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Introduction

• Gauge/gravity correspondence is a powerful tool to study strongly-coupled
systems.

• Testing strong/weak duality: cannot use perturbation theory on both sides

• Supersymmetric Wilson loops provide a rich class of observables that can be
computed exactly through particular techniques.
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Wilson loops

Wilson loops were introduced to characterize confinement in QCD [Wilson, 1974]

W [C] = TrP exp
[
− i
∮
C
dxµAµ(x)

]
.

In 4d N = 4 SYM the ordinary Wilson loop can be naturally generalized to the
Maldacena-Wilson loop [Maldacena, 1998]

W [C] = TrP exp

[
−i
∮
C
dτ
(
Aµẋ

µ + φIθ
I |ẋ|
)]

(1)

Origin: ordinary Wilson loop in 10d N = 1 SYM theory
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Wilson loops in holography

• Wilson loop ↔ string in the bulk of AdS ending on the contour of the loop [Rey,
Yee, 1998] [Maldacena, 1998]

• Vacuum expectation value ↔ string worldsheet path integral

〈W [C]〉 = Tr
∫
∂X=C

DX exp(−
√
λ

2π
S[X])

N,λ→∞−→ exp(−
√
λ

2π
Amin).
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BPS Wilson loops

• BPS Wilson loops are Wilson loops which preserve some supercharges in
supersymmetric gauge field theories.

• Their expectation values can be computed exactly using supersymmetric
localization technique [Pestun, 07].

• A famous example is the circular 1/2 BPS Wilson loop in N = 4 SYM.
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Localization

• The expectation value of a circular BPS Wilson loop in N = 4 SYM with gauge
group SU(N) can be reduced to computation to a Gaussian matrix model.
[Erickson, Semenoff and Zarembo, 00] [Drukker and Gross, 00]

〈W 〉 =
1

Z

∫
DM 1

N
TreM exp

(
−2N

λ
TrM2

)
=

1

N
L1
N−1(− λ

4N
)e

λ
8N

N→∞−→ 2√
λ
I1(
√
λ)

λ→∞−→
√

2

π
λ−

3
4 e
√
λ

•
√
λ = −

√
λ/(2π)AAdS2

. AAdS2
= −2π is the regularized area of AdS2 minimal surface.

[Berenstein, Corrado, Fischler, Maldacena, 98] [Drukker, Gross, Ooguri, 99]

• This can be derived by using the supersymmetric localization.
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Fermionic BPS Wilson loops in three dimensions

• BPS Wilson loops in 3d superconformal Chern-Simons-matter theory are more
complicated.

• Bosonic Wilson loops: couples to the gauge field and the scalar field [Gaiotto,
Yin, 07]

• Fermionic Wilson loops: couples to bosonic and fermionic fields [Drukker,
Trancanelli, 09].

• The motivation of our work is to explore similar fermionic BPS Wilson loops in
four dimensions.
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BPS Wilson loops in 3d superconformal
Chern-Simons-matter theories



Bosonic BPS Wilson loops in N = 2 Chern-Simons-matter theories

• Vector multiplet: Aµ, σ, χ, D
• Chiral multiplet: φ, ψ, F
• Supersymmetry transformations:

δAµ =
1

2
(λ̄γµε+ ε̄γµλ), (2)

δσ = − i
2

(λ̄ε+ ε̄λ), (3)

• Bosonic BPS Wilson line on xµ = δµ0 τ [Gaiotto, Yin, 07]:

Wbos = P exp

(
−i
∫
dτLbos

)
, Lbos = Aµẋ

µ + σ|ẋ|. (4)

• Bosonic BPS Wilson lines exist in theories with more supersymmetries. They
always preserve two Poincaré and two conformal supercharges.
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ABJM theory

• ABJM theory is 3d N = 6 theory with gauge group U(N)× U(N) and
Chern-Simons level (k,−k). [Aharony, Bergman, Jakeris, Maldacena, 08]

• It contains four complex scalars φI and four Dirac spinors ψI in bifundamental
representation (N, N̄).

Aμ Bμ

k -k

ϕI ψ
I

ϕ
I
ψI

• It is holographically dual to M-theory on AdS4 × S7/Zk or type IIA string
theory on AdS4 × CP3.
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Bosonic 1/6 BPS Wilson loops in ABJM theory

[Drukker, Plefka, Young 08] [Chen, Wu, 08] [Rey, Suyama, Yamaguchi, 08]

A 1/6 BPS Wilson line along xµ = τδµ0 takes the form

Wbos = P exp

(
−i

∫
dτAbos(τ)

)
, (5)

Ŵbos = P exp

(
−i

∫
dτÂbos(τ)

)
, (6)

Abos = Aµẋ
µ +

2π

k
RIJφI φ̄

J |ẋ|. (7)

Âbos = Bµẋ
µ +

2π

k
S J
I φ̄IφJ |ẋ|, (8)

RIJ = S J
I = diag(−1,−1, 1, 1) (9)

It is is basically the same as the bosonic BPS Wilson line in generic N = 2

Chern-Simons-matter theories.
9



1/2 BPS Wilson line in ABJM theory

• However, the study of dual fundamental string solutions in AdS4 × CP3

[Drukker, Plefka, Young, 08][Rey, Suyama, Yamaguchi, 08] indicates that there
should be 1/2 BPS Wilson loops in ABJM theory.

• Such Wilson loops were finally constructed in [Drukker, Trancanelli, 09] via
including fermions

W1/2 = Pe−i
∫
L1/2 , L1/2 =

 A f̄1

f2 Â


A = Aµẋ

µ +
2π

k
M I

JφI φ̄
J |ẋ|, f̄1 =

√
2π

k
ζ̄Iψ

I |ẋ|,

Â = Bµẋ
µ +

2π

k
N J
I φ̄IφJ |ẋ|, f2 =

√
2π

k
ψ̄Iη

I |ẋ|.

(10)
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µ +
2π

k
M I

JφI φ̄
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Localization

• Evaluation of expectation values of bosonic BPS Wilson loops can be reduced to
a matrix model, after using localization techniques. [Kapustin, Willett, Yaakov, 09]

• Expectation values depends on framing factors. Localization always leads to
framing-one results.
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Cohomological equivalence

At classical level, there exists a well defined matrix V and a supercharge Q such
that

W1/2 −Wbos = QV (11)

The cohomological equivalence at quantum level leads to

〈Wbos〉1 = 〈W1/2〉1 (12)

where the subscript indicates that the identity holds only at framing one.
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Fermionic BPS Wilson loops in N = 2 Chern-Simons-matter theories

[HO, Wu, Zhang, 15]

• We consider 3d N = 2 Chern-Simons-matter quiver gauge theory with gauge
group U(N)× U(M).

• There are matter fields in bifundamental representations (N, M̄) .

A
`

Μ
AΜ

Φ Ψ

13



Fermionic BPS Wilson line along xµ = τδµ0

Wfer = P exp

(
−i

∫
dτLfer(τ)

)
, Lfer =

 A f̄1

f2 Â

 ,

A = Aµẋ
µ + σ + iαβūuφφ̄,

Â = Âµẋ
µ + σ̂ + iαβūuφ̄φ,

f̄1 = αūψ, f2 = βψ̄u.

γ0u = iu. (13)

The requirement for Wfer to be BPS is [K. Lee, S. Lee, 2010]

δLfer = ∂τΛ + i[Lfer,Λ] (14)

for some Grassmann odd matrix

Λ =

 ḡ1

g2

 (15)
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Line or circle

• W (s, t) = P exp
(
−i
∫ t
s dτLfer(τ)

)
, δW (s, t) = −iΛ(s)W (s, t) + iW (s, t)Λ(t)

• Line: Λ(±∞) = 0, δ
(
P exp

(
−i
∫∞
−∞ dτLfer(τ)

))
= 0.

Preserve 2 Poincaré + 2 conformal supercharges, same as the bosonic one.

• Circle: Λ satisfies anti-periodic boundary conditions

Λ(0) = −Λ(2π), (16)

to construct BPS Wilson loop, we should take the trace

δ

(
TrP exp

(
−i

∫ 2π

0
dτLfer(τ)

))
= 0. (17)
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• Circle: Λ satisfies anti-periodic boundary conditions

Λ(0) = −Λ(2π), (16)

to construct BPS Wilson loop, we should take the trace

δ

(
TrP exp

(
−i

∫ 2π

0
dτLfer(τ)

))
= 0. (17)
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It is convenient to define a fermionic transformation Q by δ = θQ and ε = uθ. Lfer

can be compactly written as

Lfer = Lbos +QG+ iūuG2

Lbos =

 A 0

0 Â

 , G =

 0 −iαφ

iβφ 0

 (18)

Cohomological equivalence holds at classical level:

Wfer −Wbos = QV. (19)

It was conjectured that cohomological equivalence holds quantum mechanically.
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 , G =

 0 −iαφ

iβφ 0

 (18)

Cohomological equivalence holds at classical level:

Wfer −Wbos = QV. (19)

It was conjectured that cohomological equivalence holds quantum mechanically.

16



1/6 Fermionic BPS Wilson loops in ABJM theory

Lfer =

 A0 + 2π
k U

I
JφI φ̄

J
√

4π
k (ᾱIψ

I
+ + γ̄Iψ

I
−)√

4π
k (ψ̄I−β

I − ψ̄I+δI) B0 + 2π
k U

I
J φ̄

JφI



U IJ =


−1 + 2β2ᾱ2 −2β1ᾱ2

−2β2ᾱ1 −1 + 2β1ᾱ1

1− 2δ4γ̄4 2δ3γ̄4

2δ4γ̄3 1− 2δ3γ̄3


ᾱI = (ᾱ1, ᾱ2, 0, 0), βI = (β1, β2, 0, 0), γ̄I = (0, 0, γ̄3, γ̄4), δI = (0, 0, δ3, δ4)

The Wilson loop is 1/6-BPS, when the parameters satisfy the constraints

ᾱ1,2δ
3,4 = γ̄3,4β

1,2 = 0 (20)

For special parameters in the constructions, the Wilson loops become the 1/2-BPS. For
example

ᾱ2 = β2 = 1, ᾱ1 = β1 = δI = γ̄J = 0 (21)
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Holographic description [Correa, Giraldo-Rivera, Silva, 19]

• Fermionic 1/2 BPS Wilson loops → Dirichlet boundary condition

• Bosonic 1/6 BPS Wilson loops → Neumann boundary condition

• Fermionic 1/6 BPS Wilson loops → mixed boundary condition
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Fermionic BPS Wilson loops in four
dimensions



N = 2 superconformal SU(N)× SU(N) quiver theory

• Let us consider a marginal deformation of the Z2 orbifold of the N = 4 SYM.
[Rey, Suyama, 10]

• The fields in the two N = 2 vector multiplets can be arranged into 2× 2 block
matrices:

Aµ =

 A
(1)
µ 0

0 A
(2)
µ

 , µ = 0, ..., 5

λα =

 λ
(1)
α 0

0 λ
(2)
α

 , α = 1, 2,

(22)

where Am with m = 0, ..., 3 is the gauge field and A4,5 are two real scalars.
The SO(1, 5) Weyl spinors λ1 and λ2 have chirality −1 for Γ012345 and satisfy
the reality condition λ̄α = −εαβλcβ.
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N = 2 superconformal SU(N)× SU(N) quiver theory

• The matter content consists of two bifundamental hypermultiplets with
component fields:

qα =

 0 q(1)α

q(2)α 0

 , ψ =

 0 ψ(1)

ψ(2) 0

 , (23)

• Quiver diagram:

A
(1)
µ A

(2)
µ

q(1), ψ(1)

q(2), ψ(2)

20



N = 2 superconformal SU(N)× SU(N) quiver theory

• The action of the N = 2 gauge theory is

SN=2 =

∫
d4x

(
−1

4
Tr(FµνFµν)− i

2
Tr(λ̄αΓµDµλα)−DµqαD

µqα−iψ̄ΓµDµψ

+
√

2gλ̄αAqαTAψ−
√

2gψ̄TAq
αλAα−g2(qαTAqβ)(qβTAq

α)

+
1

2
g2(qαTAq

α)(qβT
Aqβ)

)
. (24)

• The coupling constants for the two gauge group factors can be varied
independently while preserving N = 2 superconformal symmetry. We assemble
them into a matrix:

g =

 g(1)IN 0

0 g(2)IN

 , (25)
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N = 2 superconformal transformation

The action is invariant under the N = 2 superconformal transformation:

δAµ = −iξ̄αΓµλα = iλ̄αΓµξα,

δqα = −i
√

2ξ̄αψ,

δqα = −i
√

2ψ̄ξα,

δψ = −
√

2Dµq
αΓµξα−2

√
2qαϑα,

δψ̄ =
√

2ξ̄αΓµDµqα−2
√

2ϑ̄αqα,

δλAα =
1

2
FAµνΓµνξα+2igqαT

Aqβξβ − igqβTAqβξα−2AAa Γaϑα,

δλ̄αA = −1

2
ξ̄αFAµνΓµν−2igqβT

Aqαξ̄β + igqβT
Aqβ ξ̄α+2ϑ̄αAAa Γa,

(26)

where ξα = θα + xmΓmϑα and the index a = 4, 5.

22



Holographic description

• dual to type IIB string theory on the AdS5 × (S5/Z2) geometry [Kachru,
Silverstein, 98]

• It is convenient to parameterize the ’t Hooft couplings as:

λ1 =
πλ

θ
, λ2 =

πλ

2π − θ
(27)

• λ is related to the string tension T = 1
2πl2s

via λ = 4π2T 2.

• The parameter θ is proportional to the flux of the NSNS B-field through
collapsed two-cycle of the orbifold.
[Lawrence, Nekrasov, Vafa, 98] [Klebanov, Nekrasov, 99]
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BPS Wilson lines in Minkowski spacetime

One can define a 1/2 BPS Wilson line along the timelike infinite straight line
xm = δm0 τ as

Wbos = Pei
∫
dτL1/2(τ), L1/2 = gA0 − gA5. (28)

The persevered supersymmetries can be parameterized by ξα satisfying

Γ5Γ0ξα = ξα. (29)
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BPS Wilson lines in Minkowski spacetime

In analogy to the three-dimensional case, let us consider the Wilson line operator

Wfer = Pei
∫
dτL, (30)

where the connection L is a supermatrix:

L = L1/2 +B + F. (31)

The matrices B and F are defined as

B =

 B(1) 0

0 B(2)

 , (32)

F =ζcψ + ψ̄η, (33)

ζ =

 ζ(1)IN 0

0 ζ(2)IN

 , η =

 η(2)IN 0

0 η(1)IN

 , (34)
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BPS Wilson lines in Minkowski spacetime

• We would like to construct a Wilson line invariant under a given supersymmetry
transformation δξ parameterized by ξα = θsα.

• Γ012345sα = −sα, s̄α = −εαβscβ, Γ5Γ0sα = sα

• It is convenient to define the preserved supercharge Qs as δξ =
√

2θQs.

• We demanding L to transform as

QsL = D0Gs ≡ ∂0Gs − i[L1/2 +B,Gs] + i{F,Gs}. (35)
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BPS Wilson lines in Minkowski spacetime

We find

L = L1/2 +
2i

(s̄αΓ0sα)
QsGs −

2

(s̄αΓ0sα)
G2
s, (36)

Gs = ζcΓ0sαq
α − qαs̄αΓ0η, (37)

Γ5Γ0η = η, ζcΓ5Γ0 = −ζc (38)

Check

Qs

(
2i

(s̄αΓ0sα)
QsGs

)
= ∂0Gs − i[L1/2, Gs], (39)

Qs

(
− 2

(s̄αΓ0sα)
G2
s

)
= i{ 2i

(s̄αΓ0sα)
QsGs, Gs} (40)
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BPS Wilson lines in Minkowski spacetime

• In four dimensions, [ψ] = 3
2 , [ζ] = [η] = −1

2 .

• The Wilson line cannot preserve any conformal supercharges.

• Generically it only preserves one real Poincaré supercharges Qs.

• For special parameters in the constructions, it can preserve one more Poincaré
supercharge.
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Wilson loop preserving two supercharges

We assume the Wilson loop preserves Qs. When (ζ(1), η(1),Γ35ζ(2)∗,Γ35η(2)∗) are
all proportional to each other and sα can be decomposed as

sα = εαβ c̄
βζ(1) + cαΓ35ζ(1)∗, (41)

and the Wilson loop also preserves Qu with

uα = k̄εαβ c̄
βζ(1) + kcαΓ35ζ(1)∗, (42)

where k is a complex number.
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Circular BPS Wilson loops in Euclidean space

• Contour of a circle (x0, x1, x2, x3) = r(cos τ, sin τ, 0, 0)

• Supercharge Qs parameterized by: θα = 1
2
√
2
θsα, ϑα = − i

2
√
2r

Γ015θsα

•
L = L1/2 +

2r

s̄αΠ−Γ5sα
QsGs + i

2r

s̄αΠ−Γ5sα
G2
s, (43)

• We find Gs is periodic on the contour. Since L has a natural supermatrix
structure, we can define the Wilson loop by using the supertrace:

Wfer = sTrP exp

(
i

∮
Ldτ

)
. (44)

• Cohomological equivalence: Wfer − sTrP exp
(
i
∮
L1/2dτ

)
= QsV

• The Wilson loop generally preserves one complex supercharge (3 at most).
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Circular BPS Wilson loops in Euclidean space

• Contour of a circle (x0, x1, x2, x3) = r(cos τ, sin τ, 0, 0)
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Fermionic BPS Wilson loops in N = 4 super Yang-Mills theory

• Generally, fermionic BPS Wilson loops along a timelike infinite straight line
preserve one real supercharge.

• Fermionic BPS Wilson loops along an Euclidean circle preserve one complex
supercharge. Since there is only one node in its N = 2 quiver diagram, we
should employ more than one copy of the connection:

L = Ir ⊗ L1/2 +
r

scΠ−Γ5s
MS ⊗QsAS +

ir

scΠ−Γ5s
(MS ⊗AS)2 (45)

MS =

 0 MS
1

MS
2 0

 . (46)

• There are Wilson loops preserving two supercharges.
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Summary

• We constructed fermionic BPS Wilson loops in N = 2 quiver theory with gauge
group SU(N)× SU(N) and N = 4 SYM.

• Fermionic Wilson loops along lines in four dimensions break the scale invariance.

• They preserve a small part of the supercharges preserving by the bosonic ones.

• Fermionic WL is always in the same Q-cohomology class of a bosonic ones.

32



Summary

• We constructed fermionic BPS Wilson loops in N = 2 quiver theory with gauge
group SU(N)× SU(N) and N = 4 SYM.

• Fermionic Wilson loops along lines in four dimensions break the scale invariance.

• They preserve a small part of the supercharges preserving by the bosonic ones.

• Fermionic WL is always in the same Q-cohomology class of a bosonic ones.

32



Summary

• We constructed fermionic BPS Wilson loops in N = 2 quiver theory with gauge
group SU(N)× SU(N) and N = 4 SYM.

• Fermionic Wilson loops along lines in four dimensions break the scale invariance.

• They preserve a small part of the supercharges preserving by the bosonic ones.

• Fermionic WL is always in the same Q-cohomology class of a bosonic ones.

32



Summary

• We constructed fermionic BPS Wilson loops in N = 2 quiver theory with gauge
group SU(N)× SU(N) and N = 4 SYM.

• Fermionic Wilson loops along lines in four dimensions break the scale invariance.

• They preserve a small part of the supercharges preserving by the bosonic ones.

• Fermionic WL is always in the same Q-cohomology class of a bosonic ones.

32



Summary

• We constructed fermionic BPS Wilson loops in N = 2 quiver theory with gauge
group SU(N)× SU(N) and N = 4 SYM.

• Fermionic Wilson loops along lines in four dimensions break the scale invariance.

• They preserve a small part of the supercharges preserving by the bosonic ones.

• Fermionic WL is always in the same Q-cohomology class of a bosonic ones.

32



Outlook

• Cohomological equivalence at the quantum level?

• Holographic dual?

• Other contour?

• Role in the study of integrability?

Thanks for attentions!
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