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Global Symmetry

® Global symmetries are powerful in constraining RG flows. ('t Hooft
anomaly matching, Selection rule of correlation functions, checking
dualities, ... )

® It is well known (before 2014)

0-form global symmetry — codimension-1 topological defect

® But the converse arrow <— is appreciated only until recently (since
2014). This leads to " generalized global symmetry”

generalized global symmetry «— topological defect
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Generalized global symmetry

® The topological operators, hence the generalized global symmetries, can
be organized according to codimension and invertibility.

defect codim =1 defect codim > 1

Invertible Ordinary Sym | Higher form/group Sym

Non-invertible Non-invertible Sym

® This talk will focus on the non-invertible symmetry.
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Non-invertible symmetry is Unavoidable

Start with an ordinary symmetry or higher form symmetry, one can get
non-invertible symmetry upon various gauging.

Gauging with a mixed anomaly = Duality defects;

[Kaidi,Ohmori,YZ,2111.01141]...

Gauging on half space = Duality defects;

[Choi,Cordova,Hsin,Lam,Shao, 2111.01139]...

Gauging a non-normal subgroup;

[Bhardwaj,Bottini,Schafer-Nameki, Tiwari,2204.06564]...
[Nguyen, Tanizaki,Unsal,2101.02227]...

Gauging a multi-dimensional coupled system;

[Bhardwaj,Schafer-Nameki,Wu,2208.05973]...

Higher gauging = Condensation defects;

[Roumpedakis,Seifnashri,Shao,2204.02407]...

Higher gauging on half higher-codim space = Higher duality defects;

[Kaidi,Ohmori,YZ,2209.11062]...
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Non-invertible symmetry is Ubiquitous

Various TQFTs.

Free field theories: 2d compact boson, 4d Maxwell.
G Yang-Mills theory with various G, N, d.

QED,. Infinite number of non-invertible symmetries.
QCDy.

Axion models.

Class-S theories

Any QFT with a non-anomalous higher form symmetry.
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This Talk

® | will instead come back to (probably) the very first non-invertible
symmetry discovered in history:

Non-invertible Kramers-Wannier Duality Defect in (1 + 1)d

® Three ways to approach it:
Lattice. [Li,Oshikawa,YZ,to appear]
Field theory. [Choi,Cordova,Hsin,Lam,Shao,2111.01139]
Symmetry TFT. [Kaidi,Ohmori,YZ,2209.11062]
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KW on Lattice

[Li,Oshikawa,YZ, to appear]



Kramers-Wannier on lattice

The KW transformation was first found in the 2d statistical Ising model,
relating high temperature and low temperature. [Kramers,Wannier, 1941]

Another version of KW found in (1 +1)d quantum Ising model, relating
large transverse field to small transverse field.

H==3 (07071 + ho)

. X z . Z z X X X
KW: 0¥ — of07,1, 07 = .07 5,07 107

X z - Z z z X
Then o - 0f07,, 07,07 — oF, two terms are exchanged.

Effectively: h - 1/h.

We will focus on the quantum Ising model below.
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KW on lattice: Puzzles

X z __Z z X X X
Oj > 0;0ii1, Oj = ...0i_20;_10;

® On an infinite chain, fine. How about on a circle? This was discussed in
the appendix of [Hsieh,Nakayama, Tachikawa,2002.12283], but we were
confused by some formula there...

@® It is now often said that the operator N implementing the KW
transformation is non-invertible, with fusion rule

NxN=1+U, NxU=UxN=N, UxU=1

How to see it on the lattice? It was discussed in
[Aasen,Mong,Fendley,1601.07185], but they work on an infinite line (rather
than a circle)...

® It is also often said that KW is equivalent to gauging Z,. How to see
the mapping between symmetry-twist sectors explicitly?

@ How about KW on open chains? Still non-invertible?
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KW on a circle

Set-up:
° Spin—% on eachsite i, i=1,.... L.
® SiL=si+t

® Basis product state |{s;}).

Instead of defining the KW by mapping between Pauli operators, we define
the KW by an operation on the state:

Si 1}

N{s}) m > (IR J

This KW resolves all of the above puzzles!
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KW on a circle

1 L (sj-1+5))5_1 +T¢
Nltsh =5 3 (D54 ().
Gyl

® On an infinite chain, it reproduces the standard KW transformation,

G %N:Nafflo,-z, TN = N(...07507 1)

i— i-5

® On a finite circle, it is consistent with gauging Z, symmetry. Let us
review what do we mean by gauging Z, symmetry.
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KW as gauging Z,

* Gauging Z;
= summing over Z, connections
= summing over Z; defects.

1
Zy[Al== > Zx[a)(-1)/ ™A
acH(T2,2,)

N
+
+
+

Il
N|—=
—
+
|
|
S—
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KW as gauging Z,

Use (u, t) to label the symmetry-twist sectors:
® 1y =0,1: Z, even/odd symmetry sectors,

® t=0,1: Z, untwisted /twisted sectors,

(0,0): + (0,1): +
(170): - (131): -
X t=0 t=1 X7y, | t=0 t=1
u=0 S U u=0 S T
u=1 T Vv u=1 U 174
U=t, t=u J
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KW on a circle

i 1(sj 1 sj)s s,
W) =505 & ((DFREIT7B e ).
{%_%}

® Indeed, this transformation exactly reproduces the mapping between
symmetry and twist sectors,

® This formula is almost the same as in [Aasen,Mong,Fendley,1601.07185],
except for the last term in the exponent, ts;. This term is needed to
match how the symmetry and twist sectors transform (@, %) = (t, u).
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KW on a circle

1 Tioa(si1+8)5 1 +Fs0 |
N|{S,}) 2L/2 Z (_1) 1(5-1+5)%;_3 5L|{s._%}>-

{S,'_l }
2

 Non-invertiblity of A/ is now transparent: NTA is not an identity
operator.

L L
({SIHNTNHSII}) = H‘Ss;,s{ + (_1)t H‘Ss;,sHl
i=1 i=1

® Symmetry and twist sectors are straightforward to check, (T, %) = (t,u).

® Fusion rule is also straightforward to find, but now interestingly depends
on the twist parameter:

N xN =1+ (-1)tU, N xU=(-1)IN

N is non-invertible. The standard fusion rule N'x A/ = 1+ U etc assumes
PBC along the chain, i.e. no twist-defect U terminating on N. This
point was recently emphasized in [Choi,Cordova,Hsin,Lam,Shao,2204.09025].
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KW on a circle

1 ZJ-L=1(SJ'_ S;)S_1+E5 |
Nlsihh =5 22 (B TR (5.

{5

i—%}

Everything discussed so far is independent of the Hamiltonian. One can
easily construct KW self-dual Hamiltonians by demanding [H,N] = 0.
For example, the Ising model at h =1 is self-dual on a circle:

L
H=- Z(a,-z_lo',-z + ho?)
i1

Then KW becomes a non-invertible symmetry. By modular S
transformation, A becomes a non-invertible duality defect.
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KW on an interval

Define KW on an open chain with free open boundary condition:

1 Y515 1+ 55 1 (o
Nlitsih) = 50 >, (F)FEIATEREA (G ).
Gt
2

® Surprisingly, KW is now invertible and unitary!!! Check the overlap,

({s NN [{s]}) = l?

The non-invertible KW transformation on a closed chain becomes invertible
on an open chain!!!

Bonus: This simple fact also clarifies a small puzzle in history.
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Early history on SPT

Back in 1983, Duncan Haldane (Nobel laureate in 2016) conjectured that the
spin-S Heisenberg AFM is gapless for half-integer S and gapped for integer
S. He showed this in large S limit, but the conjecture is for any finite S.

Nonlinear Field Theory of Large-Spin Heisenberg
Antiferromagnets: Semiclassically Quantized Solitons of the One-
Dimensional Easy-Axis Néel State

F. D. M. Haldane
Phys. Rev. Lett. 50, 1153 — Published 11 April 1983

.
PhySICS see Focus story: Nobel Prize—Topological Phases of Matte

The continuum field theory describing the low-energy dynamics of the large-spin one-dimensional
Heisenberg antiferromagnet is found to be the O(3) nonlinear sigma model. When weak easy-axis
anisotropy is present, soliton solutions of the equations of motion are obtained and semiclassically
quantized. Integer and half-integer spin systems are distinguished.

Received 31 January 1983
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Early history on SPT

Four years later in 1987, Affleck, Lieb, Kennedy and Tasaki found an
analytically tractable model for S =1, and gapped exists! At that time,
AKLT model was exotic, beyond Landau paradigm. Now, it is known as the
first example of SPT.

Rigorous results on valence-bond ground states in
antiferromagnets

lan Affleck, Tom Kennedy, Elliott H. Lieb, and Hal Tasaki
Phys. Rev. Lett. 59, 799 — Published 17 August 1987

Aride  efernces it Aricles (1620) [l

We present rigorous results on a phase in antiferromagnets in one dimension and more, which we call
avalence-bond solid. The ground state is simply constructed out of valence bonds, is nondegenerate,
and breaks no symmetries. There is an energy gap and an exponentially decaying correlation function.

Physical applications are mentioned.

Received 26 May 1987
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Kennedy-Tasaki transformation

Four years later in 1991, Kennedy and Tasaki wrote another influential paper,
showed that the AKLT model is not that exotic: one can still understand it
within Landau paradigm, i.e. via symmetry breaking. SSB phase and
SPT phase on an open chain are related by a non-local unitary

) KT .
transformation, and local order parameter — string order parameter.

Hidden ZyxZ, symmetry breaking in Haldane-gap antiferromagnets

Tom Kennedy and Hal Tasaki
Phys. Rev. B 45, 304 — Published 1 January 1992

Article References Giting Articles (316) ﬂ

We show that the Haldane phase of the S=1 antiferromagnetic chain is closely related to the breaking
of a hidden ZyxZ, symmetry. When the chain is in the Haldane phase, this Z;xZ, symmetry is fully
broken, but when the chain s in a massive phase other than the Haldane phase, e.g.. the Ising phase
or the dimerized phase, this symmetry is broken only partially or not at all. The hidden ZyxZy
symmetry is revealed by introducing a nonlocal unitary transformation of the chain. This unitary

transformation also leads to a simple variational calculation which the phase

diagram of the S=1 chain.

Received 29 July 1991
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Kennedy-Tasaki transformation
In the same year, Masaki Oshikawa, in his first paper in graduate school,
generalized the KT transformation to arbitrary integer spin, and found a
much nicer and compact formula of the non-local unitary transformation

UKT = Hexp (I7T5,ZSJX) .

i>j

Hidden Z2* Z2 symmetry in quantum spin chains with arbitrary integer spin

=&
AR

E Bl

Masaki Oshikawa

1992/9/7

Journal of Physics: Condensed Matter
4

36

7469

IOP Publishing

The author studies integer S> 1 spin chains. He extends the Kennedy-Tasaki nonlocal
unitary transformation for S= 1 to arbitrary integer S. He shows the main results of

Kennedy and Tasaki (1992) are maintail for $> 1: Hei type F are
tot iltoni: of t-nei i with Z 2* Z 2 syl Y.
and the den Nij: string are to the i

correlation observables. He asserts that in general values of integer S there exist several
phases with the hidden Z 2* Z 2 symmetry breaking. The den Nijs-Rommelse string
order parameters, which measure the hidden Z 2* Z 2 symmetry breaking, are calculated
explicitly for several variants of the VBS-type states. In the standard VBS state, the
hidden Z 2* Z 2 symmetry breaks down when S is odd but remains unbroken when S is
even. His results for partially dimerized VBS states suggest that ...

51/t 220
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Kennedy-Tasaki transformation: Puzzle

Ukt = [T exp (imS7Sf).

i>j
However, there is a puzzle...

The non-local unitary transformation has been only defined on an open
chain. How to define it on a circle? We haven't found a literature addressing

this question...
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Non-invertible KT transformation

circle interval

non-invertible

Kramers-Wannier non-unitary invertible, unitary
S
non-invertible
Kennedy-Tasaki non-unitary invertible, unitary
STS=TST

In an upcoming work with Linhao Li and Masaki Oshikawa, we showed that
non-local unitary KT transformation can be lifted on a circle if we sacrifice
unitarity!

It turns out that the non-unitary transformation is basically TST = STS,
whose operator/defect obeys non-invertible fusion rule.
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KW from Field theory:
Half-space gauging

[Choi,Cordova,Hsin,Lam,Shao,2111.01139]

[Kaidi,Ohmori,YZ,2209.11062]
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KW Defect from field theory

® For an arbitrary (1 +1)d bosonic QFT X with an non-anomalous Zy
symmetry, one can gauge Zy to generate a new theory SX := X' /Zy by
a KW transformation. X is KW self-dual if X = X, which we assume
below.

® Gauging Zy on half-of the spacetime with Dir.b.c. defines a duality
defect.

N

Zx[A] Zsx[A]

x=0
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Fusion rule of Duality defects

® To find the fusion of two duality defects, we place them parallel to each
other:

N N
Zx[A] v Zsx[Al 1 Zsex[A]
i i x
x=0 X=¢€
® Gauging Zy in a slab.
N N
Zx[A]l 1 Zsx[A] 1 Zx[A]
i i x
x=0 X=¢€
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Fusion rule of Duality defects
N N

Zx[A] Zyx[A] X[X3€, Zn] T Zx [A]

x=0 X =€

e Shrinking the slab by taking € = 0, it simply means A/ x N is gauging

Zpy on a co-dimension 1 submanifold M; — 1-gauging on My, leading to

a condensation defect C = XN .

® The full set of fusion rule (up to Euler counter terms) is
N-1
NxN=3 7", nxN=Nxn=N, n"=1
n=0
N is non-invertible .

® The same discussion can be generalized to higher dimensions.
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Constraints on RG

® When a QFT X is KW self-dual, KW is a non-invertible global
symmetry of X'. As ordinary symmetries, the non-invertible KW duality
symmetry also has non-trivial impact on the RG flow.

If a (14+1)d Zy symmetric QFT X is self dual under KW, X = X /Zy, then X
can not be gapped with a single ground state.
[Choi,Cordova,Hsin,Lam,Shao,2111.01139]
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KW from Symmetry TFT

[Kaidi,Ohmori,YZ,2209.11062]
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Global Symmetry from Symmetry TFT

For QFTs with finite symmetries, SymTFT nicely decouples the universal
quantities (symmetries and 't Hooft anomalies) from the non-universal
dynamics.
[Gaiotto,Kulp,2008.05960], [Freed,PI 22'],[Freed,Moore, Teleman,2209.07471]
[Apruzzi,Bonetti,Garcia-Etxebarria,S.Hosseini,Schafer-Nameki,2112.02092]

Anom[A] AN Anom[A] SymTFT
Zx[A] (Top.b.c.[A]| |X)
v —_—
universal dynamical
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SymTFT for Invertible Symmetry

® The SymTFT of a finite invertible symmetry G with a 't Hooft anomaly
a is well-known: Dijkgraaf-Witten theory.

SymTFT

Inv® (A) ans v (A) | 2

Z8[A] (D(A)| |X)
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Symmetry TFT for Zy

® The KW is defined by gauging Zy. We will show that the properties of
KW can be reproduced from the symmetry TFT of Zy.

® For a non-anomalous Zy, the SymTFT is a Zy DW without twist — Zy
gauge theory in (2+1)d. The action is

21
— [ @b
N ada
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Topological Operators in Zy Gauge Theory

* Zy gauge theory has N? topological lines L¢e,my(7), where L1 ¢y and
L(o,1) generate Zy x Zy 1-form symmetry.

® More interestingly, there is a ZEM 0-form symmetry, a <> 3, i.e.
Lie.my(7) > Lim,ey(7). ZEM comes with a surface defect Degw.

Le,m) Lim,e)

Dewm

* The ZEM defect is a condensation defect.
[Roumpedakis,Seifnashri,Shao,2204.02407]
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Z]QEM Defect as Condensation defect

®(e—-m)
L (em) L (em) Loy
— - — — —
L L T T 1|
(e;m) (m,e) L(nue) L(—nu—e)
Dem Dem Dewm Dem

® Any power of L(; _1y can be absorbed into the ZEM defect. = Dgp is a

condensation defect of L(; _1).

1
Dem(My) = ————— Lp_
em(M>) |H°(M2,ZN)| ’YGng/’:Z,ZN) (1, 1)(’7)

® Indeed, it satisfies the desired properties:

Lie.my(7) Dem(M2) = Dem(M2) L (m.e) (7). Dem(M2)? = x7*
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Dirichlet Boundary Conditions

® As a SymTFT for Zy, let us place the Zy gauge theory on a slab

‘ NN

Zx[A] (D(A) %)

e Dirichlet b.c.: L1,y parallel to the bdy becomes trivial; L; ¢y orthogonal
to the bdy can end; L 1) parallel to the boundary is still non-trivial;
L(o,1) orthogonal to the bdy can not end;

® Upon shrinking the slab, L(g 1) survives as the symmetry operator of Zy.
L(1,0) survives as a non-topological order parameter for Zy.

Lo,y =1, L= O
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Neumann Boundary Conditions

® The can be obtained by composing the Dirichlet b.c. with
[)Ehﬂ.

Zx[A] (D(A)] 29

AN | 2,\’,'|753

ZxznlAl (D(A)] Dem  [X)  (N(A)] %)

® Changing the b.c. from Dirichlet to exchanges the role of
L(o,1) <> L(1,0y- Upon shrinking, L(; oy survives as a symmetry operator
of the quantum Zn symmetry, and Lg 1) survives as a non-topological
order parameter.
Loy > 1, Loy~ O
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Twist Defects induces KW-like interfaces in

(14-1)d

* Twist defect ¥: ZEM exchanging defect on half-surface with Dirichlet
boundary — higher KW interface.

® Colliding the twist defect with Dirichlet boundary condition yields
boundary-changing line operator. Further shrinking the slab yields the
KW duality defect.

Zx[A]

2y
)

N NANANNS

Zxjzy[A] (DA Xo %)
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Fusion rule of Twist defects

5 N1y
0 ZO Zn—O (n,=n)

* Fusing two twist defects X¢'s is 2-gauging of L(; _;) on a line.

YoxXg= ZnNz_Ol L(n,—n). = twist defect is non-invertible!

® Due to Dirichlet boundary condition of the condensate,
2o x L(e+n,—n) =2
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Invertibility / Non-invertibility transmutation

The invertibility of a defect on an open and closed manifold can transmute.

Closed M

Open M

Kramers-Wannier

non-invertible

invertible

7ZEM (condensation) defect

invertible

non-invertible
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Fusion rule of KW duality defects from
Symmetry TFT

® We already see

Twist defects ¥, «— Duality defects N
(0)
N

(0)
N

Magpnetic line Lo 1) < Z,~ symmetry defect n

Electric line L(; oy <— Z,,~ order parameter O

® Then the fusion rule of twist defects immediately implies the fusion rule
of duality defects.

Liem =1 V=1
YexLiog)=Xen = Nxn=N

Yex Lo = ZnN;ol L(n+e+e’7—n) N xN
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F-symbols for the duality defects

® As a bonus, the symmetry TFT also enables us to obtain the F-symbols
of KW duality defects with less efforts. They can be inferred from the
F-symbols of the twist defects in the Zy gauge theory!

= 627\/”61’"2 //g\R
e
n 27l =
~ 1 N-1 —<Flem
¥ UnZmoe V
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Summary

® We revisited the non-invertible KW duality defects from three different
perspectives

Lattice. [Li,Oshikawa,YZ, to appear]
Field theoretical. [Choi,Cordova,Hsin,Lam,Shao,2111.01139]
Symmetry TFT [Kaidi,Ohmori,YZ,2209.11062]

Although KW duality defect has been discovered for 80 years, there are
still interesting aspects of it to explore.

® More to explore:

Other symmetries, including subsystem
Higher dimensions

Classification

Dynamical application

Thank you for your attention!
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