The panorama of Spin Matrix theory J

Yang Lei

Soochow University & IAS, Soochow

Work by Stefano Baiguera, Troels Harmark and Nico Wintergerst 2009.03799,
2012.08532, 2111.10149, 2211.16519

Yang Lei (Soochow University &] 1/42



© Introduction

Yang Lei (Soochow University & 2/ 42



The theory cube

rF 3
Newtonian Non-relativistic
Gravity Quantum
Giravity
General Theory of
Relativity Everything
h
>
Classical Quantum
Mechanics Mechanics
I/c Special Cuantum
Relativity Field
Theory

niversity & 3 /42



AdS/CFT motivation

N =4 SYM in adjoint of SU(N) group <+ Type IIB strings in AdS5 x S°:
Believed to be true for all couplings [Maldacena, 1997][Gubser et al, 1998][Witten,
1998]
@ Planar limit N = oo and the power of integrability [Minahan, Zarembo,
2002][Beisert et al, 2003]
@ Supersymmetric localization [Pestun, 2007]

@ Recent microstate counting of supersymmetric AdS; black hole [Kim, et al
2018] [Murthy et al, 2018] [Benini, Milan, 2018]

@ Planar limit: gravity enters as 1/N perturbative corrections = No access to
black holes and D-branes dynamics

o Finite V but weak coupling: string theory is not geometrical

Yang Lei (Soochow University &] 4/ 42



Spin Matrix Theory

Controlled finite N effects (strong coupled dynamics of gravity) and semiclassical
geometry: Spin Matrix Theory limits [Harmark, Orselli, 2014].

@ Decoupling limits of ' =4 SYM on R x S3 = the theory reduces to a
subsector with only one-loop contributions of the dilatation operator
[Harmark, Orselli, 2006][Harmark, Kristjansson, Orselli, 2006-07]

@ Approach unitarity (BPS) bounds

@ Understand how quantum gravity gets simplified in non-relativistic limit (as

expansions of ¢~ 1)

N=45YM

SMT limit
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Basics about N = 4 SYM

© Basics about A =4 SYM
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Basics about N = 4 SYM

Contents of N = 4 SYM

The set of letters of N' =4 SYM
@ 6 indepedent gauge components F g, Fi,o
e 6 complex scalars Z, W, X, Z, W, X
@ 16 complex fermions x;, x;, ¢ = 1,..,8
@ 4 components of covariant derivatives d; 5 and d; 2

The letters are specified by dimension Dy, SO(4) spin (S1,.52) and R-charges
(Q1,Q2,Q3). The BPS letters are those satisfying

Dy =5 +S;+ Q1+ Q2+ Q3
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Basics about N = 4 SYM

BPS letters
Letter | SO(4)[S1, S2] | Name in 0510251 | Q = £(Q1 + Q2) | Q3 | Do
7 [0, 0] 7 1 0 | 1
X [0, 0] X 2 0| 1
W 0,0 Y 0 T 1
A 1,1 s 0 0 | 2
X1 [2,—1] Yo, +,+++ 3 3 5
X2 (2. 5] V0.4 2 2 |
X3 2. 2] Vi 0,— 4+ 0 s | 3
X5 (5, 2] Vi 04—+ 0 : |3
X7 3 3] Y0, 44— 3 -3 1 3
dq [1, 0] 04+ 0 0 1
da [0,1] 04— 0 0 1

Dirac equation

dix2 —dax1 =0
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Basics about A = 4 SYM SRR

Decoupling

Assume (w1, wa, 21, Q2, Q3) = (192, n2Q, n3Q, ny4Q, n5Q) are the chemical
potentials conjugate to the angular momenta and R-charges. The critical values
are denoted as (n1,ng,ns, nq, ns), which is reached when Q — 1. The critical
overall charge is then J = n157 + n2Ss + n3@Q1 + naQ2 + nsQ3. We are
interested in sectors Dy = J. The partition function is

7 = Tr[e_BD'HmJ}
_ Tr[e—B(Do—J)+6(1—Q)J—5AD2+O()\%)]
Take the following limit (decoupling limit)
B—ooo, =1, A=0, B=p(1-9Q), B\ fixed
Then the effective partition function is just

Z = TrDO:J[e_B(D°+S‘D2)]

i.e. Only one-loop correction survives in the decoupling limit.
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Basics about N = 4 SYM DRIl

Non-relativistic

Recall that a known fact from special relativity is

2
E = y/m3ct +p2c? = mic* + L O(c™?)
2m0

The Newtonian mechanics is about the dynamics at the order ¢®. A well-defined
effective theory. The analogy in N/ =4 SYM is that we denote the classical

conformal dimension by Dg. In the presence of weak interaction parametrized by
't Hooft coupling A, the conformal dimension will receive the quantum correction

D =Dy+ XDy + ...

where D5 is the one loop correction. We can decouple the higher order of
Feymann diagram corrections the same as we do for non-relativistic mechanics.

Spin Matrix theory

Constructing Ds; as its letters carry both matrix indices from SU(N) and spin
group indices from subgroup of PSU(2,2|4).
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Basics about N = 4 SYM DRIl

Magnon example

The dispersion of a single magnon in ' =4 SYM is [Beisert, 2005]

A
E-Q= 1—|——sm2§

Take the small momenta limit, we have
Ap?
E-Q~\/1+—"= -1
Q * 472
In the SMT decoupling limit, A — 0, this becomes
Ap?
872

E-Q=
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Basics about N = 4 SYM DRIl

Zoo of decoupling limits

Without going to the details, it has been explored by [Harmark et al, 2007] to find
all the possible decoupling limits. Except the trivial U(1) decoupling limit, there
are 12 nontrivial decoupling limits

@ There are letters Dy = J
o All the letters satisfy Dy > J

The compact subsectors are [Harmark, Orselli, 2014; Baiguera, Harmark, YL,
2021]

e SU(2) limit, i = (0,0,1,1,0). Letter: Z, X.

o SU(1[1) limit (X X1 Heisenberg spin chain), 7 = (3,0,1,3, ). Letter:
Z,x1

e SU(1[2) limit (t — J model), i = (3,0,1,1,1). Letter: Z, X, x; [Beisert,
Staudacher, 2005]

e SU(2|3) limit, 7 = (0,0,1,1,1). Letter: Z, X, W, x1, X2
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Basics about N = 4 SYM DRIl

Zoo of decoupling limits

Non-compact SU(1, 1) kind subsectors are [Baiguera, Harmark, YL, Wintergerst,
2020, 2021]
@ Bosonic SU(1,1) limit (XXX _1 Heisenberg model), 7i = (1,0,1,0,0).
Letter: d} Z.
e Fermionic SU(1,1) limit, @ = (1,0, 2, 2, 2). Letter: d}x;.
e SU(1,1[1) limit, @ = (1,0,1,%, 1), Letters d7Z, d}x1
o PSU(1,1[2) limit, 7 = (1,0,1,1,0). Letters: d?'Z, d? X, dx1, dix-
Non-compact SU(1,2) kind subsectors are [Baiguera, Harmark, YL, Wintergerst,
2020, 2022]
e SU(1,2) limit, @ = (1,1,0,
e SU(1,2|1) limit, @ = ,0). Letter: did5A, dydsy,
e SU(1,2]2) limit, 7 = (1,1, ,O 0). Letter: dpdsA, dpdsZ, dydsx., dpdsxq
e PSU(1,2|3) limit, 77 = (1,1,1,1,1). Letter:
drds A, drdsz, drdsw, d”de didbx 2, did5xssr

). Letter: d7d5A
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© Subsectors
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Hamiltonian

Effectively, we want to derive the Hamiltonian as

1 »
H=— Z U¥ al aTaiaj

N mn-m-n
2,7, m,n

Beissert proposed

1 . ;
H = =5C5p « Te(Wa, WO [Wp, WP
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Sectors with effective (1+1)-dimensional theories

Focus on BPS bounds s
H >S5+ ZwiQi
i=1
@ 51, S, Cartan generators for rotations on S3
@ (Q; Cartan generators of SU(4) R-symmetry group
@ w; chemical potentials characterizing the bound
Spin Matrix Theory limit

H-5 - 2?21 w; Q;

A—0, H, = 3 finite , N fixed
Sectors Combination of SU(4) Cartan charges Z?Zl w; Qi
SU(1, 1) bosonic Q1
SU(1, 1) fermionic 2(Q1+ Q2+ Q3)
SU(1,1]1) Q1+ 5(Q2+Q3)
PSU(1,1/2) Q1+ Q>

Yang Lei (Soochow University &]
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SU(1, 1) subsector

General procedure:

@ Isolate the propagating modes in a given near-BPS limit from the quadratic
classical Hamiltonian

@ Derive the form of the current which couple to the gauge field from the
N = 4 SYM action — of order A

@ Integrate out additional non-dynamical modes giving rise to effective
interactions in a given near-BPS limit

@ Derive the interacting Hamiltonian from

H-5 - E?:1 w;Q;

Hint = £1—>InO g2N
1 1
= i35 e i)
" 2N;l r(qa
where we defined scalar block as
G = [0, P
n=0
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SU(1,1[1)

The full Hamiltonian of SU(1, 1) bosonic sector is

_ P N1 (T )
H—L0+2N;ltr q q

For SU(1,1|1) subsector including bosons and fermions,

Ho = g > (ila) + 5 S (1)

=0 =0
where
aQ=q+a
i=3 \/Tj;*jjlw;,wm
i [Vn+1, @
vVn+il+1 Jr

Yang Lei (Soochow University &]
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Sl 2) ez
SU(1,2) Hamiltonian

Letters: A,dq,ds

The block is
oy e [ (eilerd) ]
Won = ot S (524 1+ 1)(sg +1+2) " sapa Toatluatin

The final Hamiltonian is then

Hine = Z Z ql AL Ap)

=1 Au——l
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Sl 2) ez
Overall Hamiltonian in SU(1, 2|2)

Summing all the interactions, we find

Hint:%i i % (Ql AMQZA;L>

=1 Ap=-—I
1 o0
ton SN tr((F+ KEDian(F* + K ap)
a=2,3 |=0 Ap=-—1
1 0o l
T
P >t (WlaWian)

where
Quap = Qo+ G,an + 9,80
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SU(1, 2) sectors

Blocks

so+l po+Ap
qrap = Z Z 0572277; %2% [éigugaq)sz-‘rlyuz"-ﬁu]
s2=0 ppg=—s2
52+l u2+Au so+ 1
r.ou = C.2 \ (D) “)a
qi,Ap azl:25;0u2§: 72,72 %,%g So 4+ 1+ 1{(C ) 2#27(C ) 2+17H2+Au}
o sgtl potAn (s2+1)(s2+2)
= Cod iy i’ ALy As
e mzf; SQZZO F74. 5\ o+ 14 D(oa 1 L4 2) e Arattns ]
(Fa)lA = i Szz C§2+Z’MQ+AH b[(Cb)82+l,,u2+A,u7(I):£2,N2}
T e, e so+ 1+ 1
oo D)
a so+1 52+l Hot+Ap
K = s saoma> As
( )Z,Au ZO#Z (82+l+1)(52—|—l—|—2) %% 22 42 [(ga) 2,12 2+l,#2+Au}
so=0 puo=—s
oo S
[+1 S2+l Ho+Ap t
Win, = c,2,. Dy As
Lap Z Z (sa4+1+1)(sa+1+2) %42 L, %[ 2427 a+luz+Au)
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Sl 2) ez
Representations of SU(1, 2)

Like the global symmetry of ' = 4 SYM, the algebra can be represented by
oscillators
[aa,ah] = g, [ba,bl] =055 {ch e} =du

Such that
1
Lo = la+ala+blby, Li—albl Loi-ab,
Lo = 1(1+aTa +blb), Li=albl, L_i=asb
B 2a2 1P1), 1 291 -1 21
J+ = aIaQ’ J- :a£a1

There are a few merits using this
e Ly, L are dy,d, operations respectively. Two spatial directions are treated
equally.
o If I?O)i is turned off, we can reacquire the algebra SU(1, 1) of subsectors.
They are ghost like
@ The descendants are labelled by (n, k) symmetrically.
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SU(1, 2) sectors
Classification of (p, ¢) representations
Like SU(1, 1) shown in the notes, we need to understand how the generators act

on a given state and preserve the unitarity. Recall SU(N) has N — 1 independent
Casimir operators. Thus we need

1
Oy = —1 — 2129 — 2923 — 2371 = p+q + = (p* + pg + ¢*)

3
1
Cs = r11323 = ﬁ(p —q)(p+2¢+3)(g+2p+3)
Remind the Casimir of SU(1,1) is
C=-j(j—-1)

@ Principle representation: p, g can be complex (analogous to continuous)
@ p-series: p is integer while ¢ is not
@ g-series: q is integer while p is not
@ (p+ q)-series: Neither of p, ¢ is integer but p + ¢ is
@ Integer series: p,q € Z
@ Supplementary series
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SU(1, 2) sectors
Representations

e Gauge field. The gauge field F'; is parametrized by (p, q) = (0,0)
representation.

o Fermion: The fermions x5 7 are parametrized by (p,q) = (0,—1)
representation.

@ Scalar: The scalar Z is parametrized by (p, q)

(0, —2) representation.
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SU(1, 2) sectors
Symmetry actions

What about blocks?

@ The block Q;rlk is parametrized by (p, q) = (0, —3) representation. This is a
representation of fermion!

@ The fermionic block KZ}; = ([(Z;fC + FT‘ZII) are parametrized by
(p,q) = (0, —2) representation.

@ The scalar block Wik is parametrized by (p,q) = (0, —1) representation.

(An, Ak)
Q \ @2
Q QL
(An —1,Ak)
Q@ Qi
Q: VA
(An —2,Ak) wt

The blocks and letters in SU(1,2|2) are forming A/ = 2 vector multiplets.
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SU(2(3) subsector

SU(2|3) subsector

The decoupling condition: Hy = Q1 + Q2 + Q3

There are three scalars ®1 2 3 and two chiral fermions X1 2 in this sector. The full
SMT Hamiltonian by spherical reduction is

1 1
o t ot bt
Hing =55t0 ([<I>b, l[@,, <I>b]) + oyt ({xﬁa X H Xas x,g})

1
i ot
5t (28X s, @4))

D-term means

(W wWiw!, W]
while F-term means
W, W)W, wi]

The Hamiltonian in this subsector are made by F-terms.

Yang Lei (Soochow University &]
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PR, i) cezsizn

PSU(1, 1|2) subsector

The quantum version of the Hamiltonian was obtained in [Bellucci, Casteill, 06].
We have decoupling limit Hy = S; + Q1 + Q5.

The letters are two scalars ®; 5, a chiral fermion x; = 91 and antichiral fermion
X7 = 2, including their descendants generated by d; .

Hiw = Hp + Z* tr <Q; Ql) : %i tl‘(( ab){(Fab)l) :
1=0

v iuﬁt( s (BBt (B :

1 i i T neED o (O G HE D, ()t )
N Pt oV I+ l+D(n+1+1) mtn+l+2
Ti i S (I, B[t ) :
Té i \/ nﬁifjlrrr«k:i:c;«kQ ([(‘I’Z)n1+z+1-(1‘b)m][ (B s (V) l]) 5
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PSU(L, 1]2) subsector
Positiveness

Although the Hamiltonian is tedious, we can show

O =35 o [ At (@) mtnt1,(®a)m] (W2)n )+ ey (LDt 1, (1) m } ($2))
+3 e (@) min 1, (02)m}(2)n )~ 57miry e"’btr(<w1>m+n[<<1>a>m,<<1>b>n])]

We can then show o
{0,071} = Hiny

The cubic supercharges are from the extra PSU(1]1)? symmetry of this subsector
[Beisert, Zwiebel, 2007]

Representation

How can the positiveness be manifest as square of blocks?
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LUl PSU(L, 112) subsector
F-term problem

We define
Jp=> [@f_,, 7]

and L = m +n + [ We can show

SIS m+n+l+1 tr (@), (@) ][0, (Ba)])

l 0 mn=

1
— Z tr(J1J;)
=~ L+1
To derive this we need to use the Jacobi identity
tr([a, Do][®], ®L]) = tr([@p, }][@0, B]]) — tr([@a, D]y, B]])
Then PSU(1,1|2) symmetry generator action:
(Ly)pJf = (L+ 1)JL+1 , (Ly)pJr=—(L+1)Jr
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PSU(1, 1|2) subsector
Question

In the known case, we have achieve some manifest symmetry structure for two of
the 1/8-BPS subsector:

@ SU(1,2]2) block as N' = 2 vector multiplet
@ SU(2|3) block as three N/ =1 chiral multiplet
But we do not know how to organize the Hamiltonian of PSU(1,1|2).
e Why PSU(1,1]2) is not that manifestly positive definite?
o What is the PSU(1, 2|3) sector would be like?

Yang Lei (Soochow University &]
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Cubic supercharge methods towards PSU(1, 2[3)

© Introduction

© Basics about A =4 SYM

© Subsectors

@ Cubic supercharge methods towards PSU(1,2|3)

© Future work
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PSU(1, 2|3) letters

PSU(1,2|3) limit, 7 = (1,1,1,1,1). Letter:

dyds A, dvdsz, dpdsw, dydsX, didsxi e, didsyssy

Also dyix2 — dax1 = 0 due to Dirac equation. We then define the ancestor fermion
such that

X1 = diX, X2 = daX
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Cubic supercharges

We want to construct a few cubic supercharges which could result in

H={Q, 9}

o)

TA = Z Pr(zz,}g,)n’,k’tr([vrj,kvrj’,k’}‘A/”J"nlvk"'k/) 5
n,k,n’,k’"=0
with
plid) _ (k+n+i—DIK +n" +7—Dln+n)(k+E)!
LR (k+Kk +n+n +i+j—1)nlkn/1k

We want to have some constraints

@ For example: each ingredient is invariant under bosonic symmetry.
{Ly,Ta}p ={L_,Ta}p ={J+,Ta}p =0
° {Q7 Qa} =0.
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Explicit T’y charges

T4 invariant under bosonic symmetry.

1 - 0,0
T1:§ Z PT(L,I’C,r)L/,k’tr(XL,k{XIL/,k’7Xn+n”k+k’})
n,k,n’,k’'=0
o0
0,1
Ty= ), PO, 8%t (@), (@) nsn ]
n,k,n’ k’'=0
o0
0,2
Ts= Y. PO ot A€ (G)nsn i })
n,k,n’ k’'=0
o0
0,3
o= > PO ot AL 4 A ene])
n,k,n’,k'=0
1 = 1,1
Ti=5 > Poinwe (@D (@Dw s )G bi)
n,k,n’,k'=0
o0
1,2
To= Y PN ot (( @) (GDnr i) Angn ki)
n,k,n’ ,k'=0
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Cubic supercharge methods towards PSU(1, 2[3)

Q invariant under supersymmetry:
Q=TN+To+T3+Ty+T5 - T

Let's compute

H:{QT’Q}
We get
Hint:HD+HF7
HD: Z tr (B )nk(BO k+z Z BaT nk(B])nk+(B )nk(BS) )
nk=0 | a=11=1,2
HF:Z'EF (f)nk-FOnk+ZZ nkf])nk+(~F)nk(f3) )
nk=0 | a=11=1,2
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D-term blocks

o0
0,0
Bodwk =Y PO Xk s Xntme ki }
n/,k'=0

3
0,1
+ Z P’r(L,k;r)L’,k’ [((I)L)n',kU ((I)a)n+n’,k+k’]

a=1

3
0,2 0,3
+ 3 PO A s (Cnrr s} + PO AL o A i)
a=1

o0
1,1
B =Y PR e () nsnt s (@D ]
n’,k’'=0
1,2 1,0
- PT(LJC;’BL/,]C/ [(Cl)n’,k/v An+n’,k+k’] + Pr(z,k;zz’,k'[((I)a)n+n’,k+k/v Xl’,k/] ’
o0
2,1 2,0
B = > PED U@, Ann si] + PN A s X}
n’,k’'=0
o0
3,0
(63)717]C = P’rg,k:'r)ﬂ,k’ [An+n,7k+k'7 ij’,k/] .
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F-term blocks

1 n k 0.0
(]:O)n,k = 5 Z Z Pn k;/)n n' k— k'{Xn—n/,k—k’;Xn/,k’}v

n'=0 k'=0
n k
a _ 0,1)
(F)nk = Z Z P7S k n—n/ k— o [(Pa)n—n' k—k'> Xn’ k'] 5
n'=0k'=0
1 n k
a _ 1,1
(F3)nk = D) Z Z (' k’)n n’ k— € abe UPe)n ks (o) n—n’ k—k’]
0,2
va k)n k-t A (Ca)n—n’ k=’ s Xn/ ' } 5

1,2)
‘FS nk - Z Z Pr(l k! n—n' k— k/[(Ca)n n’,k—k’> ( )"Ivk/]
=0k'=

(0,3)
- Pn’,k’;n—n’k—k’ [An—n' b=k, Xn ] -
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Symmetry structure

All the block By, F; and letters Wy are transforming in the (p,q) = (0,1 — 3)
representations of SU(1,2) algebra, I =0,1,2,3.
38 /42



Puzzles in PSU(1, 1]2)

We will have two N = 2 hypermultiplets in PSU(1,1|2) subsector. One in terms
of D-term blocks while the other one is like F-term blocks.
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Summary: New physics in each subsector

e SU(2]3): x1,2,Z,W, X, the fermionic doublet block {1, x2} and scalar
block, pure F-term

@ SU(1,1]1), telescopic sum, pure D-term tr(q;rql), infinite modes

e PSU(L,1]2) x SU(2)p: x1, X7, Z,X,dy, infinite modes+ F-term, fermionic
doublet block? SU(2)r automorphism; Simultaneous presence of D-term and
F-term supermultiplets

e SU(1,2]2) : F,®,Xs5,7,d1,2, new [A, ] blocks

e PSU(1,2|3): F,Z,W,X,x12,X3,5,7,d1,2,

@ Dirac equation leads to ancestor fermion

@ Simultaneous presence of D-term and F-term supermultiplets. Enhanced
supersymmetry!
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Some future work

o Local field theory in SU(1,2) subsector [Baiguera, Harmark, Lei, 2023] and
relation to chiral algebra?

@ Relation to the work SU(1, D) field theory: [Lambert, Mouland, Orchard,
2022]

° %G—BPS black hole interpretation

o Understanding how Kerr/CFT appears holographically based on AdS;/CFT4
(Based on [Goldstein, Jejjala, Lei, Leuven, Li, 2019]).

PSU(1,2/3) — PSU(1,1/2)

o Factorization of partition function with finite N?

@ Relation to strings in TNC gravity [Harmark, Hartong, Obers, Yan, 2018,
2021]
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