Non-invertible Duality Defects: Lattice, Field Theory and Symmetry TFT

> Yunqin Zheng Kavli IPMU, ISSP @ U.Tokyo

Soochow University, HET seminar Nov 2nd, 2022

Justin Kaidi, Kantaro Ohmori, Y.Z. 2111.01141 Justin Kaidi, Kantaro Ohmori, Y.Z. 2209.11062 Linhao Li, Masaki Oshikawa, Y.Z. To appear

Global Symmetry

- Global symmetries are powerful in constraining RG flows. ('t Hooft anomaly matching, Selection rule of correlation functions, checking dualities, ...)
- It is well known (before 2014) 0-form global symmetry \longrightarrow codimension-1 topological defect
- But the converse arrow \leftarrow is appreciated only until recently (since 2014). This leads to "generalized global symmetry" generalized global symmetry ←→ topological defect

Generalized global symmetry

• The topological operators, hence the generalized global symmetries, can be organized according to codimension and invertibility.

● This talk will focus on the non-invertible symmetry.

Non-invertible symmetry is Unavoidable

- Start with an ordinary symmetry or higher form symmetry, one can get non-invertible symmetry upon various gauging.
- Gauging with a mixed anomaly \Rightarrow Duality defects;

```
[Kaidi,Ohmori,YZ,2111.01141]...
```
• Gauging on half space \Rightarrow Duality defects;

[Choi,Cordova,Hsin,Lam,Shao, 2111.01139]...

● Gauging a non-normal subgroup;

[Bhardwaj,Bottini,Schafer-Nameki,Tiwari,2204.06564]...

[Nguyen,Tanizaki,Unsal,2101.02227]...

• Gauging a multi-dimensional coupled system;

[Bhardwaj,Schafer-Nameki,Wu,2208.05973]...

● Higher gauging \Rightarrow Condensation defects;

[Roumpedakis,Seifnashri,Shao,2204.02407]...

• Higher gauging on half higher-codim space \Rightarrow Higher duality defects; [Kaidi,Ohmori,YZ,2209.11062]...

Non-invertible symmetry is Ubiquitous

- Various TQFTs.
- Free field theories: 2d compact boson, 4d Maxwell.
- G Yang-Mills theory with various G, N, d .
- QED₄. Infinite number of non-invertible symmetries.
- \bullet QCD₄.

 \bullet ...

- Axion models.
- Class-S theories
- Any QFT with a non-anomalous higher form symmetry.

This Talk

● I will instead come back to (probably) the very first non-invertible symmetry discovered in history:

Non-invertible Kramers-Wannier Duality Defect in $(1 + 1)d$

• Three ways to approach it:

Lattice. [Li, Oshikawa, YZ, to appear]

Field theory. [Choi,Cordova,Hsin,Lam,Shao,2111.01139]

Symmetry TFT. [Kaidi,Ohmori,YZ,2209.11062]

KW on Lattice

[Li, Oshikawa, YZ, to appear]

Kramers-Wannier on lattice

- The KW transformation was first found in the 2d statistical Ising model, relating high temperature and low temperature. [Kramers,Wannier, 1941]
- Another version of KW found in $(1 + 1)d$ quantum Ising model, relating large transverse field to small transverse field.

$$
H = -\sum_{i} (\sigma_i^z \sigma_{i+1}^z + h \sigma_i^x)
$$

KW: $\sigma_i^x \rightarrow \sigma_i^z \sigma_{i+1}^z$, $\sigma_i^z \rightarrow ... \sigma_{i-2}^x \sigma_{i-1}^x \sigma_i^x$ Then $\sigma_i^x \rightarrow \sigma_i^z \sigma_{i+1}^z$, $\sigma_{i-1}^z \sigma_i^z \rightarrow \sigma_i^x$, two terms are exchanged. Effectively: $h \rightarrow 1/h$.

• We will focus on the quantum Ising model below.

KW on lattice: Puzzles

 $\sigma_i^x \rightarrow \sigma_i^z \sigma_{i+1}^z, \qquad \sigma_i^z \rightarrow ... \sigma_{i-2}^x \sigma_{i-1}^x \sigma_i^x$

- **■** On an infinite chain, fine. How about on a circle? This was discussed in the appendix of [Hsieh,Nakayama,Tachikawa,2002.12283], but we were confused by some formula there...
- \bullet It is now often said that the operator $\mathcal N$ implementing the KW transformation is non-invertible, with fusion rule

 $N \times N = 1 + U$, $N \times U = U \times N = N$, $U \times U = 1$

How to see it on the lattice? It was discussed in [Aasen,Mong,Fendley,1601.07185], but they work on an infinite line (rather than a circle)...

- \bullet It is also often said that KW is equivalent to gauging \mathbb{Z}_2 . How to see the mapping between symmetry-twist sectors explicitly?
- How about KW on open chains? Still non-invertible?

Set-up:

- Spin- $\frac{1}{2}$ on each site *i*, *i* = 1, ..., *L*.
- $S_{i+1} = S_i + t$
- Basis product state $|\{s_i\}\rangle$.

Instead of defining the KW by mapping between Pauli operators, we define the KW by an operation on the state:

$$
\mathcal{N}\left|\left\{s_{i}\right\}\right\rangle=\frac{1}{2^{L/2}}\sum_{\left\{\widehat{s}_{i-\frac{1}{2}}\right\}}\left(-1\right)^{\sum_{j=1}^{L}\left(s_{j-1}+s_{j}\right)\widehat{s}_{j-\frac{1}{2}}+\widehat{ts}_{L}}\left|\left\{\widehat{s}_{i-\frac{1}{2}}\right\}\right\rangle.
$$

This KW resolves all of the above puzzles!

$$
\mathcal{N}\left|\left\{s_i\right\}\right\rangle = \frac{1}{2^{L/2}}\sum_{\left\{\widehat{s}_{i-\frac{1}{2}}\right\}} (-1)^{\sum_{j=1}^{L} (s_{j-1}+s_j)\widehat{s}_{j-\frac{1}{2}}+\widehat{t}s_L}\left|\left\{\widehat{s}_{i-\frac{1}{2}}\right\}\right\rangle.
$$

• On an infinite chain, it reproduces the standard KW transformation,

$$
\widehat{\sigma}^{x}_{i-\frac{1}{2}}\mathcal{N}=\mathcal{N}\sigma^{z}_{i-1}\sigma^{z}_{i}, \qquad \widehat{\sigma}^{z}_{i-\frac{1}{2}}\mathcal{N}=\mathcal{N}(\cdots \sigma^{x}_{j-2}\sigma^{x}_{j-1})
$$

• On a finite circle, it is consistent with gauging \mathbb{Z}_2 symmetry. Let us review what do we mean by gauging \mathbb{Z}_2 symmetry.

KW as gauging \mathbb{Z}_2

• Gauging \mathbb{Z}_2

- $=$ summing over \mathbb{Z}_2 connections
- $=$ summing over \mathbb{Z}_2 defects.

$$
Z_{\mathcal{X}/\mathbb{Z}_2}[A] = \frac{1}{2} \sum_{a \in H^1(T^2, \mathbb{Z}_2)} Z_{\mathcal{X}}[a](-1)^{\int a \cup A}
$$

KW as gauging \mathbb{Z}_2

Use (u, t) to label the symmetry-twist sectors:

- $u = 0, 1$: \mathbb{Z}_2 even/odd symmetry sectors,
- $t = 0, 1$: \mathbb{Z}_2 untwisted/twisted sectors,

$$
\mathcal{N}\left|\left\{s_{i}\right\}\right\rangle=\frac{1}{2^{L/2}}\sum_{\left\{\widehat{s}_{i-\frac{1}{2}}\right\}}(-1)^{\sum_{j=1}^{L}\left(s_{j-1}+s_{j}\right)\widehat{s}_{j-\frac{1}{2}}+\widehat{t}s_{L}}\left|\left\{\widehat{s}_{i-\frac{1}{2}}\right\}\right\rangle.
$$

• Indeed, this transformation exactly reproduces the mapping between symmetry and twist sectors,

$$
\widehat{u}=t,\qquad \widehat{t}=u
$$

• This formula is almost the same as in [Aasen, Mong, Fendley, 1601.07185], except for the last term in the exponent, $\widehat{t} s_L$. This term is needed to match how the symmetry and twist sectors transform $(\widehat{u}, \widehat{t}) = (t, u)$.

$$
\mathcal{N}\left|\left\{s_i\right\}\right\rangle=\frac{1}{2^{L/2}}\sum_{\left\{\widehat{s}_{i-\frac{1}{2}}\right\}}(-1)^{\sum_{j=1}^{L}(s_{j-1}+s_j)\widehat{s}_{j-\frac{1}{2}}+\widehat{t}s_L}\left|\left\{\widehat{s}_{i-\frac{1}{2}}\right\}\right\rangle.
$$

• Non-invertiblity of $\mathcal N$ is now transparent: $\mathcal N^\dagger \mathcal N$ is not an identity operator.

$$
\langle \{s_i\} | \mathcal{N}^{\dagger} \mathcal{N} | \{s'_i\} \rangle = \prod_{i=1}^L \delta_{s_i, s'_i} + (-1)^{\widehat{t}} \prod_{i=1}^L \delta_{s_i, s'_i + 1}
$$

- Symmetry and twist sectors are straightforward to check, $(\widehat{u}, \widehat{t}) = (t, u)$.
- Fusion rule is also straightforward to find, but now interestingly depends on the twist parameter:

$$
\mathcal{N} \times \mathcal{N} = 1 + (-1)^{\widehat{t}} U, \qquad \mathcal{N} \times U = (-1)^{\widehat{t}} \mathcal{N}
$$

N is non-invertible. The standard fusion rule $N \times N = 1 + U$ etc assumes PBC along the chain, i.e. no twist-defect U terminating on N . This point was recently emphasized in [Choi,Cordova,Hsin,Lam,Shao,2204.09025].

$$
\mathcal{N}\left|\left\{s_i\right\}\right\rangle = \frac{1}{2^{L/2}}\sum_{\left\{\overline{s}_{i-\frac{1}{2}}\right\}}(-1)^{\sum_{j=1}^{L}\left(s_{j-1}+s_j\right)\overline{s}_{j-\frac{1}{2}}+\overline{t}s_L}\left|\left\{\widehat{s}_{i-\frac{1}{2}}\right\}\right\rangle.
$$

● Everything discussed so far is independent of the Hamiltonian. One can easily construct KW self-dual Hamiltonians by demanding $[H, \mathcal{N}] = 0$. For example, the Ising model at $h = 1$ is self-dual on a circle:

$$
H = -\sum_{i=1}^{L} (\sigma_{i-1}^z \sigma_i^z + h \sigma_i^x)
$$

Then KW becomes a non-invertible symmetry. By modular S transformation, N becomes a non-invertible duality defect.

KW on an interval

Define KW on an open chain with free open boundary condition:

$$
\mathcal{N}\left|\left\{s_i\right\}\right\rangle = \frac{1}{2^{L/2}}\sum_{\left\{\widehat{s}_{i-\frac{1}{2}}\right\}}\left(-1\right)^{\sum_{j=2}^{L} s_{j-1}\widehat{s}_{j-\frac{1}{2}} + \sum_{j=1}^{L} s_j\widehat{s}_{j-\frac{1}{2}}}\left|\left\{\widehat{s}_{i-\frac{1}{2}}\right\}\right\rangle.
$$

• Surprisingly, KW is now invertible and unitary!!! Check the overlap,

$$
\left\langle \left\{s_i\right\} \right|\mathcal{N}^\dagger \mathcal{N} \left|\left\{s_i^\prime\right\}\right\rangle = \prod_{i=1}^L \delta_{s_i, s_i^\prime}
$$

The non-invertible KW transformation on a closed chain becomes invertible on an open chain!!!

Bonus: This simple fact also clarifies a small puzzle in history.

Early history on SPT

Back in 1983, Duncan Haldane (Nobel laureate in 2016) conjectured that the spin-S Heisenberg AFM is gapless for half-integer S and gapped for integer S. He showed this in large S limit, but the conjecture is for any finite S.

Early history on SPT

Four years later in 1987, Affleck, Lieb, Kennedy and Tasaki found an analytically tractable model for $S = 1$, and gapped exists! At that time, AKLT model was exotic, beyond Landau paradigm. Now, it is known as the first example of SPT.

> Rigorous results on valence-bond ground states in antiferromagnets

Jan Affleck, Tom Kennedy, Elliott H. Lieb, and Hal Tasaki Phys. Rev. Lett. 59, 799 - Published 17 August 1987

Kennedy-Tasaki transformation

Four years later in 1991, Kennedy and Tasaki wrote another influential paper, showed that the AKLT model is not that exotic: one can still understand it within Landau paradigm, i.e. via Hidden symmetry breaking. SSB phase and SPT phase on an open chain are related by a non-local unitary ${\sf transformation},$ and local order parameter $\stackrel{KT}{\longrightarrow}$ string order parameter.

Hidden Z₂×Z₂ symmetry breaking in Haldane-gap antiferromagnets

Tom Kennedy and Hal Tasaki Phys. Rev. B 45, 304 - Published 1 January 1992

Kennedy-Tasaki transformation

In the same year, Masaki Oshikawa, in his first paper in graduate school, generalized the KT transformation to arbitrary integer spin, and found a much nicer and compact formula of the non-local unitary transformation

$$
U_{\mathsf{KT}} = \prod_{i>j} \exp\left(i\pi S_i^z S_j^x\right).
$$

Hidden Z2* Z2 symmetry in quantum spin chains with arbitrary integer spin

- 著者 Masaki Oshikawa
- 公開日 1992/9/7
- 論文誌 Journal of Physics: Condensed Matter
	- 类 Δ
	- 36
- ~ -22 7469
- 出版社 IOP Publishing
- 説明 The author studies integer S> 1 spin chains. He extends the Kennedy-Tasaki nonlocal unitary transformation for S= 1 to arbitrary integer S. He shows the main results of Kennedy and Tasaki (1992) are maintained for S> 1: Heisenberg-type Hamiltonians are transformed to Hamiltonians of nearest-neighbour interactions with Z 2* Z 2 symmetry, and the den Nijs-Rommelse string observables are transformed to the ferromagnetic correlation observables. He asserts that in general values of integer S there exist several phases with the hidden Z 2* Z 2 symmetry breaking. The den Niis-Rommelse string order parameters, which measure the hidden Z 2* Z 2 symmetry breaking, are calculated explicitly for several variants of the VBS-type states. In the standard VBS state, the hidden Z 2* Z 2 symmetry breaks down when S is odd but remains unbroken when S is even. His results for partially dimerized VBS states suggest that ...

Kennedy-Tasaki transformation: Puzzle

$$
U_{\mathsf{KT}} = \prod_{i>j} \exp\left(i\pi S_i^z S_j^x\right).
$$

However, there is a puzzle...

The non-local unitary transformation has been only defined on an open chain. How to define it on a circle? We haven't found a literature addressing this question...

Non-invertible KT transformation

In an upcoming work with Linhao Li and Masaki Oshikawa, we showed that non-local unitary KT transformation can be lifted on a circle if we sacrifice unitarity!

It turns out that the non-unitary transformation is basically $TST = STS$, whose operator/defect obeys non-invertible fusion rule.

KW from Field theory: Half-space gauging

[Choi,Cordova,Hsin,Lam,Shao,2111.01139]

[Kaidi,Ohmori,YZ,2209.11062]

KW Defect from field theory

- For an arbitrary $(1 + 1)$ d bosonic QFT X with an non-anomalous \mathbb{Z}_N symmetry, one can gauge \mathbb{Z}_N to generate a new theory $S\mathcal{X} = \mathcal{X}/\mathbb{Z}_N$ by a KW transformation. X is KW self-dual if $X = \sigma X$, which we assume below.
- Gauging \mathbb{Z}_N on half-of the spacetime with Dir.b.c. defines a duality defect.

Fusion rule of Duality defects

• To find the fusion of two duality defects, we place them parallel to each other:

• Gauging \mathbb{Z}_N in a slab.

N N Z^X [A] Z^S^X [A] Z^X [A] x = 0 x = x

- Shrinking the slab by taking $\epsilon \to 0$, it simply means $\mathcal{N} \times \mathcal{N}$ is gauging \mathbb{Z}_N on a co-dimension 1 submanifold $M_1 \rightarrow 1$ -gauging on M_1 , leading to a condensation defect $C = \sum_{n=0}^{N-1} \eta^n$.
- The full set of fusion rule (up to Euler counter terms) is

$$
\mathcal{N} \times \mathcal{N} = \sum_{n=0}^{N-1} \eta^n, \qquad \eta \times \mathcal{N} = \mathcal{N} \times \eta = \mathcal{N}, \qquad \eta^N = 1
$$

 $\mathcal N$ is non-invertible.

• The same discussion can be generalized to higher dimensions.

Constraints on RG

• When a QFT $\mathcal X$ is KW self-dual, KW is a non-invertible global symmetry of X . As ordinary symmetries, the non-invertible KW duality symmetry also has non-trivial impact on the RG flow.

If a $(1+1)d\mathbb{Z}_N$ symmetric QFT X is self dual under KW, $\mathcal{X} = \mathcal{X}/\mathbb{Z}_N$, then X can not be gapped with a single ground state.

[Choi,Cordova,Hsin,Lam,Shao,2111.01139]

KW from Symmetry TFT

[Kaidi,Ohmori,YZ,2209.11062]

Global Symmetry from Symmetry TFT

For QFTs with finite symmetries, SymTFT nicely decouples the universal quantities (symmetries and 't Hooft anomalies) from the non-universal dynamics.

> [Gaiotto,Kulp,2008.05960],[Freed,PI 22'],[Freed,Moore,Teleman,2209.07471] [Apruzzi,Bonetti,García-Etxebarria,S.Hosseini,Schafer-Nameki,2112.02092]

SymTFT for Invertible Symmetry

• The SymTFT of a finite invertible symmetry G with a 't Hooft anomaly α is well-known: Dijkgraaf-Witten theory.

Symmetry TFT for \mathbb{Z}_N

- The KW is defined by gauging \mathbb{Z}_N . We will show that the properties of KW can be reproduced from the symmetry TFT of \mathbb{Z}_N .
- For a non-anomalous \mathbb{Z}_N , the SymTFT is a \mathbb{Z}_N DW without twist $-\mathbb{Z}_N$ gauge theory in $(2 + 1)d$. The action is

$$
\frac{2\pi}{N}\int \widehat{a}\delta a
$$

Topological Operators in \mathbb{Z}_N Gauge Theory

- \bullet \mathbb{Z}_N gauge theory has \mathcal{N}^2 topological lines $L_{(e,m)}(\gamma)$, where $L_{(1,0)}$ and $L_{(0,1)}$ generate $\mathbb{Z}_N \times \mathbb{Z}_N$ 1-form symmetry.
- More interestingly, there is a $\mathbb{Z}_2^{\textsf{EM}}$ 0-form symmetry, $a \leftrightarrow \widehat{a}$, i.e. where interestingly, there is a \mathbb{Z}_2 obtain symmetry, a \rightarrow a, i.e.
 $L_{(e,m)}(\gamma) \leftrightarrow L_{(m,e)}(\gamma)$. \mathbb{Z}_2^{EM} comes with a surface defect D_{EM} .

• The $\mathbb{Z}_2^{\textsf{EM}}$ defect is a condensation defect.

[Roumpedakis,Seifnashri,Shao,2204.02407]

\mathbb{Z}_2^{EM} Defect as Condensation defect

● Any power of $L_{(1,-1)}$ can be absorbed into the $\mathbb{Z}_2^{\textsf{EM}}$ defect. \Rightarrow $D_{\textsf{EM}}$ is a $\,$ condensation defect of $L_{(1,-1)}.$

$$
D_{\text{EM}}(M_2) = \frac{1}{|H^0(M_2, \mathbb{Z}_N)|} \sum_{\gamma \in H_1(M_2, \mathbb{Z}_N)} L_{(1,-1)}(\gamma)
$$

• Indeed, it satisfies the desired properties:

$$
L_{(e,m)}(\gamma)D_{EM}(M_2) = D_{EM}(M_2) L_{(m,e)}(\gamma), \qquad D_{EM}(M_2)^2 = \chi^{-1}
$$

Dirichlet Boundary Conditions

• As a SymTFT for \mathbb{Z}_N , let us place the \mathbb{Z}_N gauge theory on a slab

$$
\begin{array}{c|c|c}\n & \leftarrow & \leftarrow & \frac{2\pi}{N} \widehat{a} \delta a \\
Z_{X}[A] & \left\langle D(A) \right| & | \mathcal{X} \right\rangle\n\end{array}
$$

- Dirichlet b.c.: $L_{(1,0)}$ parallel to the bdy becomes trivial; $L_{(1,0)}$ orthogonal to the bdy can end; $L_{(0,1)}$ parallel to the boundary is still non-trivial; $L_{(0,1)}$ orthogonal to the bdy can not end;
- Upon shrinking the slab, $L_{(0,1)}$ survives as the symmetry operator of \mathbb{Z}_N . $L_{(1,0)}$ survives as a non-topological order parameter for \mathbb{Z}_N .

$$
L_{(0,1)} \to \eta, \qquad L_{(1,0)} \to \mathcal{O}
$$

Neumann Boundary Conditions

• The Neuman b.c. can be obtained by composing the Dirichlet b.c. with D_{FM} .

$$
Z_{\mathcal{X}}[A] \qquad \qquad \langle D(A)| \qquad \qquad |X\rangle
$$
\n
$$
Z_{\mathcal{X}}[A] \qquad \qquad \langle D(A)| \qquad \qquad |X\rangle
$$
\n
$$
Z_{\mathcal{X}/\mathbb{Z}_{N}}[A] \qquad \qquad \langle D(A)| \qquad D_{EM} \qquad \qquad |X\rangle \qquad \langle N(A)| \qquad \qquad |X\rangle
$$

• Changing the b.c. from Dirichlet to Neuman exchanges the role of $\mathcal{L}_{(0,1)} \leftrightarrow \mathcal{L}_{(1,0)}$. Upon shrinking, $\mathcal{L}_{(1,0)}$ survives as a symmetry operator of the quantum $\widehat{\mathbb{Z}}_N$ symmetry, and $L_{(0,1)}$ survives as a non-topological order parameter.

$$
L_{(1,0)} \to \widehat{\eta}, \qquad L_{(0,1)} \to \widehat{\mathcal{O}}
$$

Twist Defects induces KW-like interfaces in $(1+1)d$

- \bullet Twist defect Σ: $\mathbb{Z}_2^{\textsf{EM}}$ exchanging defect on half-surface with Dirichlet boundary \rightarrow higher KW interface.
- Colliding the twist defect with Dirichlet boundary condition yields boundary-changing line operator. Further shrinking the slab yields the KW duality defect.

Fusion rule of Twist defects

- Fusing two twist defects Σ_0 's is 2-gauging of $L_{(1,-1)}$ on a line. $\Sigma_0 \times \Sigma_0 = \sum_{n=0}^{N-1} L_{(n,-n)}$. \Rightarrow twist defect is non-invertible!
- Due to Dirichlet boundary condition of the condensate, $\Sigma_0 \times L_{(e+n,-n)} = \Sigma_e$.

Invertibility / Non-invertibility transmutation

The invertibility of a defect on an open and closed manifold can transmute.

Fusion rule of KW duality defects from Symmetry TFT

• We already see

Twist defects $\Sigma_e \leftrightarrow$ Duality defects N Magnetic line $L_{(0,1)} \longleftrightarrow \mathbb{Z}_N^{(0)}$ $N^{(0)}$ symmetry defect η Electric line $L_{(1,0)} \longleftrightarrow \mathbb{Z}_{N}^{(0)}$ $\bigvee^{\setminus\cup}$ order parameter $\mathcal O$

• Then the fusion rule of twist defects immediately implies the fusion rule of duality defects.

$$
L_{(e,m)}^N = 1 \n\sum_{e} \times L_{(0,1)} = \sum_{e+1} \implies \qquad \mathcal{N} \times \eta = \mathcal{N}
$$
\n
$$
\sum_{e} \times \sum_{e'} = \sum_{n=0}^{N-1} L_{(n+e+e',-n)} \qquad \qquad \mathcal{N} \times \mathcal{N} = \sum_{n=0}^{N-1} \eta^n
$$

F-symbols for the duality defects

• As a bonus, the symmetry TFT also enables us to obtain the F-symbols of KW duality defects with less efforts. They can be inferred from the F-symbols of the twist defects in the \mathbb{Z}_N gauge theory!

Summary

• We revisited the non-invertible KW duality defects from three different perspectives

Lattice. [Li, Oshikawa, YZ, to appear] Field theoretical. [Choi,Cordova,Hsin,Lam,Shao,2111.01139] Symmetry TFT [Kaidi,Ohmori,YZ,2209.11062]

Although KW duality defect has been discovered for 80 years, there are still interesting aspects of it to explore.

• More to explore:

...

Other symmetries, including subsystem Higher dimensions Classification Dynamical application

Thank you for your attention!