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Global Symmetry

● Global symmetries are powerful in constraining RG flows. (’t Hooft
anomaly matching, Selection rule of correlation functions, checking
dualities, ... )

● It is well known (before 2014)

0-form global symmetry Ð→ codimension-1 topological defect

● But the converse arrow ←Ð is appreciated only until recently (since
2014). This leads to ”generalized global symmetry”

generalized global symmetry ←→ topological defect
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Generalized global symmetry

● The topological operators, hence the generalized global symmetries, can
be organized according to codimension and invertibility.

defect codim = 1 defect codim > 1

Invertible Ordinary Sym Higher form/group Sym

Non-invertible Non-invertible Sym

● This talk will focus on the non-invertible symmetry.
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Non-invertible symmetry is Unavoidable

● Start with an ordinary symmetry or higher form symmetry, one can get
non-invertible symmetry upon various gauging.

● Gauging with a mixed anomaly ⇒ Duality defects;
[Kaidi,Ohmori,YZ,2111.01141]...

● Gauging on half space ⇒ Duality defects;
[Choi,Cordova,Hsin,Lam,Shao, 2111.01139]...

● Gauging a non-normal subgroup;
[Bhardwaj,Bottini,Schafer-Nameki,Tiwari,2204.06564]...

[Nguyen,Tanizaki,Unsal,2101.02227]...

● Gauging a multi-dimensional coupled system;
[Bhardwaj,Schafer-Nameki,Wu,2208.05973]...

● Higher gauging ⇒ Condensation defects;
[Roumpedakis,Seifnashri,Shao,2204.02407]...

● Higher gauging on half higher-codim space ⇒ Higher duality defects;
[Kaidi,Ohmori,YZ,2209.11062]...
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Non-invertible symmetry is Ubiquitous

● Various TQFTs.

● Free field theories: 2d compact boson, 4d Maxwell.

● G Yang-Mills theory with various G , N , d .

● QED4. Infinite number of non-invertible symmetries.

● QCD4.

● Axion models.

● Class-S theories

● Any QFT with a non-anomalous higher form symmetry.

● ...
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This Talk

● I will instead come back to (probably) the very first non-invertible
symmetry discovered in history:

Non-invertible Kramers-Wannier Duality Defect in (1 + 1)d

● Three ways to approach it:

Lattice. [Li,Oshikawa,YZ,to appear]

Field theory. [Choi,Cordova,Hsin,Lam,Shao,2111.01139]

Symmetry TFT. [Kaidi,Ohmori,YZ,2209.11062]
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KW on Lattice
[Li,Oshikawa,YZ, to appear]
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Kramers-Wannier on lattice

● The KW transformation was first found in the 2d statistical Ising model,
relating high temperature and low temperature. [Kramers,Wannier, 1941]

● Another version of KW found in (1 + 1)d quantum Ising model, relating
large transverse field to small transverse field.

H = −∑
i

(σz
i σ

z
i+1 + hσx

i )

KW: σx
i → σz

i σ
z
i+1, σz

i → ...σx
i−2σ

x
i−1σ

x
i

Then σx
i → σz

i σ
z
i+1, σz

i−1σ
z
i → σx

i , two terms are exchanged.

Effectively: h → 1/h.

● We will focus on the quantum Ising model below.
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KW on lattice: Puzzles

σx
i → σz

i σ
z
i+1, σz

i → ...σx
i−2σ

x
i−1σ

x
i

1 On an infinite chain, fine. How about on a circle? This was discussed in
the appendix of [Hsieh,Nakayama,Tachikawa,2002.12283], but we were
confused by some formula there...

2 It is now often said that the operator N implementing the KW
transformation is non-invertible, with fusion rule

N ×N = 1 +U, N ×U = U ×N = N , U ×U = 1

How to see it on the lattice? It was discussed in
[Aasen,Mong,Fendley,1601.07185], but they work on an infinite line (rather
than a circle)...

3 It is also often said that KW is equivalent to gauging Z2. How to see
the mapping between symmetry-twist sectors explicitly?

4 How about KW on open chains? Still non-invertible?
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KW on a circle

Set-up:

● Spin- 1
2

on each site i , i = 1, ...,L.

● si+L = si + t

● Basis product state ∣{si}⟩.

Instead of defining the KW by mapping between Pauli operators, we define
the KW by an operation on the state:

N ∣{si}⟩ =
1

2L/2 ∑
{ŝ

i− 1
2
}

(−1)∑
L
j=1(sj−1+sj)ŝj− 1

2
+t̂sL ∣{ŝi− 1

2
}⟩ .

This KW resolves all of the above puzzles!
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KW on a circle

N ∣{si}⟩ =
1

2L/2 ∑
{ŝ

i− 1
2
}

(−1)∑
L
j=1(sj−1+sj)ŝj− 1

2
+t̂sL ∣{ŝi− 1

2
}⟩ .

● On an infinite chain, it reproduces the standard KW transformation,

σ̂x
i− 1

2
N = Nσz

i−1σ
z
i , σ̂z

i− 1
2
N = N(...σx

j−2σ
x
j−1)

● On a finite circle, it is consistent with gauging Z2 symmetry. Let us
review what do we mean by gauging Z2 symmetry.
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KW as gauging Z2

● Gauging Z2

= summing over Z2 connections
= summing over Z2 defects.

ZX/Z2
[A] = 1

2
∑

a∈H1(T 2,Z2)

ZX [a](−1)∫ a∪A

+ + += 1
2

⎛
⎝

⎞
⎠

+ − −= 1
2

⎛
⎝

⎞
⎠

12 / 42



KW as gauging Z2

Use (u, t) to label the symmetry-twist sectors:

● u = 0,1: Z2 even/odd symmetry sectors,

● t = 0,1: Z2 untwisted/twisted sectors,

+(0,0) ∶ +(0,1) ∶

−(1,0) ∶ −(1,1) ∶

X t = 0 t = 1
u = 0 S U
u = 1 T V

X/Z2 t̂ = 0 t̂ = 1
û = 0 S T
û = 1 U V

û = t, t̂ = u
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KW on a circle

N ∣{si}⟩ =
1

2L/2 ∑
{ŝ

i− 1
2
}

(−1)∑
L
j=1(sj−1+sj)ŝj− 1

2
+t̂sL ∣{ŝi− 1

2
}⟩ .

● Indeed, this transformation exactly reproduces the mapping between
symmetry and twist sectors,

û = t, t̂ = u

● This formula is almost the same as in [Aasen,Mong,Fendley,1601.07185],
except for the last term in the exponent, t̂sL. This term is needed to
match how the symmetry and twist sectors transform (û, t̂) = (t,u).
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KW on a circle

N ∣{si}⟩ =
1

2L/2 ∑
{ŝ

i− 1
2
}

(−1)∑
L
j=1(sj−1+sj)ŝj− 1

2
+t̂sL ∣{ŝi− 1

2
}⟩ .

● Non-invertiblity of N is now transparent: N †N is not an identity
operator.

⟨{si}∣N †N ∣{s ′i }⟩ =
L

∏
i=1

δsi ,s′i + (−1)t̂
L

∏
i=1

δsi ,s′i +1

● Symmetry and twist sectors are straightforward to check, (û, t̂) = (t,u).

● Fusion rule is also straightforward to find, but now interestingly depends
on the twist parameter:

N ×N = 1 + (−1)t̂U, N ×U = (−1)t̂N

N is non-invertible. The standard fusion rule N ×N = 1+U etc assumes
PBC along the chain, i.e. no twist-defect U terminating on N . This
point was recently emphasized in [Choi,Cordova,Hsin,Lam,Shao,2204.09025].
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KW on a circle

N ∣{si}⟩ =
1

2L/2 ∑
{ŝ

i− 1
2
}

(−1)∑
L
j=1(sj−1+sj)ŝj− 1

2
+t̂sL ∣{ŝi− 1

2
}⟩ .

● Everything discussed so far is independent of the Hamiltonian. One can
easily construct KW self-dual Hamiltonians by demanding [H,N] = 0.
For example, the Ising model at h = 1 is self-dual on a circle:

H = −
L

∑
i=1

(σz
i−1σ

z
i + hσx

i )

Then KW becomes a non-invertible symmetry. By modular S
transformation, N becomes a non-invertible duality defect.
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KW on an interval

Define KW on an open chain with free open boundary condition:

N ∣{si}⟩ =
1

2L/2 ∑
{ŝ

i− 1
2
}

(−1)∑
L
j=2 sj−1 ŝj− 1

2
+∑

L
j=1 sj ŝj− 1

2 ∣{ŝi− 1
2
}⟩ .

● Surprisingly, KW is now invertible and unitary!!! Check the overlap,

⟨{si}∣N †N ∣{s ′i }⟩ =
L

∏
i=1

δsi ,s′i

The non-invertible KW transformation on a closed chain becomes invertible
on an open chain!!!

Bonus: This simple fact also clarifies a small puzzle in history.
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Early history on SPT

Back in 1983, Duncan Haldane (Nobel laureate in 2016) conjectured that the
spin-S Heisenberg AFM is gapless for half-integer S and gapped for integer
S . He showed this in large S limit, but the conjecture is for any finite S .
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Early history on SPT

Four years later in 1987, Affleck, Lieb, Kennedy and Tasaki found an
analytically tractable model for S = 1, and gapped exists! At that time,
AKLT model was exotic, beyond Landau paradigm. Now, it is known as the
first example of SPT.
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Kennedy-Tasaki transformation
Four years later in 1991, Kennedy and Tasaki wrote another influential paper,
showed that the AKLT model is not that exotic: one can still understand it
within Landau paradigm, i.e. via Hidden symmetry breaking. SSB phase and
SPT phase on an open chain are related by a non-local unitary

transformation, and local order parameter
KTÐÐ→ string order parameter.

20 / 42



Kennedy-Tasaki transformation
In the same year, Masaki Oshikawa, in his first paper in graduate school,
generalized the KT transformation to arbitrary integer spin, and found a
much nicer and compact formula of the non-local unitary transformation

UKT =∏
i>j

exp (iπSz
i S

x
j ) .

21 / 42



Kennedy-Tasaki transformation: Puzzle

UKT =∏
i>j

exp (iπSz
i S

x
j ) .

However, there is a puzzle...

The non-local unitary transformation has been only defined on an open
chain. How to define it on a circle? We haven’t found a literature addressing
this question...
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Non-invertible KT transformation

circle interval

non-invertible
Kramers-Wannier non-unitary invertible, unitary

S
non-invertible

Kennedy-Tasaki non-unitary invertible, unitary
STS = TST

In an upcoming work with Linhao Li and Masaki Oshikawa, we showed that
non-local unitary KT transformation can be lifted on a circle if we sacrifice
unitarity!

It turns out that the non-unitary transformation is basically TST = STS ,
whose operator/defect obeys non-invertible fusion rule.
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KW from Field theory:

Half-space gauging
[Choi,Cordova,Hsin,Lam,Shao,2111.01139]

[Kaidi,Ohmori,YZ,2209.11062]
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KW Defect from field theory

● For an arbitrary (1 + 1)d bosonic QFT X with an non-anomalous ZN

symmetry, one can gauge ZN to generate a new theory SX ∶= X/ZN by
a KW transformation. X is KW self-dual if X = σX , which we assume
below.

● Gauging ZN on half-of the spacetime with Dir.b.c. defines a duality
defect.

N

ZX [A] ZSX [A]

x = 0

x
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Fusion rule of Duality defects
● To find the fusion of two duality defects, we place them parallel to each

other:

N N

ZX [A] ZSX [A] ZS2X [A]

x = 0 x = ε
x

● Gauging ZN in a slab.

N N

ZX [A] ZSX [A] ZX [A]

x = 0 x = ε
x
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Fusion rule of Duality defects

N N

ZX [A] ZσX [A] χ[X ≥ε
2 ,ZN]−1ZX [A]

x = 0 x = ε
x

● Shrinking the slab by taking ε→ 0, it simply means N ×N is gauging
ZN on a co-dimension 1 submanifold M1 → 1-gauging on M1, leading to
a condensation defect C = ∑N−1

n=0 η
n.

● The full set of fusion rule (up to Euler counter terms) is

N ×N =
N−1

∑
n=0

ηn, η ×N = N × η = N , ηN = 1

N is non-invertible .

● The same discussion can be generalized to higher dimensions.
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Constraints on RG

● When a QFT X is KW self-dual, KW is a non-invertible global
symmetry of X . As ordinary symmetries, the non-invertible KW duality
symmetry also has non-trivial impact on the RG flow.

If a (1+1)d ZN symmetric QFT X is self dual under KW, X = X/ZN , then X
can not be gapped with a single ground state.

[Choi,Cordova,Hsin,Lam,Shao,2111.01139]
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KW from Symmetry TFT
[Kaidi,Ohmori,YZ,2209.11062]
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Global Symmetry from Symmetry TFT

● For QFTs with finite symmetries, SymTFT nicely decouples the universal
quantities (symmetries and ’t Hooft anomalies) from the non-universal
dynamics.

[Gaiotto,Kulp,2008.05960],[Freed,PI 22’],[Freed,Moore,Teleman,2209.07471]

[Apruzzi,Bonetti,Garćıa-Etxebarria,S.Hosseini,Schafer-Nameki,2112.02092]

Anom[A]

ZX [A]

SymTFT

⟨Top.b.c.[A]∣ ∣X ⟩

Anom[A]

universal dynamical
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SymTFT for Invertible Symmetry

● The SymTFT of a finite invertible symmetry G with a ’t Hooft anomaly
α is well-known: Dijkgraaf-Witten theory.

Invα(A)

Zα
X
[A]

SymTFT
= DW(α)

⟨D(A)∣ ∣X ⟩

Invα(A)

31 / 42



Symmetry TFT for ZN

● The KW is defined by gauging ZN . We will show that the properties of
KW can be reproduced from the symmetry TFT of ZN .

● For a non-anomalous ZN , the SymTFT is a ZN DW without twist – ZN

gauge theory in (2 + 1)d. The action is

2π

N ∫ âδa
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Topological Operators in ZN Gauge Theory

● ZN gauge theory has N2 topological lines L(e,m)(γ), where L(1,0) and
L(0,1) generate ZN ×ZN 1-form symmetry.

● More interestingly, there is a ZEM
2 0-form symmetry, a↔ â, i.e.

L(e,m)(γ) ↔ L(m,e)(γ). ZEM
2 comes with a surface defect DEM.

L(e,m) L(m,e)

DEM

● The ZEM
2 defect is a condensation defect.

[Roumpedakis,Seifnashri,Shao,2204.02407]
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ZEM
2 Defect as Condensation defect

L(e,m) L(m,e)

DEM

=

L(e,m)

L(m,e)

DEM

=

L(e,m)

L(−m,−e)

DEM

=

L
⊗(e−m)
(1,−1)

DEM

● Any power of L(1,−1) can be absorbed into the ZEM
2 defect. ⇒ DEM is a

condensation defect of L(1,−1).

DEM(M2) =
1

∣H0(M2,ZN)∣ ∑
γ∈H1(M2,ZN)

L(1,−1)(γ)

● Indeed, it satisfies the desired properties:

L(e,m)(γ)DEM(M2) = DEM(M2)L(m,e)(γ), DEM(M2)2 = χ−1

34 / 42



Dirichlet Boundary Conditions

● As a SymTFT for ZN , let us place the ZN gauge theory on a slab

ZX [A]

2π
N
âδa

⟨D(A)∣ ∣X ⟩

● Dirichlet b.c.: L(1,0) parallel to the bdy becomes trivial; L(1,0) orthogonal
to the bdy can end; L(0,1) parallel to the boundary is still non-trivial;
L(0,1) orthogonal to the bdy can not end;

● Upon shrinking the slab, L(0,1) survives as the symmetry operator of ZN .
L(1,0) survives as a non-topological order parameter for ZN .

L(0,1) → η, L(1,0) → O
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Neumann Boundary Conditions
● The Neuman b.c. can be obtained by composing the Dirichlet b.c. with
DEM.

ZX [A]

2π
N
âδa

⟨D(A)∣ ∣X ⟩

ZX/ZN
[A] DEM

2π
N
âδa

⟨D(A)∣ ∣X ⟩

=

⟨N(A)∣ ∣X ⟩

2π
N
âδa

● Changing the b.c. from Dirichlet to Neuman exchanges the role of
L(0,1) ↔ L(1,0). Upon shrinking, L(1,0) survives as a symmetry operator

of the quantum ẐN symmetry, and L(0,1) survives as a non-topological
order parameter.

L(1,0) → η̂, L(0,1) → Ô
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Twist Defects induces KW-like interfaces in
(1+1)d

● Twist defect Σ: ZEM
2 exchanging defect on half-surface with Dirichlet

boundary → higher KW interface.

● Colliding the twist defect with Dirichlet boundary condition yields
boundary-changing line operator. Further shrinking the slab yields the
KW duality defect.

ZX [A]

ZX/ZN
[A]

N
2π
N
âδa

⟨D(A)∣ ∣X ⟩Σ0
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Fusion rule of Twist defects

0 ε

Σ0
Σ0

Ô⇒

∑N−1
n=0 L(n,−n)

● Fusing two twist defects Σ0’s is 2-gauging of L(1,−1) on a line.

Σ0 ×Σ0 = ∑N−1
n=0 L(n,−n). ⇒ twist defect is non-invertible!

● Due to Dirichlet boundary condition of the condensate,
Σ0 × L(e+n,−n) = Σe .
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Invertibility / Non-invertibility transmutation

The invertibility of a defect on an open and closed manifold can transmute.

Closed M Open M

Kramers-Wannier non-invertible invertible

ZEM
2 (condensation) defect invertible non-invertible
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Fusion rule of KW duality defects from
Symmetry TFT

● We already see

Twist defects Σe ←→ Duality defects N
Magnetic line L(0,1) ←→ Z(0)N symmetry defect η

Electric line L(1,0) ←→ Z(0)N order parameter O

● Then the fusion rule of twist defects immediately implies the fusion rule
of duality defects.

LN
(e,m) = 1 ηN = 1

Σe × L(0,1) = Σe+1 ⇒ N × η = N
Σe ×Σe′ = ∑N−1

n=0 L(n+e+e′,−n) N ×N = ∑N−1
n=0 η

n
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F-symbols for the duality defects

● As a bonus, the symmetry TFT also enables us to obtain the F-symbols
of KW duality defects with less efforts. They can be inferred from the
F-symbols of the twist defects in the ZN gauge theory!

ηe1 N ηm2

= e
2πi
N e1m2

ηe1 N ηm2

N N N

ηe

≃ 1
√

N
∑N−1

m̃=0 e
−

2πi
N

em̃

N N N

ηm̃
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Summary
● We revisited the non-invertible KW duality defects from three different

perspectives

Lattice. [Li,Oshikawa,YZ, to appear]

Field theoretical. [Choi,Cordova,Hsin,Lam,Shao,2111.01139]

Symmetry TFT [Kaidi,Ohmori,YZ,2209.11062]

Although KW duality defect has been discovered for 80 years, there are
still interesting aspects of it to explore.

● More to explore:

Other symmetries, including subsystem
Higher dimensions
Classification
Dynamical application
...

Thank you for your attention!
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