks for attentions!
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