Non-invertible Duality Defects: Lattice, Field Theory and Symmetry TFT

Yunqin Zheng Kavli IPMU, ISSP @ U.Tokyo

Soochow University, HET seminar Nov 2nd, 2022

Justin Kaidi, Kantaro Ohmori, Y.Z. 2111.01141 Justin Kaidi, Kantaro Ohmori, Y.Z. 2209.11062 Linhao Li, Masaki Oshikawa, Y.Z. To appear

Global Symmetry

- Global symmetries are powerful in constraining RG flows. ('t Hooft anomaly matching, Selection rule of correlation functions, checking dualities, ...)
- It is well known (before 2014)
 0-form global symmetry → codimension-1 topological defect
- But the converse arrow ← is appreciated only until recently (since 2014). This leads to "generalized global symmetry"
 generalized global symmetry ↔ topological defect

Generalized global symmetry

• The topological operators, hence the generalized global symmetries, can be organized according to codimension and invertibility.

	defect codim = 1	defect codim > 1
Invertible	Ordinary Sym	Higher form/group Sym
Non-invertible	Non-invertible Sym	

• This talk will focus on the non-invertible symmetry.

Non-invertible symmetry is Unavoidable

- Start with an ordinary symmetry or higher form symmetry, one can get non-invertible symmetry upon various gauging.
- Gauging with a mixed anomaly ⇒ Duality defects;

[Kaidi,Ohmori,**YZ**,2111.01141]...

Gauging on half space ⇒ Duality defects;

[Choi,Cordova,Hsin,Lam,Shao, 2111.01139]...

Gauging a non-normal subgroup;

[Bhardwaj,Bottini,Schafer-Nameki,Tiwari,2204.06564]...

[Nguyen, Tanizaki, Unsal, 2101.02227]...

Gauging a multi-dimensional coupled system;

[Bhardwaj,Schafer-Nameki,Wu,2208.05973]...

• Higher gauging ⇒ Condensation defects;

[Roumpedakis,Seifnashri,Shao,2204.02407]...

 Higher gauging on half higher-codim space ⇒ Higher duality defects; [Kaidi,Ohmori,YZ,2209.11062]...

Non-invertible symmetry is Ubiquitous

- Various TQFTs.
- Free field theories: 2d compact boson, 4d Maxwell.
- G Yang-Mills theory with various G, \mathcal{N} , d.
- QED₄. Infinite number of non-invertible symmetries.
- QCD₄.

• ...

- Axion models.
- Class-S theories
- Any QFT with a non-anomalous higher form symmetry.

This Talk

• I will instead come back to (probably) the very first non-invertible symmetry discovered in history:

Non-invertible Kramers-Wannier Duality Defect in (1+1)d

• Three ways to approach it:

Lattice. [Li,Oshikawa,YZ,to appear] Field theory. [Choi,Cordova,Hsin,Lam,Shao,2111.01139] Symmetry TFT. [Kaidi,Ohmori,YZ,2209.11062]

KW on Lattice

[Li,Oshikawa,**YZ**, to appear]

Kramers-Wannier on lattice

- The KW transformation was first found in the 2d statistical Ising model, relating high temperature and low temperature. [Kramers, Wannier, 1941]
- Another version of KW found in (1 + 1)d quantum lsing model, relating large transverse field to small transverse field.

$$H = -\sum_{i} (\sigma_{i}^{z} \sigma_{i+1}^{z} + h \sigma_{i}^{x})$$

$$\begin{split} & \mathsf{KW}: \ \sigma_i^{\mathsf{x}} \to \sigma_i^{\mathsf{z}} \sigma_{i+1}^{\mathsf{z}}, \ \sigma_i^{\mathsf{z}} \to ... \sigma_{i-2}^{\mathsf{x}} \sigma_{i-1}^{\mathsf{x}} \sigma_i^{\mathsf{x}} \\ & \mathsf{Then} \ \sigma_i^{\mathsf{x}} \to \sigma_i^{\mathsf{z}} \sigma_{i+1}^{\mathsf{z}}, \ \sigma_{i-1}^{\mathsf{z}} \sigma_i^{\mathsf{z}} \to \sigma_i^{\mathsf{x}}, \ \mathsf{two} \ \mathsf{terms} \ \mathsf{are} \ \mathsf{exchanged}. \\ & \mathsf{Effectively}: \ h \to 1/h. \end{split}$$

• We will focus on the quantum Ising model below.

KW on lattice: Puzzles

 $\sigma_i^x \to \sigma_i^z \sigma_{i+1}^z, \qquad \sigma_i^z \to ... \sigma_{i-2}^x \sigma_{i-1}^x \sigma_i^x$

- On an infinite chain, fine. How about on a circle? This was discussed in the appendix of [Hsieh,Nakayama,Tachikawa,2002.12283], but we were confused by some formula there...
- ${\it 20}$ It is now often said that the operator ${\cal N}$ implementing the KW transformation is non-invertible, with fusion rule

 $\mathcal{N} \times \mathcal{N} = 1 + U,$ $\mathcal{N} \times U = U \times \mathcal{N} = \mathcal{N},$ $U \times U = 1$

How to see it on the lattice? It was discussed in [Aasen,Mong,Fendley,1601.07185], but they work on an infinite line (rather than a circle)...

- ❸ It is also often said that KW is equivalent to gauging Z₂. How to see the mapping between symmetry-twist sectors explicitly?
- How about KW on open chains? Still non-invertible?

Set-up:

- Spin- $\frac{1}{2}$ on each site *i*, *i* = 1, ..., *L*.
- $s_{i+L} = s_i + t$
- Basis product state $|\{s_i\}\rangle$.

Instead of defining the KW by mapping between Pauli operators, we define the KW by an operation on the state:

$$\mathcal{N}|\{s_i\}\rangle = \frac{1}{2^{L/2}} \sum_{\{\widehat{s}_{i-\frac{1}{2}}\}} (-1)^{\sum_{j=1}^{L} (s_{j-1}+s_j)\widehat{s}_{j-\frac{1}{2}} + \widehat{t}s_L} |\{\widehat{s}_{i-\frac{1}{2}}\}\rangle.$$

This KW resolves all of the above puzzles!

$$\mathcal{N}|\{s_i\}\rangle = \frac{1}{2^{L/2}} \sum_{\{\widehat{s}_{i-\frac{1}{2}}\}} (-1)^{\sum_{j=1}^{L} (s_{j-1}+s_j)\widehat{s}_{j-\frac{1}{2}} + \widehat{t}s_L} |\{\widehat{s}_{i-\frac{1}{2}}\}\rangle.$$

• On an infinite chain, it reproduces the standard KW transformation,

$$\widehat{\sigma}_{i-\frac{1}{2}}^{x}\mathcal{N}=\mathcal{N}\sigma_{i-1}^{z}\sigma_{i}^{z},\qquad \widehat{\sigma}_{i-\frac{1}{2}}^{z}\mathcal{N}=\mathcal{N}(...\sigma_{j-2}^{x}\sigma_{j-1}^{x})$$

• On a finite circle, it is consistent with gauging \mathbb{Z}_2 symmetry. Let us review what do we mean by gauging \mathbb{Z}_2 symmetry.

KW as gauging \mathbb{Z}_2

• Gauging \mathbb{Z}_2

 $= \text{summing over } \mathbb{Z}_2 \text{ connections}$

= summing over \mathbb{Z}_2 defects.

$$Z_{\mathcal{X}/\mathbb{Z}_2}[A] = \frac{1}{2} \sum_{\mathbf{a} \in H^1(T^2, \mathbb{Z}_2)} Z_{\mathcal{X}}[\mathbf{a}](-1)^{\int \mathbf{a} \cup A}$$

KW as gauging \mathbb{Z}_2

Use (u, t) to label the symmetry-twist sectors:

- u = 0, 1: \mathbb{Z}_2 even/odd symmetry sectors,
- t = 0, 1: \mathbb{Z}_2 untwisted/twisted sectors,

 $\widehat{u} = t, \qquad \widehat{t} = u$

$$\mathcal{N} |\{s_i\}\rangle = \frac{1}{2^{L/2}} \sum_{\{\widehat{s}_{i-\frac{1}{2}}\}} (-1)^{\sum_{j=1}^{L} (s_{j-1}+s_j)\widehat{s}_{j-\frac{1}{2}} + \widehat{t}s_L} |\{\widehat{s}_{i-\frac{1}{2}}\}\rangle.$$

• Indeed, this transformation exactly reproduces the mapping between symmetry and twist sectors,

$$\widehat{u} = t, \qquad \widehat{t} = u$$

This formula is almost the same as in [Aasen,Mong,Fendley,1601.07185], except for the last term in the exponent, t
 s_L. This term is needed to match how the symmetry and twist sectors transform (u
 t, t
 t) = (t, u).

$$\mathcal{N} |\{s_i\}\rangle = \frac{1}{2^{L/2}} \sum_{\{\widehat{s}_{i-\frac{1}{2}}\}} (-1)^{\sum_{j=1}^{L} (s_{j-1}+s_j)\widehat{s}_{j-\frac{1}{2}} + \widehat{t}s_L} |\{\widehat{s}_{i-\frac{1}{2}}\}\rangle.$$

Non-invertibility of N is now transparent: N[†]N is not an identity operator.

$$\langle \{s_i\} | \mathcal{N}^{\dagger} \mathcal{N} | \{s'_i\} \rangle = \prod_{i=1}^{L} \delta_{s_i, s'_i} + (-1)^{\widehat{t}} \prod_{i=1}^{L} \delta_{s_i, s'_i+1}$$

- Symmetry and twist sectors are straightforward to check, $(\widehat{u}, \widehat{t}) = (t, u)$.
- Fusion rule is also straightforward to find, but now interestingly depends on the twist parameter:

$$\mathcal{N} \times \mathcal{N} = 1 + (-1)^{\widehat{t}} U, \qquad \qquad \mathcal{N} \times U = (-1)^{\widehat{t}} \mathcal{N}$$

 \mathcal{N} is non-invertible. The standard fusion rule $\mathcal{N} \times \mathcal{N} = 1 + U$ etc assumes PBC along the chain, i.e. no twist-defect U terminating on \mathcal{N} . This point was recently emphasized in [Choi,Cordova,Hsin,Lam,Shao,2204.09025].

$$\mathcal{N}|\{s_i\}\rangle = \frac{1}{2^{L/2}} \sum_{\{\widehat{s}_{i-\frac{1}{2}}\}} (-1)^{\sum_{j=1}^{L} (s_{j-1}+s_j)\widehat{s}_{j-\frac{1}{2}} + \widehat{t}s_L} |\{\widehat{s}_{i-\frac{1}{2}}\}\rangle.$$

Everything discussed so far is independent of the Hamiltonian. One can
easily construct KW self-dual Hamiltonians by demanding [H, N] = 0.
For example, the Ising model at h = 1 is self-dual on a circle:

$$H = -\sum_{i=1}^{L} (\sigma_{i-1}^z \sigma_i^z + h \sigma_i^x)$$

Then KW becomes a non-invertible symmetry. By modular S transformation, \mathcal{N} becomes a non-invertible duality defect.

KW on an interval

Define KW on an open chain with free open boundary condition:

$$\mathcal{N}|\{s_i\}\rangle = \frac{1}{2^{L/2}} \sum_{\{\widehat{s}_{i-\frac{1}{2}}\}} (-1)^{\sum_{j=2}^{L} s_{j-1}\widehat{s}_{j-\frac{1}{2}} + \sum_{j=1}^{L} s_{j}\widehat{s}_{j-\frac{1}{2}}} |\{\widehat{s}_{i-\frac{1}{2}}\}\rangle.$$

• Surprisingly, KW is now invertible and unitary!!! Check the overlap,

$$\langle \{s_i\} | \mathcal{N}^{\dagger} \mathcal{N} | \{s'_i\} \rangle = \prod_{i=1}^{L} \delta_{s_i, s'_i}$$

The non-invertible KW transformation on a closed chain becomes invertible on an open chain!!!

Bonus: This simple fact also clarifies a small puzzle in history.

Early history on SPT

Back in 1983, Duncan Haldane (Nobel laureate in 2016) conjectured that the spin-S Heisenberg AFM is gapless for half-integer S and gapped for integer S. He showed this in large S limit, but the conjecture is for any finite S.

Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One- Dimensional Easy-Axis Néel State				
F. D. M. Haldane Phys. Rev. Lett. 50 , 1153 – Published 11 April 1983				
Physics	See Focus story:	Nobel Prize—Topological Ph	hases of Matter	
Article	References	Citing Articles (2,880)	PDF Export Citation	
>	ABST The contin Heisenber anisotropy quantized Received	RACT nuum field theory describing gantiferromagnet is found y is present, soliton solution . Integer and half-integer sp 31 January 1983		

Early history on SPT

Four years later in 1987, Affleck, Lieb, Kennedy and Tasaki found an analytically tractable model for S = 1, and gapped exists! At that time, AKLT model was exotic, beyond Landau paradigm. Now, it is known as the first example of SPT.

Rigorous results on valence-bond ground states in antiferromagnets

Ian Affleck, Tom Kennedy, Elliott H. Lieb, and Hal Tasaki Phys. Rev. Lett. **59**, 799 – Published 17 August 1987

Article	References	Citing Articles (1,628)	PDF	Export Citation
>	ABST We prese a valence and breat Physical a Received	RACT ht rigorous results on a phas -bond solid. The ground sta is no symmetries. There is a applications are mentioned. 26 May 1987	ie in antiferroma te is simply con in energy gap ar	- agnets in one dimension and more, which we call structed out of valence bonds, is nondegenerate, nd an exponentially decaying correlation function.

Kennedy-Tasaki transformation

Four years later in 1991, Kennedy and Tasaki wrote another influential paper, showed that the AKLT model is not that exotic: one can still understand it within Landau paradigm, i.e. via Hidden symmetry breaking. SSB phase and SPT phase on an open chain are related by a **non-local unitary transformation**, and local order parameter $\stackrel{KT}{\longrightarrow}$ string order parameter.

Hidden $Z_2 \times Z_2$ symmetry breaking in Haldane-gap antiferromagnets

Tom Kennedy and Hal Tasaki Phys. Rev. B 45, 304 – Published 1 January 1992

Kennedy-Tasaki transformation

In the same year, Masaki Oshikawa, in his first paper in graduate school, generalized the KT transformation to arbitrary integer spin, and found a much nicer and compact formula of the **non-local unitary transformation**

$$U_{\mathsf{KT}} = \prod_{i>j} \exp\left(i\pi S_i^z S_j^x\right).$$

Hidden Z2* Z2 symmetry in quantum spin chains with arbitrary integer spin

- 著者 Masaki Oshikawa
- 公開日 1992/9/7
- 論文誌 Journal of Physics: Condensed Matter
 - 巻 4
 - 号 36
- ページ 7469
- 出版社 IOP Publishing
- Bill The author studies integer S> 1 spin chains. He extends the Kennedy-Tasaki nonlocal unitary transformation for S= 1 to achitrary integer S. He shows the main results of Kennedy and Tasaki (1992) are maintained for S> 1: Heisenberg-type Hamiltonians are transformed to Hamiltonians of nearest-neighbour interactions with 2 2* Z symmetry, and the den Nijs-Rommelse string observables are transformed to the ferromagnetic correlation observables. He asserts that in general values of integer S there exits several phases with the hidden Z 2* Z 2 symmetry breaking, are calculated explicitly for several values of interaints of the VBS-type states. In the standard VBS state, the hidden Z 2* Z 2 symmetry breaking are calculated explicitly for several valiants of the VBS-type states. In the standard VBS state, success that, in seven His code the results for achitally dimerized VBS states success that.

Kennedy-Tasaki transformation: Puzzle

$$U_{\mathsf{KT}} = \prod_{i>j} \exp\left(i\pi S_i^z S_j^x\right).$$

However, there is a puzzle...

The **non-local unitary transformation** has been only defined on an open chain. How to define it on a circle? We haven't found a literature addressing this question...

Non-invertible KT transformation

	circle	interval
Kramers-Wannier	non-invertible non-unitary <i>S</i>	invertible, unitary
Kennedy-Tasaki	non-invertible non-unitary STS = TST	invertible, unitary

In an upcoming work with Linhao Li and Masaki Oshikawa, we showed that non-local unitary KT transformation can be lifted on a circle if we sacrifice unitarity!

It turns out that the non-unitary transformation is basically TST = STS, whose operator/defect obeys non-invertible fusion rule.

KW from Field theory: Half-space gauging

[Choi, Cordova, Hsin, Lam, Shao, 2111.01139]

[Kaidi,Ohmori,YZ,2209.11062]

KW Defect from field theory

- For an arbitrary (1+1)d bosonic QFT \mathcal{X} with an non-anomalous \mathbb{Z}_N symmetry, one can gauge \mathbb{Z}_N to generate a new theory $S\mathcal{X} \coloneqq \mathcal{X}/\mathbb{Z}_N$ by a KW transformation. \mathcal{X} is KW self-dual if $\mathcal{X} = \sigma \mathcal{X}$, which we assume below.
- Gauging \mathbb{Z}_N on half-of the spacetime with Dir.b.c. defines a duality defect.

Fusion rule of Duality defects

• To find the fusion of two duality defects, we place them parallel to each other:

• Gauging \mathbb{Z}_N in a slab.

-

- Shrinking the slab by taking $\epsilon \to 0$, it simply means $\mathcal{N} \times \mathcal{N}$ is gauging \mathbb{Z}_N on a co-dimension 1 submanifold $M_1 \to 1$ -gauging on M_1 , leading to a condensation defect $\mathcal{C} = \sum_{n=0}^{N-1} \eta^n$.
- The full set of fusion rule (up to Euler counter terms) is

$$\mathcal{N} \times \mathcal{N} = \sum_{n=0}^{N-1} \eta^n, \qquad \eta \times \mathcal{N} = \mathcal{N} \times \eta = \mathcal{N}, \qquad \eta^N = 1$$

 $\ensuremath{\mathcal{N}}$ is non-invertible .

• The same discussion can be generalized to higher dimensions.

Constraints on RG

• When a QFT \mathcal{X} is KW self-dual, KW is a non-invertible global symmetry of \mathcal{X} . As ordinary symmetries, the non-invertible KW duality symmetry also has non-trivial impact on the RG flow.

If a (1+1)d \mathbb{Z}_N symmetric QFT \mathcal{X} is self dual under KW, $\mathcal{X} = \mathcal{X}/\mathbb{Z}_N$, then \mathcal{X} can not be gapped with a single ground state.

[Choi, Cordova, Hsin, Lam, Shao, 2111.01139]

KW from Symmetry TFT

[Kaidi,Ohmori,**YZ**,2209.11062]

Global Symmetry from Symmetry TFT

 For QFTs with finite symmetries, SymTFT nicely decouples the universal quantities (symmetries and 't Hooft anomalies) from the non-universal dynamics.

> [Gaiotto,Kulp,2008.05960],[Freed,PI 22'],[Freed,Moore,Teleman,2209.07471] [Apruzzi,Bonetti,García-Etxebarria,S.Hosseini,Schafer-Nameki,2112.02092]

SymTFT for Invertible Symmetry

• The SymTFT of a finite invertible symmetry G with a 't Hooft anomaly α is well-known: Dijkgraaf-Witten theory.

Symmetry TFT for \mathbb{Z}_N

- The KW is defined by gauging \mathbb{Z}_N . We will show that the properties of KW can be reproduced from the symmetry TFT of \mathbb{Z}_N .
- For a non-anomalous \mathbb{Z}_N , the SymTFT is a \mathbb{Z}_N DW without twist \mathbb{Z}_N gauge theory in (2 + 1)d. The action is

$$\frac{2\pi}{N}\int \widehat{a}\delta a$$

Topological Operators in \mathbb{Z}_N Gauge Theory

- \mathbb{Z}_N gauge theory has N^2 topological lines $L_{(e,m)}(\gamma)$, where $L_{(1,0)}$ and $L_{(0,1)}$ generate $\mathbb{Z}_N \times \mathbb{Z}_N$ 1-form symmetry.
- More interestingly, there is a Z₂^{EM} 0-form symmetry, a ↔ â, i.e. L_(e,m)(γ) ↔ L_(m,e)(γ). Z₂^{EM} comes with a surface defect D_{EM}.

• The $\mathbb{Z}_2^{\mathsf{EM}}$ defect is a condensation defect.

[Roumpedakis,Seifnashri,Shao,2204.02407]

\mathbb{Z}_2^{EM} Defect as Condensation defect

• Any power of $L_{(1,-1)}$ can be absorbed into the $\mathbb{Z}_2^{\mathsf{EM}}$ defect. $\Rightarrow D_{\mathsf{EM}}$ is a condensation defect of $L_{(1,-1)}$.

$$D_{\mathsf{EM}}(M_2) = \frac{1}{|H^0(M_2, \mathbb{Z}_N)|} \sum_{\gamma \in H_1(M_2, \mathbb{Z}_N)} L_{(1, -1)}(\gamma)$$

Indeed, it satisfies the desired properties:

$$L_{(e,m)}(\gamma)D_{\text{EM}}(M_2) = D_{\text{EM}}(M_2)L_{(m,e)}(\gamma), \qquad D_{\text{EM}}(M_2)^2 = \chi^{-1}$$

Dirichlet Boundary Conditions

• As a SymTFT for \mathbb{Z}_N , let us place the \mathbb{Z}_N gauge theory on a slab

$$Z_{\mathcal{X}}[A] \qquad \langle D(A)| \qquad |\mathcal{X}\rangle$$

- Dirichlet b.c.: $L_{(1,0)}$ parallel to the bdy becomes trivial; $L_{(1,0)}$ orthogonal to the bdy can end; $L_{(0,1)}$ parallel to the boundary is still non-trivial; $L_{(0,1)}$ orthogonal to the bdy can not end;
- Upon shrinking the slab, $L_{(0,1)}$ survives as the symmetry operator of \mathbb{Z}_N . $L_{(1,0)}$ survives as a non-topological order parameter for \mathbb{Z}_N .

$$L_{(0,1)} \to \eta, \qquad L_{(1,0)} \to \mathcal{O}$$

Neumann Boundary Conditions

• The Neuman b.c. can be obtained by composing the Dirichlet b.c. with $D_{\mbox{EM}}.$

4

$$L_{(1,0)} \to \widehat{\eta}, \qquad L_{(0,1)} \to \widehat{\mathcal{O}}$$

Twist Defects induces KW-like interfaces in (1+1)d

- Twist defect Σ: Z₂^{EM} exchanging defect on half-surface with Dirichlet boundary → higher KW interface.
- Colliding the twist defect with Dirichlet boundary condition yields boundary-changing line operator. Further shrinking the slab yields the KW duality defect.

Fusion rule of Twist defects

- Fusing two twist defects Σ_0 's is 2-gauging of $L_{(1,-1)}$ on a line. $\Sigma_0 \times \Sigma_0 = \sum_{n=0}^{N-1} L_{(n,-n)}$. \Rightarrow twist defect is non-invertible!
- Due to Dirichlet boundary condition of the condensate, $\Sigma_0 \times L_{(e+n,-n)} = \Sigma_e.$

Invertibility / Non-invertibility transmutation

The invertibility of a defect on an open and closed manifold can transmute.

	Closed M	Open M
Kramers-Wannier	non-invertible	invertible
\mathbb{Z}_2^{EM} (condensation) defect	invertible	non-invertible

Fusion rule of KW duality defects from Symmetry TFT

We already see

Twist defects $\Sigma_e \leftrightarrow$ Duality defects \mathcal{N} Magnetic line $L_{(0,1)} \leftrightarrow \mathbb{Z}_N^{(0)}$ symmetry defect η Electric line $L_{(1,0)} \leftrightarrow \mathbb{Z}_N^{(0)}$ order parameter \mathcal{O}

• Then the fusion rule of twist defects immediately implies the fusion rule of duality defects.

$$\begin{array}{ll} L^N_{(e,m)} = 1 & \eta^N = 1 \\ \Sigma_e \times L_{(0,1)} = \Sigma_{e+1} & \Rightarrow & \mathcal{N} \times \eta = \mathcal{N} \\ \Sigma_e \times \Sigma_{e'} = \sum_{n=0}^{N-1} L_{(n+e+e',-n)} & & \mathcal{N} \times \mathcal{N} = \sum_{n=0}^{N-1} \eta^n \end{array}$$

F-symbols for the duality defects

• As a bonus, the symmetry TFT also enables us to obtain the F-symbols of KW duality defects with less efforts. They can be inferred from the F-symbols of the twist defects in the \mathbb{Z}_N gauge theory!

Summary

• We revisited the non-invertible KW duality defects from three different perspectives

Lattice. [Li,Oshikawa,YZ, to appear] Field theoretical. [Choi,Cordova,Hsin,Lam,Shao,2111.01139] Symmetry TFT [Kaidi,Ohmori,YZ,2209.11062]

Although KW duality defect has been discovered for 80 years, there are still interesting aspects of it to explore.

• More to explore:

Other symmetries, including subsystem Higher dimensions Classification Dynamical application

Thank you for your attention!