The panorama of Spin Matrix theory

Yang Lei

Soochow University & IAS, Soochow

Work by Stefano Baiguera, Troels Harmark and Nico Wintergerst 2009.03799, 2012.08532, 2111.10149, 2211.16519

- Basics about $\mathcal{N} = 4$ SYM
 - Decoupling limit
- 3 Subsectors
 - SU(1,2) sectors
 - SU(2|3) subsector
 - $\mathsf{PSU}(1,1|2)$ subsector

Cubic supercharge methods towards $\mathsf{PSU}(1,2|3)$

Future work

The theory cube

AdS/CFT motivation

 $\mathcal{N} = 4$ SYM in adjoint of SU(N) group \leftrightarrow Type IIB strings in AdS₅ × S⁵: Believed to be true for all couplings [Maldacena, 1997][Gubser et al, 1998][Witten, 1998]

- Planar limit $N = \infty$ and the power of integrability [Minahan, Zarembo, 2002][Beisert et al, 2003]
- Supersymmetric localization [Pestun, 2007]

Problem

- Planar limit: gravity enters as 1/N perturbative corrections \Rightarrow No access to black holes and D-branes dynamics
- $\bullet\,$ Finite N but weak coupling: string theory is not geometrical

Spin Matrix Theory

Controlled finite N effects (strong coupled dynamics of gravity) and semiclassical geometry: Spin Matrix Theory limits [Harmark, Orselli, 2014].

- Decoupling limits of $\mathcal{N} = 4$ SYM on $\mathbb{R} \times S^3 \Rightarrow$ the theory reduces to a subsector with only one-loop contributions of the dilatation operator [Harmark, Orselli, 2006][Harmark, Kristjansson, Orselli, 2006-07]
- Approach unitarity (BPS) bounds
- $\bullet\,$ Understand how quantum gravity gets simplified in non-relativistic limit (as expansions of $c^{-1})$

- 2 Basics about $\mathcal{N}=4$ SYM
 - Decoupling limit
 - 3 Subsectors
 - SU(1,2) sectors
 - SU(2|3) subsector
 - $\mathsf{PSU}(1,1|2)$ subsector

Cubic supercharge methods towards $\mathsf{PSU}(1,2|3)$

Future work

Contents of $\mathcal{N} = 4$ SYM

The set of letters of $\mathcal{N}=4$ SYM

- 6 indepedent gauge components $F_{\pm,0},\bar{F}_{\pm,0}$
- 6 complex scalars $Z, W, X, \overline{Z}, \overline{W}, \overline{X}$
- 16 complex fermions $\chi_i, \bar{\chi}_i, i = 1, .., 8$
- 4 components of covariant derivatives $d_{1,2}$ and $\bar{d}_{1,2}$

The letters are specified by dimension D_0 , SO(4) spin (S_1, S_2) and R-charges (Q_1, Q_2, Q_3) . The BPS letters are those satisfying

$$D_0 = S_1 + S_2 + Q_1 + Q_2 + Q_3$$

BPS letters

Letter	$SO(4)[S_1,S_2]$	Name in 0510251	$Q = \frac{1}{2}(Q_1 + Q_2)$	Q_3	D_0
Z	[0, 0]	Z	$\frac{1}{2}$	0	1
X	[0, 0]	X	$\frac{1}{2}$	0	1
W	[0, 0]	Y	0	1	1
A	[1, 1]	F_{++}	0	0	2
χ_1	$\left[rac{1}{2},-rac{1}{2} ight]$	$\psi_{0,+,+++}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{3}{2}$
χ_2	$\left[-rac{1}{2},rac{1}{2} ight]$	$\psi_{0,-,+++}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{3}{2}$
$ar{\chi}_3$	$[rac{1}{2},rac{1}{2}]$	$\psi_{+,0,-++}$	0	$\frac{1}{2}$	$\frac{3}{2}$
$ar{\chi}_5$	$[rac{1}{2},rac{1}{2}]$	$\psi_{+,0,+-+}$	0	$\frac{1}{2}$	$\frac{3}{2}$
$\bar{\chi}_7$	$\left[\frac{1}{2},\frac{1}{2}\right]$	$\psi_{+,0,++-}$	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{3}{2}$
d_1	[1, 0]	∂_{++}	0	0	1
d_2	[0, 1]	∂_{+-}	0	0	1

Dirac equation

$$d_1\chi_2 - d_2\chi_1 = 0$$

Decoupling

Assume $(\omega_1, \omega_2, \Omega_1, \Omega_2, \Omega_3) = (n_1\Omega, n_2\Omega, n_3\Omega, n_4\Omega, n_5\Omega)$ are the chemical potentials conjugate to the angular momenta and R-charges. The critical values are denoted as $(n_1, n_2, n_3, n_4, n_5)$, which is reached when $\Omega \to 1$. The critical overall charge is then $J \equiv n_1S_1 + n_2S_2 + n_3Q_1 + n_4Q_2 + n_5Q_3$. We are interested in sectors $D_0 = J$. The partition function is

$$Z = \operatorname{Tr}[e^{-\beta D + \beta \Omega J}]$$

= $\operatorname{Tr}[e^{-\beta (D_0 - J) + \beta (1 - \Omega)J - \beta \lambda D_2 + \mathcal{O}(\lambda^{\frac{3}{2}})}]$

Take the following limit (decoupling limit)

$$\beta \to \infty, \quad \Omega \to 1, \quad \lambda \to 0, \quad \tilde{\beta} = \beta (1 - \Omega), \; \beta \lambda \; \text{fixed}$$

Then the effective partition function is just

$$Z = \operatorname{Tr}_{D_0 = J}[e^{-\tilde{\beta}(D_0 + \tilde{\lambda}D_2)}]$$

i.e. Only one-loop correction survives in the decoupling limit.

Non-relativistic

Recall that a known fact from special relativity is

$$E = \sqrt{m_0^2 c^4 + p^2 c^2} = m_0^2 c^2 + \frac{p^2}{2m_0} + \mathcal{O}(c^{-2})$$

The Newtonian mechanics is about the dynamics at the order c^0 . A well-defined effective theory. The analogy in $\mathcal{N} = 4$ SYM is that we denote the classical conformal dimension by D_0 . In the presence of weak interaction parametrized by 't Hooft coupling λ , the conformal dimension will receive the quantum correction

$$D = D_0 + \lambda D_2 + \dots$$

where D_2 is the one loop correction. We can decouple the higher order of Feymann diagram corrections the same as we do for non-relativistic mechanics.

Spin Matrix theory [Harmark, Orselli, 2014]

Constructing D_2 ; as its letters carry both matrix indices from SU(N) and spin group indices from subgroup of PSU(2,2|4).

Magnon example

The dispersion of a single magnon in $\mathcal{N}=4$ SYM is [Beisert, 2005]

$$E - Q = \sqrt{1 + \frac{\lambda}{\pi^2} \sin^2 \frac{p}{2}} - 1$$

Take the small momenta limit, we have

$$E-Q\approx\sqrt{1+\frac{\lambda p^2}{4\pi^2}}-1$$

In the SMT decoupling limit, $\lambda \rightarrow 0$, this becomes

$$E - Q = \frac{\lambda p^2}{8\pi^2}$$

Zoo of decoupling limits

Without going to the details, it has been explored by [Harmark et al, 2007] to find all the possible decoupling limits. Except the trivial U(1) decoupling limit, there are 12 nontrivial decoupling limits

- There are letters $D_0 = J$
- All the letters satisfy $D_0 \ge J$

The compact subsectors are [Harmark, Orselli, 2014; Baiguera, Harmark, YL, 2021]

- SU(2) limit, $\vec{n} = (0, 0, 1, 1, 0)$. Letter: Z, X.
- SU(1|1) limit ($XX_{\frac{1}{2}}$ Heisenberg spin chain), $\vec{n} = (\frac{2}{3}, 0, 1, \frac{2}{3}, \frac{2}{3})$. Letter: Z, χ_1
- SU(1|2) limit (t J model), $\vec{n} = (\frac{1}{2}, 0, 1, 1, \frac{1}{2})$. Letter: Z, X, χ_1 [Beisert, Staudacher, 2005]
- SU(2|3) limit, $\vec{n} = (0, 0, 1, 1, 1)$. Letter: Z, X, W, χ_1, χ_2

Zoo of decoupling limits

Non-compact SU(1, 1) kind subsectors are [Baiguera, Harmark, YL, Wintergerst, 2020, 2021]

- Bosonic SU(1,1) limit ($XXX_{-\frac{1}{2}}$ Heisenberg model), $\vec{n}=(1,0,1,0,0).$ Letter: $d_1^nZ.$
- Fermionic SU(1,1) limit, $\vec{n} = (1,0,\frac{2}{3},\frac{2}{3},\frac{2}{3})$. Letter: $d_1^n \chi_1$.
- SU(1,1|1) limit, $\vec{n}=(1,0,1,\frac{1}{2},\frac{1}{2})$, Letters $d_1^n Z, d_1^n \chi_1$
- $\mathsf{PSU}(1,1|2)$ limit, $\vec{n} = (1,0,1,1,0)$. Letters: $d_1^n Z, d_1^n X, d_1^n \chi_1, d_1^n \bar{\chi}_7$

Non-compact SU(1,2) kind subsectors are [Baiguera, Harmark, YL, Wintergerst, 2020, 2022]

- $\mathsf{SU}(1,2)$ limit, $\vec{n}=(1,1,0,0,0).$ Letter: $d_1^n d_2^k A$
- SU(1,2|1) limit, $\vec{n} = (1, 1, \frac{1}{2}, \frac{1}{2}, 0)$. Letter: $d_1^n d_2^k A, d_1^n d_2^k \bar{\chi}_7$
- SU(1,2|2) limit, $\vec{n} = (1,1,1,0,0)$. Letter: $d_1^n d_2^k A$, $d_1^n d_2^k Z$, $d_1^n d_2^k \chi_1$, $d_1^n d_2^k \bar{\chi}_7$
- $\mathsf{PSU}(1,2|3)$ limit, $\vec{n} = (1,1,1,1,1)$. Letter: $d_1^n d_2^k A, \ d_1^n d_2^k Z, \ d_1^n d_2^k W, \ d_1^n d_2^k X, \ d_1^n d_2^k \chi_{1,2}, \ d_1^n d_2^k \bar{\chi}_{3,5,7}$

2) Basics about $\mathcal{N}=4$ SYM

Subsectors

4 Cubic supercharge methods towards $\mathsf{PSU}(1,2|3)$

5 Future work

Hamiltonian

Effectively, we want to derive the Hamiltonian as

$$H = \frac{1}{N} \sum_{i,j,m,n} U^{ij}_{mn} a^{\dagger}_{m} a^{\dagger}_{n} a_{i} a_{j}$$

Beissert proposed

$$H = -\frac{1}{N}C_{CD}^{AB} : \operatorname{Tr}[W_A, \check{W}^C][W_B, \check{W}^D]:$$

Subsectors

Sectors with effective (1+1)-dimensional theories

Focus on BPS bounds

$$H \ge S_1 + \sum_{i=1}^3 \omega_i Q_i$$

- S_1, S_2 Cartan generators for rotations on S^3
- Q_i Cartan generators of SU(4) R-symmetry group
- ω_i chemical potentials characterizing the bound

Spin Matrix Theory limit

$$\lambda \to 0$$
, $H_2 = \frac{H - S_1 - \sum_{i=1}^3 \omega_i Q_i}{\lambda}$ finite, N fixed

Sectors	Combination of $SU(4)$ Cartan charges $\sum_{i=1}^{3} \omega_i Q_i$
SU(1,1) bosonic	Q_1
SU(1,1) fermionic	$\frac{2}{3}(Q_1+Q_2+Q_3)$
SU(1,1 1)	$Q_1 + \frac{1}{2}(Q_2 + Q_3)$
PSU(1,1 2)	$\bar{Q_1} + Q_2$

$\mathsf{SU}(1,1)$ subsector

General procedure:

- Isolate the propagating modes in a given near-BPS limit from the quadratic classical Hamiltonian
- Derive the form of the current which couple to the gauge field from the $\mathcal{N}=4$ SYM action of order λ
- Integrate out additional non-dynamical modes giving rise to effective interactions in a given near-BPS limit
- Derive the interacting Hamiltonian from

$$H_{\text{int}} = \lim_{g \to 0} \frac{H - S_1 - \sum_{i=1}^3 \omega_i Q_i}{g^2 N}$$

$$H_{\rm int} = \frac{1}{2N} \sum_{l=1}^{1} \frac{1}{l} \operatorname{tr}\left(q_l^{\dagger} q_l\right)$$

where we defined scalar block as

$$q_l = \sum_{n=0}^{\infty} [\Phi_n^{\dagger}, \Phi_{n+l}]$$

Subsectors

SU(1,1|1)

The full Hamiltonian of $\mathsf{SU}(1,1)$ bosonic sector is

$$H = L_0 + \frac{\tilde{g}^2}{2N} \sum_{l=0}^{\infty} \frac{1}{l} \mathsf{tr}\left(q_l^{\dagger} q_l\right)$$

For $\mathsf{SU}(1,1|1)$ subsector including bosons and fermions,

$$H_{\rm int} = \frac{1}{2N} \sum_{l=0}^{\infty} \frac{1}{l} {\rm tr} \left(\hat{q}_l^{\dagger} \hat{q}_l \right) + \frac{1}{2N} \sum_{l=0}^{\infty} {\rm tr} \left(F_l^{\dagger} F_l \right) \label{eq:Hint}$$

where

$$\begin{split} \hat{q}_l &= q_l + \tilde{q}_l \\ \tilde{q}_l &= \sum_{n=0}^{\infty} \sqrt{\frac{n+1}{n+l+1}} \{ \psi_n^{\dagger}, \psi_{n+l} \} \\ F_l &= \sum_{n=0}^{\infty} \frac{[\psi_{n+l}, \Phi_m^{\dagger}]}{\sqrt{n+l+1}} \end{split}$$

$\mathsf{SU}(1,2)$ Hamiltonian

Letters: A, d_1, d_2

The block is

$$\mathfrak{q}_{l,\Delta\mu} \equiv \sum_{\mu_1,\mu_2} \sum_{s_2=0}^{\infty} C_{\frac{s_2+l}{2},\frac{\mu_2+\Delta\mu}{2}}^{\frac{s_2+l}{2},\frac{\mu_2+\Delta\mu}{2}} \sqrt{\frac{(s_2+1)(s_2+2)}{(s_2+l+1)(s_2+l+2)}} [A_{s_2\mu_2}^{\dagger}, A_{s_2+l,\mu_2+\Delta\mu}]$$

The final Hamiltonian is then

$$H_{\rm int} = \sum_{l=1}^{\infty} \sum_{\Delta\mu=-l}^{l} \frac{1}{l} {\rm tr}(\mathfrak{q}_{l,\Delta\mu}^{\dagger}\mathfrak{q}_{l,\Delta\mu})$$

Subsectors SU(1, 2) sectors

Overall Hamiltonian in SU(1, 2|2)

Summing all the interactions, we find

$$\begin{split} H_{\text{int}} &= \frac{1}{2N} \sum_{l=1}^{\infty} \sum_{\Delta\mu=-l}^{l} \frac{1}{l} \text{tr} \left(\mathbf{Q}_{l,\Delta\mu}^{\dagger} \mathbf{Q}_{l,\Delta\mu} \right) \\ &+ \frac{1}{2N} \sum_{a=2,3}^{\infty} \sum_{l=0}^{\infty} \sum_{\Delta\mu=-l}^{l} \text{tr} \left((F_{a}^{\dagger} + K_{a}^{\dagger})_{l,\Delta\mu} (F^{a} + K^{a})_{l,\Delta\mu} \right) \\ &+ \frac{1}{2N} \sum_{l=0}^{\infty} \sum_{\Delta\mu=-l}^{l} \text{tr} \left(W_{l,\Delta\mu}^{\dagger} W_{l,\Delta\mu} \right) \end{split}$$

where

$$\mathbf{Q}_{l,\Delta\mu} \equiv q_{l,\Delta\mu} + \tilde{q}_{l,\Delta\mu} + \mathfrak{q}_{l,\Delta\mu}$$

Subsectors SU(1, 2) sectors

Blocks

$$\begin{split} q_{l,\Delta\mu} &\equiv \sum_{s_2=0}^{\infty} \sum_{\mu_2=-s_2}^{s_2} C_{\frac{s_2+l}{2},\frac{\mu_2+\Delta\mu}{2};\frac{1}{2},\frac{\Delta\mu}{2}}^{\frac{s_2+l}{2},\frac{\mu_2+\Delta\mu}{2}} [\Phi_{s_2\mu_2}^{\dagger}, \Phi_{s_2+l,\mu_2+\Delta\mu}] \\ \tilde{q}_{l,\Delta\mu} &\equiv \sum_{a=1,2}^{\infty} \sum_{s_2=0}^{\infty} \sum_{\mu_2=-s_2}^{s_2} C_{\frac{s_2+l}{2},\frac{\mu_2+\Delta\mu}{2},\frac{\Delta\mu}{2}}^{\frac{s_2+l}{2},\frac{\mu_2+\Delta\mu}{2}} \sqrt{\frac{s_2+1}{s_2+l+1}} \{(\zeta_a^{\dagger})_{s_2\mu_2}, (\zeta^a)_{s_2+l,\mu_2+\Delta\mu}\} \\ q_{l,\Delta\mu} &\equiv \sum_{\mu_1,\mu_2}^{\infty} \sum_{s_2=0}^{\infty} C_{\frac{s_2+l}{2},\frac{\mu_2+\Delta\mu}{2},\frac{\Delta\mu}{2}}^{\frac{s_2+l}{2},\frac{\mu_2+\Delta\mu}{2}} \sqrt{\frac{(s_2+1)(s_2+2)}{(s_2+l+1)(s_2+l+2)}} [A_{s_2\mu_2}^{\dagger}, A_{s_2+l,\mu_2+\Delta\mu}] \\ (F^a)_{l,\Delta\mu} &\equiv \sum_{s_2=0}^{\infty} \sum_{\mu_2=-s_2}^{s_2} C_{\frac{l}{2},\frac{\Delta\mu}{2},\frac{s_2}{2},\frac{\mu_2}{2}}^{\frac{s_2+l}{2},\frac{\mu_2+\Delta\mu}{2}} \epsilon^{ab} \frac{[(\zeta_b)_{s_2+l,\mu_2+\Delta\mu},\Phi_{s_2,\mu_2}^{\dagger}]}{\sqrt{s_2+l+1}} \\ (K^a)_{l,\Delta\mu} &\equiv \sum_{s_2=0}^{\infty} \sum_{\mu_2=-s_2}^{s_2} \sqrt{\frac{s_2+l}{(s_2+l+1)(s_2+l+2)}} C_{\frac{l}{2},\frac{\Delta\mu}{2},\frac{s_2}{2},\frac{\mu_2}{2}}^{\frac{s_2+l}{2},\frac{\mu_2+\Delta\mu}{2}} [(\zeta_a^{\dagger})_{s_2,\mu_2}, A_{s_2+l,\mu_2+\Delta\mu}] \\ W_{l,\Delta\mu} &= \sum_{s_2=0}^{\infty} \sum_{\mu_2=-s_2}^{s_2} \sqrt{\frac{l+1}{(s_2+l+1)(s_2+l+2)}} C_{\frac{s_2+l}{2},\frac{\mu_2+\Delta\mu}{2}}^{\frac{s_2+l}{2},\frac{\mu_2+\Delta\mu}{2}} [\Phi_{s_2\mu_2}^{\dagger}, A_{s_2+l,\mu_2+\Delta\mu}] \end{split}$$

Representations of SU(1,2)

Like the global symmetry of $\mathcal{N}=4$ SYM, the algebra can be represented by oscillators

$$[\mathbf{a}_{\alpha}, \mathbf{a}_{\beta}^{\dagger}] = \delta_{\alpha\beta}, \quad [\mathbf{b}_{\dot{\alpha}}, \mathbf{b}_{\dot{\beta}}^{\dagger}] = \delta_{\dot{\alpha}\dot{\beta}}, \quad \{\mathbf{c}_{a}^{\dagger}, \mathbf{c}_{b}\} = \delta_{ab}$$

Such that

$$\begin{split} L_0 &= \frac{1}{2} (1 + \mathbf{a}_1^{\dagger} \mathbf{a}_1 + \mathbf{b}_1^{\dagger} \mathbf{b}_1), \quad L_1 = \mathbf{a}_1^{\dagger} \mathbf{b}_1^{\dagger}, \quad L_{-1} = \mathbf{a}_1 \mathbf{b}_1 \\ \tilde{L}_0 &= \frac{1}{2} (1 + \mathbf{a}_2^{\dagger} \mathbf{a}_2 + \mathbf{b}_1^{\dagger} \mathbf{b}_1), \quad \tilde{L}_1 = \mathbf{a}_2^{\dagger} \mathbf{b}_1^{\dagger}, \quad \tilde{L}_{-1} = \mathbf{a}_2 \mathbf{b}_1 \\ J_+ &= \mathbf{a}_1^{\dagger} \mathbf{a}_2, \qquad J_- = \mathbf{a}_2^{\dagger} \mathbf{a}_1 \end{split}$$

There are a few merits using this

- L_1, \tilde{L}_1 are d_1, d_2 operations respectively. Two spatial directions are treated equally.
- If $\tilde{L}_{0,\pm}$ is turned off, we can reacquire the algebra ${\rm SU}(1,1)$ of subsectors. They are ghost like
- $\bullet\,$ The descendants are labelled by (n,k) symmetrically.

Subsectors SU(1, 2) sectors

Classification of (p,q) representations

Like SU(1,1) shown in the notes, we need to understand how the generators act on a given state and preserve the unitarity. Recall SU(N) has N-1 independent Casimir operators. Thus we need

$$C_{2} = -1 - x_{1}x_{2} - x_{2}x_{3} - x_{3}x_{1} = p + q + \frac{1}{3}(p^{2} + pq + q^{2})$$
$$C_{3} = x_{1}x_{2}x_{3} = \frac{1}{27}(p - q)(p + 2q + 3)(q + 2p + 3)$$

Remind the Casimir of $\mathsf{SU}(1,1)$ is

$$C=-j(j-1)$$

- Principle representation: p, q can be complex (analogous to continuous)
- p-series: p is integer while q is not
- $\bullet \ q\text{-series:} \ q$ is integer while p is not
- (p+q)-series: Neither of p,q is integer but p+q is
- Integer series: $p, q \in \mathbb{Z}$
- Supplementary series

Representations

- Gauge field. The gauge field \bar{F}_+ is parametrized by (p,q)=(0,0) representation.
- Fermion: The fermions $\bar{\chi}_{5,7}$ are parametrized by (p,q)=(0,-1) representation.
- Scalar: The scalar Z is parametrized by (p,q) = (0,-2) representation.

Symmetry actions

What about blocks?

- The block $\mathbf{Q}_{nk}^{\dagger}$ is parametrized by (p,q)=(0,-3) representation. This is a representation of fermion!
- The fermionic block ${\bf K}^{a\dagger}_{nk}=(K^{a\dagger}_{nk}+F^{a\dagger}_{nk})$ are parametrized by (p,q)=(0,-2) representation.
- \bullet The scalar block W_{nk}^{\dagger} is parametrized by (p,q)=(0,-1) representation.

The blocks and letters in SU(1, 2|2) are forming $\mathcal{N} = 2$ vector multiplets.

$\mathsf{SU}(2|3)$ subsector

The decoupling condition: $H_0 = Q_1 + Q_2 + Q_3$

There are three scalars $\Phi_{1,2,3}$ and two chiral fermions $\chi_{1,2}$ in this sector. The full SMT Hamiltonian by spherical reduction is

$$\begin{split} H_{\rm int} = & \frac{1}{4N} {\rm tr} \left([\Phi_b^{\dagger}, \Phi_a^{\dagger}] [\Phi_a, \Phi_b] \right) + \frac{1}{4N} {\rm tr} \left(\{\chi_{\beta}^{\dagger}, \chi_{\alpha}^{\dagger}\} \{\chi_{\alpha}, \chi_{\beta}\} \right) \\ & + \frac{1}{2N} {\rm tr} \left([\Phi_a^{\dagger}, \chi_{\beta}^{\dagger}] [\chi_{\beta}, \Phi_a] \right) \end{split}$$

D/F term

D-term means

 $[W^\dagger,W][W^\dagger,W]$

while F-term means

 $[W,W][W^{\dagger},W^{\dagger}]$

The Hamiltonian in this subsector are made by F-terms.

$\mathsf{PSU}(1,1|2)$ subsector

The quantum version of the Hamiltonian was obtained in [Bellucci, Casteill, 06]. We have decoupling limit $H_0 = S_1 + Q_1 + Q_2$.

The letters are two scalars $\Phi_{1,2}$, a chiral fermion $\chi_1 = \psi_1$ and antichiral fermion $\bar{\chi}_7 = \psi_2$, including their descendants generated by d_1 .

$$\begin{split} H_{\text{int}} &= H_B + \frac{1}{N} \sum_{l=1}^{\infty} \frac{1}{l} : \text{tr} \left(\mathbf{Q}_l^{\dagger} \, \mathbf{Q}_l \right) : + \frac{1}{N} \sum_{l=0}^{\infty} : \text{tr} \Big((F_{ab})_l^{\dagger} (F_{ab})_l \Big) : \\ &- \frac{1}{N} \sum_{l=0}^{\infty} \sum_{m,n=0}^{\infty} \frac{1}{m+n+l+1} : \text{tr} \left(\epsilon^{ac} \epsilon^{bd} [(\Phi_a^{\dagger})_m, (\Phi_b)_{m+l}] [(\Phi_c^{\dagger})_{n+l}, (\Phi_d)_n] \right) : \\ &+ \frac{1}{N} \sum_{l=0}^{\infty} \sum_{m,n=0}^{\infty} \frac{\sqrt{(m+1)(n+1)}}{\sqrt{(m+l+1)(n+l+1)}} : \frac{\text{tr} \left(\epsilon^{ac} \epsilon^{bd} \{ (\psi_a^{\dagger})_m, (\psi_b)_{m+l} \} \{ (\psi_c^{\dagger})_{n+l}, (\psi_d)_n \} \right) : \\ &+ \frac{1}{N} \sum_{l=0}^{\infty} \sum_{m,n=0}^{\infty} \sqrt{\frac{m+1}{n+l+1}} \frac{\epsilon^{ac} \epsilon^{bd}}{m+n+l+2} : \text{tr} \left([(\psi_a^{\dagger})_m, (\Phi_b)_{m+l+1}] [(\psi_c^{\dagger})_{n+l}, (\Phi_d)_n] \right) : \\ &- \frac{1}{N} \sum_{l=0}^{\infty} \sum_{m,n=0}^{\infty} \sqrt{\frac{m+1}{n+l+1}} \frac{\epsilon^{ac} \epsilon^{bd}}{m+n+l+2} : \text{tr} \left([(\Phi_a^{\dagger})_m+l+1, (\psi_b)_m] [(\Phi_c^{\dagger})_n, (\psi_d)_{n+l}] \right) :, \end{split}$$

Positiveness

Although the Hamiltonian is tedious, we can show

$$\begin{split} \hat{\mathcal{Q}}^{\dagger} = & \sum_{m,n=0}^{\infty} \left[\frac{1}{\sqrt{n+1}} \operatorname{tr} \left(\left[(\Phi_{a}^{\dagger})_{m+n+1}, (\Phi_{a})_{m} \right](\psi_{2})_{n} \right) + \sqrt{\frac{m+1}{(n+1)(m+n+2)}} \operatorname{tr} \left(\left\{ (\psi_{1}^{\dagger})_{m+n+1}, (\psi_{1})_{m} \right\}(\psi_{2})_{n} \right) \right. \\ & \left. + \frac{1}{2} \sqrt{\frac{m+n+2}{(m+1)(n+1)}} \operatorname{tr} \left(\left\{ (\psi_{2}^{\dagger})_{m+n+1}, (\psi_{2})_{m} \right\}(\psi_{2})_{n} \right) - \frac{1}{2\sqrt{m+n+1}} \, \epsilon^{ab} \operatorname{tr} \left((\psi_{1}^{\dagger})_{m+n} \left[(\Phi_{a})_{m}, (\Phi_{b})_{n} \right] \right) \right] \end{split}$$

We can then show

$$\{\hat{\mathcal{Q}}, \hat{\mathcal{Q}}^{\dagger}\} = H_{\mathrm{int}}$$

The cubic supercharges are from the extra $\mathsf{PSU}(1|1)^2$ symmetry of this subsector [Beisert, Zwiebel, 2007]

Representation

How can the positiveness be manifest as square of blocks?

F-term problem

We define

$$J_L = \sum_{n=0}^{L} [\Phi_{L-n}^1, \Phi_n^2]$$

and L = m + n + l We can show

$$\begin{split} &-\frac{1}{2N}\sum_{l=0}^{\infty}\sum_{m,n=0}^{\infty}\frac{1}{m+n+l+1}\mathsf{tr}\left(\epsilon^{ac}\epsilon^{bd}[(\Phi_{a}^{\dagger})_{m},(\Phi_{b})_{m+l}][(\Phi_{c}^{\dagger})_{n+l},(\Phi_{d})_{n}]\right)\\ &=\sum_{L=0}^{\infty}\frac{1}{L+1}\mathsf{tr}(J_{L}^{\dagger}J_{L}) \end{split}$$

To derive this we need to use the Jacobi identity

$$\mathsf{tr}([\Phi_a, \Phi_b][\Phi_b^{\dagger}, \Phi_a^{\dagger}]) = \mathsf{tr}([\Phi_b, \Phi_a^{\dagger}][\Phi_a, \Phi_b^{\dagger}]) - \mathsf{tr}([\Phi_a, \Phi_a^{\dagger}][\Phi_b, \Phi_b^{\dagger}])$$

Then $\mathsf{PSU}(1,1|2)$ symmetry generator action:

$$(L_{+})_{D}J_{L}^{\dagger} = (L+1)J_{L+1}^{\dagger}, \quad (L_{+})_{D}J_{L} = -(L+1)J_{L-1}$$

Question

In the known case, we have achieve some manifest symmetry structure for two of the $1/8\mbox{-}BPS$ subsector:

- ${\small \textcircled{\ }}{\small \textbf{ SU}}(1,2|2) \text{ block as } \mathcal{N}=2 \text{ vector multiplet}$
- $\textcircled{O} {\rm SU}(2|3) {\rm \ block \ as \ three} \ \mathcal{N}=1 {\rm \ chiral \ multiplet}$

But we do not know how to organize the Hamiltonian of PSU(1,1|2).

- \bullet Why $\mathsf{PSU}(1,1|2)$ is not that manifestly positive definite?
- What is the $\mathsf{PSU}(1,2|3)$ sector would be like?

Subsectors

- SU(1,2) sectors
- SU(2|3) subsector
- $\mathsf{PSU}(1,1|2)$ subsector

4 Cubic supercharge methods towards $\mathsf{PSU}(1,2|3)$

Future work

$\mathsf{PSU}(1,2|3)$ letters

 $\mathsf{PSU}(1,2|3)$ limit, $\vec{n}=(1,1,1,1,1)$. Letter: $d_1^n d_2^k A, \ d_1^n d_2^k Z, \ d_1^n d_2^k W, \ d_1^n d_2^k X, \ d_1^n d_2^k \chi_{1,2}, \ d_1^n d_2^k \bar{\chi}_{3,5,7}$ Also $d_1 \chi_2 - d_2 \chi_1 = 0$ due to Dirac equation. We then define the ancestor fermion such that

$$\chi_1 = d_1 \chi, \qquad \chi_2 = d_2 \chi$$

Cubic supercharges

We want to construct a few cubic supercharges which could result in $H = \{Q^{\dagger}, Q\}.$

$$T_A = \sum_{n,k,n',k'=0}^{\infty} P_{n,k,n',k'}^{(i,j)} \mathrm{tr}([V_{n,k}^{\dagger} \tilde{V}_{n',k'}^{\dagger}] \hat{V}_{n+n',k+k'}) \,,$$

with

$$P_{n,k,n',k'}^{(i,j)} = \sqrt{\frac{(k+n+i-1)!(k'+n'+j-1)!(n+n')!(k+k')!}{(k+k'+n+n'+i+j-1)!n!k!n'!k'!}}$$

We want to have some constraints

• For example: each ingredient is invariant under bosonic symmetry.

$$\{L_+, T_A\}_D = \{L_-, T_A\}_D = \{J_+, T_A\}_D = 0$$

• $\{\mathcal{Q}, Q_a\} = 0.$

Explicit T_A charges

 T_A invariant under bosonic symmetry.

$$\begin{split} T_{1} &= \frac{1}{2} \sum_{n,k,n',k'=0}^{\infty} P_{n,k,n',k'}^{(0,0)} \operatorname{tr}(\chi_{n,k}^{\dagger} \{\chi_{n',k'}^{\dagger}, \chi_{n+n',k+k'}\}) \\ T_{2} &= \sum_{n,k,n',k'=0}^{\infty} P_{n,k,n',k'}^{(0,1)} \delta^{ab} \operatorname{tr}(\chi_{n,k}^{\dagger} [(\Phi_{a}^{\dagger})_{n',k'}, (\Phi_{b})_{n+n',k+k'}]) \\ T_{3} &= \sum_{n,k,n',k'=0}^{\infty} P_{n,k,n',k'}^{(0,2)} \delta^{ab} \operatorname{tr}(\chi_{n,k}^{\dagger} \{(\zeta_{a}^{\dagger})_{n',k'}, (\zeta_{b})_{n+n',k+k'}\}) \\ T_{4} &= \sum_{n,k,n',k'=0}^{\infty} P_{n,k,n',k'}^{(0,3)} \operatorname{tr}(\chi_{n,k}^{\dagger} [A_{n',k'}^{\dagger}, A_{n+n',k+k'}]) \\ T_{5} &= \frac{1}{2} \sum_{n,k,n',k'=0}^{\infty} P_{n,k,n',k'}^{(1,1)} \epsilon^{abc} \operatorname{tr}([(\Phi_{a}^{\dagger})_{n,k}, (\Phi_{b}^{\dagger})_{n',k'}](\zeta_{c})_{n+n',k+k'}) \\ T_{6} &= \sum_{n,k,n',k'=0}^{\infty} P_{n,k,n',k'}^{(1,2)} \delta^{ab} \operatorname{tr}([(\Phi_{a}^{\dagger})_{n,k}, (\zeta_{b}^{\dagger})_{n',k'}]A_{n+n',k+k'}) \end{split}$$

Yang Lei (Soochow University &

${\cal Q}$ invariant under supersymmetry:

$$Q = T_1 + T_2 + T_3 + T_4 + T_5 - T_6$$

Let's compute

$$H = \{ \mathcal{Q}^{\dagger}, \mathcal{Q} \}$$

We get

$$\begin{split} H_{\rm int} &= H_D + H_F \,, \\ H_D &= \sum_{n,k=0}^{\infty} {\rm tr} \left[(\mathcal{B}_0^{\dagger})_{n,k} (\mathcal{B}_0)_{n,k} + \sum_{a=1}^3 \sum_{I=1,2} (\mathcal{B}_I^{a\dagger})_{n,k} (\mathcal{B}_I^a)_{n,k} + (\mathcal{B}_3^{\dagger})_{n,k} (\mathcal{B}_3)_{n,k} \right] \,, \\ H_F &= \sum_{n,k=0}^{\infty} {\rm tr} \left[(\mathcal{F}_0^{\dagger})_{n,k} (\mathcal{F}_0)_{n,k} + \sum_{a=1}^3 \sum_{I=1,2} (\mathcal{F}_I^{a\dagger})_{n,k} (\mathcal{F}_I^a)_{n,k} + (\mathcal{F}_3^{\dagger})_{n,k} (\mathcal{F}_3)_{n,k} \right] \,, \end{split}$$

D-term blocks

$$\begin{split} (\mathcal{B}_{0})_{n,k} &= \sum_{n',k'=0}^{\infty} P_{n,k;n',k'}^{(0,0)} \{\chi_{n',k'}^{\dagger}, \chi_{n+n',k+k'}\} \\ &+ \sum_{a=1}^{3} P_{n,k;n',k'}^{(0,1)} [(\Phi_{a}^{\dagger})_{n',k'}, (\Phi_{a})_{n+n',k+k'}] \\ &+ \sum_{a=1}^{3} P_{n,k;n',k'}^{(0,2)} \{(\zeta_{a}^{\dagger})_{n',k'}, (\zeta_{a})_{n+n',k+k'}\} + P_{n,k;n',k'}^{(0,3)} [A_{n',k'}^{\dagger}, A_{n+n',k+k'}] , \\ (\mathcal{B}_{1}^{a})_{n,k} &\equiv \sum_{n',k'=0}^{\infty} P_{n,k;n',k'}^{(1,1)} \epsilon^{abc} [(\zeta_{b})_{n+n',k+k'}] + P_{n,k;n',k'}^{(0,3)} [(\Phi_{a})_{n+n',k+k'}, A_{n+n',k+k'}] , \\ (\mathcal{B}_{2}^{a})_{n,k} &\equiv \sum_{n',k'=0}^{\infty} P_{n,k;n',k'}^{(2,1)} [(\Phi_{a}^{\dagger})_{n',k'}, A_{n+n',k+k'}] + P_{n,k;n',k'}^{(1,0)} \{(\zeta_{a})_{n+n',k+k'}, \chi_{n',k'}^{\dagger}\} \\ (\mathcal{B}_{3})_{n,k} &\equiv \sum_{n',k'=0}^{\infty} P_{n,k;n',k'}^{(3,0)} [A_{n+n',k+k'}, \chi_{n',k'}^{\dagger}] . \end{split}$$

Yang Lei (Soochow University &

36 / 42

F-term blocks

$$\begin{aligned} (\mathcal{F}_{0})_{n,k} &\equiv \frac{1}{2} \sum_{n'=0}^{n} \sum_{k'=0}^{k} P_{n',k';n-n',k-k'}^{(0,0)} \{\chi_{n-n',k-k'},\chi_{n',k'}\}, \\ (\mathcal{F}_{1}^{a})_{n,k} &\equiv \sum_{n'=0}^{n} \sum_{k'=0}^{k} P_{n',k',n-n',k-k'}^{(0,1)} [(\Phi_{a})_{n-n',k-k'},\chi_{n',k'}], \\ (\mathcal{F}_{2}^{a})_{n,k} &\equiv \frac{1}{2} \sum_{n'=0}^{n} \sum_{k'=0}^{k} P_{n',k',n-n',k-k'}^{(1,1)} \epsilon^{abc} [(\Phi_{c})_{n',k'},(\Phi_{b})_{n-n',k-k'}] \\ &+ P_{n',k',n-n',k-k'}^{(0,2)} \{(\zeta_{a})_{n-n',k-k'},\chi_{n',k'}\}, \\ (\mathcal{F}_{3})_{n,k} &\equiv \sum_{n'=0}^{n} \sum_{k'=0}^{k} P_{n',k',n-n',k-k'}^{(1,2)} [(\zeta_{a})_{n-n',k-k'},(\Phi_{a})_{n',k'}] \\ &- P_{n',k';n-n'k-k'}^{(0,3)} [A_{n-n',k-k'},\chi_{n',k'}]. \end{aligned}$$

Symmetry structure

All the block \mathcal{B}_I , \mathcal{F}_I and letters W_I are transforming in the (p,q) = (0, I-3) representations of SU(1,2) algebra, I = 0, 1, 2, 3.

Puzzles in PSU(1,1|2)

We will have two $\mathcal{N}=2$ hypermultiplets in $\mathsf{PSU}(1,1|2)$ subsector. One in terms of D-term blocks while the other one is like F-term blocks.

Summary: New physics in each subsector

- SU(2|3): $\chi_{1,2}, Z, W, X$, the fermionic doublet block $\{\chi_1, \chi_2\}$ and scalar block, pure F-term
- SU(1,1|1), telescopic sum, pure D-term tr($q_l^{\dagger}q_l$), infinite modes
- $\mathsf{PSU}(1,1|2) \times SU(2)_F$: $\chi_1, \bar{\chi}_7, Z, X, d_1$, infinite modes+ F-term, fermionic doublet block? $\mathsf{SU}(2)_F$ automorphism; Simultaneous presence of D-term and F-term supermultiplets
- $\mathsf{SU}(1,2|2):F,\Phi,\bar{\chi}_{5,7},d_{1,2},$ new $[A,\Phi]$ blocks
- $\mathsf{PSU}(1,2|3)$: $F, Z, W, X, \chi_{1,2}, \bar{\chi}_{3,5,7}, d_{1,2}$,
 - Oirac equation leads to ancestor fermion
 - Simultaneous presence of D-term and F-term supermultiplets. Enhanced supersymmetry!

Basics about *N* = 4 SYM
 Decoupling limit

Subsectors

- SU(1,2) sectors
- SU(2|3) subsector
- $\mathsf{PSU}(1,1|2)$ subsector

4 Cubic supercharge methods towards $\mathsf{PSU}(1,2|3)$

Future work

Future work

Some future work

- Local field theory in SU(1,2) subsector [Baiguera, Harmark, Lei, 2023] and relation to chiral algebra?
- \bullet Relation to the work $\mathsf{SU}(1,D)$ field theory: [Lambert, Mouland, Orchard, 2022]
- $\frac{1}{16}$ -BPS black hole interpretation
- Understanding how Kerr/CFT appears holographically based on AdS₅/CFT₄ (Based on [Goldstein, Jejjala, Lei, Leuven, Li, 2019]).

$$\mathsf{PSU}(1,2|3) \to \mathsf{PSU}(1,1|2)$$

- Factorization of partition function with finite N?
- Relation to strings in TNC gravity [Harmark, Hartong, Obers, Yan, 2018, 2021]