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Introduction

The study of low-energy physics of supersymmetric gauge theory and
integrable model has been an active research for decades.

SW curve of N = 2 ⇐⇒ Spectral curve of integrable model.

The correspondence is later extended to the quantum level by
Nekrasov and Shatashivilli. [Nekrasov-Shatashivilli ’09, ’09]

In this talk I will explore a corner of this correspondence between the
N = 2∗ U(N) gauge theory in 4 dimension and the fractional quantum
Hall states (Laughlin [Nekrasov ’19], Moore-Read, Read-Rezayi, etc).
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Supersymmetric Gauge Theory

Let us consider N = 2∗ U(N) gague theory with adjoint mass m. The
supersymmetric partition function

Z(a,m, τ, ε) = Ztree(a,m, τ, ε)Z1-loop(a,m, ε)Zinst(a,m, q, ε) (1)

depends on the Coulomb moduli parameters a = (a1, . . . , aN ) and
complex coupling

τ =
4πi

g2
+

ϑ

2π
, q = e2πiτ . (2)

The ε = (ε1, ε2) are the Ω-deformation parameters in R4 = C2.
The instanton partition function is an infinite sum over number of
instantons

Zinst(a,m, q, ε) =

∞∑
k=0

qkZk(a,m, ε). (3)
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Instanton Partition Function

Let N = CN , K = Ck be two vector spaces,
the k instanton of U(N) is constructed by
ADHM matrices B1,2 ∈ Hom(K,K),
I ∈ Hom(N,K), J ∈ Hom(K,N) satisfying

µR = [B1, B
†
1] + [B2, B

†
2] + II† − J†J = 0,

µC = [B1, B2] + IJ = 0

(4)

modulo the U(k) action of the form

(v) · (B1,2, I, J) = (vB1,2v
−1, vI, Jv−1) (5)

for v ∈ U(k).

Figure: ADHM data

Norton Lee (IBS-CGP) Defect in gauge theory and QHE December 7 2022 6 / 43



Instanton Partition Function

An anti-self-dual connection A can be constructed using ADHM data
satisfying µR = µC = 0.

Zk(a,m) =

∫
MN,k

1 (6)

where instanton moduli space is

MN,k = {(B1, B2, I, J) | µR = 0, µC = 0} . (7)

The moduli space defined here has singularity. Regularization is
needed.
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Instanton Partition Funtion

Turn on the FI parameter for real moment map

µR = ζ1k, ζ > 0. (8)

This immediately implies J = 0 and the stability condition
K = C[B1, B2]I(N). The regularized moduli space

M̃N,k = {(B1, B2, I, J)|µC = 0}//GL(k,C) (9)

which is equivalent to the non-commutative instanton moduli space
Mζ

N,k = {µR = ζ, µC = 0}/U(k).
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Instanton Partition Function

The equivariant action on the ADHM data are

(v, η) · (B1, B2, I, J) = (vB1v
−1, vB2v

−1, vIη−1, v−1Jη) (10)

with v ∈ GL(k,C) and η ∈ GL(N,C). The Ω-deformation
(q1, q2) = (eε1 , eε2) ∈ C× × C× is the Cartan element of the GL(2,C)
associated to the spacetime rotation. It acts on ADHM data by

(q1, q2) · (B1, B2, I, J) = (q1B1, q2B2, I, q1q2J). (11)
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Instanton Partition Function

The fix point under the equivariant torus action by

q1B1 = vB1v
−1, q2B2 = vB2v

−1, I = vIη−1, q1q2J = v−1Jη. (12)

Let v = eϕ, η = ea with ϕ ∈ Lie(GL(k)),
a = (a1, . . . , aN ) ∈ Lie(GL(N)) with I =

⊕N
α=1 Iα, J =

⊕N
α=1 Jα. The

infinitesimal transformation above is

[ϕ,B1] = ε1B1, [ϕ,B2] = ε2B2, ϕIα = aαIα, Jαϕ = (aα − ε+)Jα (13)
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Instanton Partition Function

The N = 2 4d instanton partition function obtained equivariant
integral over the moduli space is evaluated over

Zk =
1

k!

(
ε+
ε1ε2

)k ∮ k∏
j=1

dϕj
2πι

E [(1− em)(NK∗ + q+N
∗K − P12KK

∗)]

(14)

with N =
∑N

α=1 e
aα and K =

∑k
j=1 e

ϕj are the characters of the vector
spaces N and K, qi = eεi , q+ = q1q2, Pi = 1− qi, P12 = P1P2.
Given a virtual character X =

∑
a nae

xa we denote by X∗ =
∑

a nae
−xa

its dual virtual character.
the index functor E that converts the additive Chern class character to
multiplicative class

E

[∑
a

nae
xa

]
=

∏
a

x−nα
a (15)
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Instanton Partition Function

The contour integration pick up poles at
ϕj = aα or ϕj = ϕj′ + ε1,2. The instanton
configuration thus can be represented by a set
of N Young diagrams λ = (λ(1), . . . , λ(N)),

λ(α) = (λ
(α)
1 , λ

(α)
2 , . . . ) satisfying

λ
(α)
i ≥ λ

(α)
i+1 ≥ 0 (16)

for α = 1, . . . , N , i = 1, 2 . . . . The character K
is

K =

N∑
α=1

∑
□∈λ(α)

ec□ . (17)

with c□ = aα + (i− 1)ε1 + (j− 1)ε2.

Figure: Young diagram
λ(α) = (5, 3, 3, 2, 1).
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Instanton Partition Function

The instanton partition function is an ensemble over all instanton
configurations labeled by N Young diagrams λ = (λ(1), . . . , λ(N)).
[Nekrasov ’02]

Z(a,m, q, ε) =
∑
λ

q|λ|Z[λ]. (18)

The pseudo-measure (combining with 1-loop contribution) is

Z[λ] =
∏

(αi) ̸=(βj)

Γ(ε−1
2 (xαi − xβj − ε1))

Γ(ε−1
2 (xαi − xβj))

Γ(ε−1
2 (xαi − xβj −m))

Γ(ε−1
2 (xαi − xβj −m− ε1))

(19)

with xαi = aα + (i− 1)ε1 + λ
(α)
i ε2.
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Defect in Gauge Theory

The first co-dimensional two surface defect is introduced in the form of
a ZN orbifold acting on R4 = C1 × C2 by (z1, z2) → (z1, ξz2) with
ξN = 1. The Orbifold creates a chainsaw quiver structure: [Kanno Tachikawa

’11, Nakajima ’11]

Figure: Orbifolding creates chainsaw quiver structure.

N Fractional instanton counting parameter qω satisfy

q =

N−1∏
ω=0

qω, qω−1 =
zω+1

zω
. (20)
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Defect in Gauge Theory

An orbifold defect is characterized by a
coloring function c : [N ] → ZN . The
coloring functions assigns each Coulomb
moduli parameter aα to the Rc(α)

representation of ZN . The Young
diagrams are also colored accordingly.

Kω =
{
(α, (i, j)) | α ∈ [N ], (i, j) ∈ λ(α),

α+ j − 1 = ω mod N
}

(21)

Figure:
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Defect in Gauge Theory

The ADHM data is charges under the orbifold, characterized by a
coloring function c : {1, . . . , N} → ZN :

N̂ =

N−1∑
ω=0

Nωq
ω
N
2 Rω, Nω =

∑
c(α)=ω

eãω , aα − ε2
N
c(α) = ãα;

K̂ =

N−1∑
ω=0

Kωq
ω
N
2 Rω, Kω =

∑
α

eãα
∞∑
J=0

∑
(i,j)∈λ(α)

c(α)+j−1=ω+NJ

qi1q
J
2 .

(22)

The defect partition function is an integral over the ZN invariant parts

Zdefect(a,m, ε⃗, z⃗; q) =
∑
λ

∏
ω

(
zω+2

zω+1

)|Kω |
Zdefect[λ]

Zdefect[λ] = E
[
(1− em)(N̂K̂∗ + q̂12N̂

∗K̂ − P̂1P̂2K̂K̂
∗)
]ZN

.

(23)
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Defect in Gauge Theory

The defect partition function Zdefect in the NS-limit ε2 → 0 has the
asymptotic

Zdefect = e
1
ε2

W(a,m,q,ε⃗)
(Zsurface(a,m, ε⃗, q⃗) +O(ε2)) (24)

with the singular part is identical to the bulk instanton partition
function

W = lim
ε2→0

ε2 logZinst. (25)

The leading order contribution Zsurface is the surface partition function.
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Defect in Gauge Theory

By studying qq-character BPS observable, one can prove that the
surface partition function with perturbative prefactor

Ψ(a, z⃗, ε1, κ, q) =

N∏
ω=1

z
−

a
c−1(ω−1)

ε1
+κ(ω−N−1

2 )
ω Zsurface(a,m, ε1, z⃗, q) (26)

is the eigenfunction of the Hamiltonian of N interacting particles
[Nekrasov ’17][Chen-Kimura-Lee ’19]

Ĥ =
1

2

N∑
α=1

(∇z
α)

2 + κ
N∑

α=1

(
∇z

α logΘAN−1
(z⃗; q)

)
∇z

α

+
κ2

2

N∑
α=1

[(
(∇z

α)
2 logΘAN−1

(z⃗; q)
)
+ (∇z

α logΘAN−1
(z⃗; q))2

]
(27)

with ε1κ = m+ ε1 and the eigenvalue

E =
1

ε1
q
∂W
∂q

+

N∑
α=1

a2α
2ε21

− κ2

2

N(N2 − 1)

12
. (28)
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Defect in Gauge Theory

Let us consider the weak coupling limit q → 0, which translate to one of
the fractional coupling qN−1 → 0 in the quiver gauge theory. There are
no instanton in the bulk in this limit, giving a vanishing superpotential

W = 0. (29)

Given an empty bulk instanton configuration, there can still be
non-trivial surface instantons. The width of the coloring partition is
limited

λ
(α)
i ≤ N − c(α), ∀i = 1, 2, . . . =⇒ λ

T,(α)
N−c(α) = 0 (30)

For later convenience, we will take a transpose for all Young diagrams
λ(α) → λT,(α).

Norton Lee (IBS-CGP) Defect in gauge theory and QHE December 7 2022 19 / 43



Defect in Gauge Theory

The surface partition function becomes

Zsurface =
∑
λ

N−1∏
ω=1

q

∑
c(α)<ω λ

(α)
ω−c(α)

ω−1

∏
c(α),c(β)<ω

Γ
(
yω,α−yω,β−m

ε1

)
Γ
(
yω,α−yω,β

ε1

)
×

∏
c(α)<ω+1, c(β)<ω

Γ
(
yω+1,α−yω,β

ε1

)
Γ
(
yω+1,α−yω,β−m

ε1

)
(31)

with yω,α := aα + λ
(α)
ω−c(α)ε1. The ensemble runs over all Young

diagram with limit width λ
(α)
N−c(α) = 0.
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Defect in Gauge Theory

The Hamiltonian Ĥ in the weak coupling limit

lim
q→0

Ĥ =
1

2

N∑
α=1

(∇z
α)

2 +
κ

2

∑
α>β

zα + zβ
zα − zβ

(
∇z

α −∇z
β

)
. (32)

is identify Ĥ as half of the Laplace-Beltrami operator:

HLB(κ) =
N∑

α=1

(∇z
α)

2 + κ
∑
α>β

zα + zβ
zα − zβ

(
∇z

α −∇z
β

)
. (33)

The surface partition function in the weak coupling limit is
eigenfunction of the Laplace-Beltrami operator with eigen value

E =
a⃗2

ε21
− κ2

N(N2 − 1)

12
(34)
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Quantization

The D-brane construction of the
N = 2∗ U(N) gauge theory is
realized as follows:

A single NS5-brane is
introduced in the 012345
direction.

N D4 branes in the 01236
direction. The adjoint mass is
introduced by a twisted
boundary condition on the x4,5

plane. The two ends of the D4
brane on the NS5 brane no
longer meets but separated by
m.

Figure: D-brane engineering of the
N = 2∗ gauge theory.
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Quantization

We now introduce a second surface
defect by Higgsing the Coulomb
moduli parameters.

aj − aj+1 +m+ ε1

= (nj+1 − nj)ε1,
(35)

with j = 1, . . . , N − 1, nj ≥ nj+1.
This condition imposes a locus on
the Higgs branch where it meets
the Coulomb branch, known as the
root of Higgs branch for N = 2∗

theory.
Figure: D4-branes join together to
form a helical D4 in the absence of
magnetic flux (nj = 0 for all j).

Norton Lee (IBS-CGP) Defect in gauge theory and QHE December 7 2022 23 / 43



Quantization

The physical interpretation of nj is
turning on a magnetic flux in the
23-direction for the j-th U(1)
factor in the U(N) gauge group

1

2π

∫
(F23)jdx2 ∧ dx3 = nj . (36)

We denote the set of these U(1)
fluxes by n = (nj)j=1,...,N .

Figure: nj D2-branes realizing the
magnetic flux dissolving into j-th D4.
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Quantization

The Higgsing restricts the number of squares in the Young daigram
each column to obey

nβ − nβ+1 + λ
(β+1)
ω−β ≥ λ

(β)
ω−β. (37)

The partition function Ψn(z⃗) consists only finite number of terms in
the ensemble. Its eigenvalue of the Laplace-Beltrami operator is

E(n) =

N∑
α=1

(
nα − κ

(
α− N + 1

2

))2

− κ2
N(N2 − 1)

12
(38)
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Quantization

Example: N = 3, n = (2, 1, 0). There are 8 instanton configurations.

λ counting measure λ counting measure

(∅,∅,∅) z21z2 1 ( , ,∅) z1z2z3
2κ
κ+1

( ,∅,∅) z1z
2
2 1 ( , ,∅) z1z

2
3 1

( ,∅,∅) z1z2z3
2κ
κ+1

κ+2
2κ+1 ( , ,∅) z22z3 1

(∅, ,∅) z21z3 1 ( , ,∅) z2z
2
3 1

This gives

Ψ(2,1,0)(z⃗) = z21z2 + z21z3 + z1z
2
2 + z1z

2
3

+ z22z3 + z2z
2
3 +

6κ

2κ+ 1
z1z2z3.

(39)
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Jack Polynomial

We now introduce an alternative to denote the instanton configuration
using a single Young tableaux.
We consider a semi-standard Young tableaux Tn[λ = ∅] of shape
n = (n1, . . . , nN ). Given a Young diagram λ, the reading on the j-th
square at α-row of the Young Tableaux Tn[λ] by

Tα,j = λ
T,(α)
nα+1−j + α (40)
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Jack Polynomial

Example: N = 3, n = = (2, 1, 0). The eight instanton
configurations:

Tn[(∅,∅,∅)] = 1 1

2
, Tn[( ,∅,∅)] = 1 2

2
,

Tn[( ,∅,∅)] =
1 3

2
, Tn[(∅, ,∅)] =

1 1

3
,

Tn[( , ,∅)] =
1 2

3
, Tn[( , ,∅)] =

1 3

3
,

Tn[( , ,∅)] = 2 2

3
, Tn[( , ,∅)] = 2 3

3
. (41)
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Jack Polynomial

Given a Young Tableaux Tn[λ] whose largest reading is less or equal to
N (not necessary equal to N). We can define a series of sub Young
Tableaux

∅ = T
(0)
n [λ] ⊂ T

(1)
n [λ] ⊂ · · · ⊂ T

(N)
n [λ] = Tn[λ] (42)

The sub Young Tableaux T
(i)
n [λ] = n(i) = (n

(i)
1 , n

(i)
2 , . . . , n

(i)
N ) has its

reading less or equal to i.
The weight tα of the Young Tableaux Tn[λ] denotes the number of
squares in the Young tableaux which has reading α:

tα = |n(α)| − |n(α−1)|. (43)

where |n(α)| =
∑α

j=1 n
(α)
j .
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Jack Polynomial

Surface partition Ψ is now an ensemble over the Young Tableaux.
Using the combinatorial formula of Jack polynomial, we find

Ψ(n, ε1,m, z⃗) =
∑
Tn

zTnψTn = J
1
κ
n (z⃗) (44)

where zTn =
∏N

j=1 z
ti
i .
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Quantum Hall States

Let us consider N non-relativistic electrons gas moving on a two
dimensional surface Σ in the presence of external magnetic field
B = dA. A is the connection of some principle U(1) bundle P over Σ.
Let x1, . . . ,xN ∈ Σ be the positions of electrons. The Hamiltonian
governing the electrons is

Ĥ =
1

2m

N∑
j=1

∇2
j +

∑
j ̸=k

U(xj ,xk). (45)

with ∇j = −iℏdj +A, ∇2 = ∇ ⋆∇. The Hamiltonian acts on N -particle
states Ψ ∈ H = ΛNH. H is the space of single particle solution.
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Quantum Hall States

Let’s take Σ = C and choose the gauge A = B0
2 (−xdy + ydx). The

single particle Hamiltonian is

Ĥsp =
1

2m

[(
−2ℏ∂z +

B0

2
z̄

)(
2ℏ∂z̄ +

B0

2
z

)
+ ℏB0

]
= ℏωc

(
â†â +

1

2

)
, â =

1√
ℏB0

(
2ℏ∂z̄ −

B0

2
z

) (46)

where ωc =
ℏB0
m . By scaling z and z̄, the eigenstate

|m,n⟩ = 1√
2πm!n!

e
|z|2
4
∂m

∂z̄m
∂n

∂zn
e−

|z|2
2 (47)

is degenerate on each Landau level

Ĥsp|m,n⟩ = ℏωc

(
n+

1

2

)
|m,n⟩ (48)
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Quantum Hall States

The many body Hamiltonian is

Ĥ =

N∑
j=1

∇2
j + V (zj) +

∑
j>k

1

|zj − zk|
(49)

where V is a potential generated by uniform neutralizing background.
Laughlin pointed out the 1

3 filling factor state can be realized with
solely the lowest Landau level. The Laughlin wave function

ψ
(m)
L =

∏
j>k

(zj − zk)
me−

|z|2
4 (50)

m is an odd integer to ensure the wave function is anti-symmetric.
[Laughlin ’89]
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Quantum Hall States

The Laughlin wavefunction not only accurately models the simplest
abelian fractional quantum Hall states. It serves as the building block
of more general cases both abelian and non-abelian including
Moore-Read state and Read-Rezayi state.

Apart form the Gaussian factor (which we will drop from now on),
wavefunction of these models are conformally-invariant multivariable
polynomials.
The simplest model of FHS considers anti-symmetric polynomials.
However it is also useful to study symmetric polynomial describing a
bosonic FHS from which they are obtained by multiplying an odd
power of Vandermonde determinant.
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Quantum Hall States

Bernevig and Haldane established a framework to describe bosonic
fractional quantum Hall effect states using Jack symmetric polynomial.
[Bernevig-Haldane ’07]

The Jack polynomial Jα
n (z) is a symmetric polynomial in the variables

z = {z1, . . . , zN} labeled by the partition n = (n1, . . . , nN ), ni ≥ ni+1,
and a parameter α.
Example:

Jα
(1)(z) = p1;

Jα
(2)(z) =

α

1 + α
p2 +

1

1 + α
p21

(51)

where pn =
∑N

j=1 z
n
j . General case are defined recursively or by

combinatorial formula.
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Quantum Hall States

A partition n is called (k, r)-admissible if

ni+k − ni ≥ r, i = 1, . . . , N − k. (52)

Feigin et. al. found that Jack polynomial defined on (k, r)-admissible
partition naturally implements a generalized Pauli principle:

(k, r)-admissible Jack J
α=− k+1

r−1
n (z) = 0 if k + 1 variables zi coincide.

[Feigin-Jimbo-Miwa-Mukhin ’02]

We denote n◦
k,r the (k, r)-admissible partition n that minimize |n|.
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Quantum Hall States

Example: Consider N = 6:

n◦
(2,2) = (4, 4, 2, 2, 0, 0) = (53)

is (k = 2, r = 2) admissible.

n◦
(1,1) = (5, 4, 3, 2, 1, 0) = (54)

is both (k = 2, r = 2)-admissible and (k = 1, r = 1)-admissible.
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Quantum Hall State

Occupation number lm of each of the lowest Landau level orbits with
angular momentum L = mℏ is given by the multiplicity lm of m in n.

(n1, . . . , nN ) ↔ [0l01l12l2 · · · ] (55)

Figure: Orbital occupation in the Landau problem on a disk.
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Quantum Hall State

The (bosonic) fractional quantum Hall state wavefunctions of filling
fraction ν = k

r can be explicitly written as a single (k, r)-admissible

Jack symmetric polynomial with αk,r = −k+1
r−1 (multiply a Gaussian

factor). [Bernevig-Haldane ’07]

Laughlin: ψ
(r)
L (z) =

∏
i<j(zi − zj)

r = J
α1,r

n◦
1,r

(z);

Moore-Read: ψMR(z) =
∏

i<j(zi − zj)Pf
(

1
zi−zj

)
= J

α2,2

n◦
2,2

(z) ;

Read-Rezayi: ψRR(z) = J
αk,2

n◦
k,2

(z);
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Summary

By introducing two types of surface defects, orbifold and Higgsing,
we find the partition function of N = 2∗ four dimensional U(N)
gauge theory in the weak coupling limit yields symmetric Jack
polynomials.

The Quantum Hall state wavefunctions of filling fractions ν = k
r

can be explicitly written in a single (k, r)-admissible Jack
polynomial with α = −k+1

r−1 .

Remark: The gauge theory computation can be extended to 5d.
One obtains MacDonald polynomial.
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Thank you for your attention.
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