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BCFW as Hard Superrotation

BCFW as Soft Insertion




REVIEW OF CELESTIAL HOLOGRAPHY

[Pasterski’s talk @GR23, '22]



CELESTIAL HOLOGRAPHY

Holography: quantum gravity in AFS & codim-2 CCFT

Symmetries, reorganize observables

0o-diml symmetry enhancements

Central objects of study: celestial amplitudes

For concretness, | will focus on massless scattering in 4D

Global Symmetries

S0O(1,3) = SL(2,0) SE(22) = SLE.R)Y X SL(Z,R)

Celestial amplitudes as correlation functions of a 2D CFT




CELESTIAL AMPLITUDE

Massless: P = e w g*

€ = £ | incoming/outgoing in (1,3)

g =14+2zz,z+ 7z, —i(z—2),1 —z2)

Overall scaling @ = energy

Map between spinor-helicity variables & celestial variables

; is the little group scaling




CELESTIAL AMPLITUDE

Find the basis of solutions to the EOM which diagonalize L, and io

simultaneously — conformal partial wave

oo

K1y
0

[Pasterski, Shao, Strominger, ‘16, ‘17], [Law, Zlotnikov, '20]
Celestial amplitude

O8 G700 1 2)) =




ASYMPTOTIC SYMMETRIES

In 1960s, Bondi, Burg, Metzner, and Sachs: BMS* group (co-diml

extension of the Poincaré group)
BMS = Lorentz + supertranslation
Supertranslation = angle-dep. translation of generators of null infty

Superrotation = local enhancements of Lorentz

[Bondi, van der Burg, Metzner, ‘62], [Sachs, '62], [Barnich, Troessaert, ‘11]
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ASYMPTOTIC SYMMETRIES

Ward identity of supertranslation (out|[Qy, S][in) = 0 < Weinberg’s soft

graviton theorem

Ward identity of superrotation (out|[Qy,S]|in) = 0 & sub-leading soft graviton

theorem [Kapec, Mitra, Raclariu, Strominger, ‘17]

A

n [He, Kapec, Raclariu, Strominger, ‘17]

. hy 1 :
(out|[Qg, S]|in) = Z [ + aZ](outlS |in) [Donnay, Ruzziconi,'21]
e e d - G

Holographic dual to QG in 4D AFS must admit a 2D conformal symmetry!

More reviews: [Strominger, 1703.05448], [Pasterski, 2108.04801], [Raclariu,

2107.02075]




CCFT VS BCFW

[Elvang, Huan

g 13]



CCFT VS BCFW

CCFT: symmetries, OPE, spectrum

BCFW: 3-pt amplitude + unitarity + locality + large-z behavior

, A(O):ﬂE ——ZR ﬁﬂa

i

Locality: A(z) only has simple poles at tree-level < ﬁ
1

1
Unitarity: at this pole, A = A; EA

Recursively generate n-pt amplitude from 3-pt amplitude



LARGE-Z BEHAVIOR

In order to use BCFW recursion, we assume the boundary term vanishes.

lim A(z) = 0

Z—>0

This condition is far from obvious

In pure YM, an argument based on background field method

[Arkani-Hamed, Kaplan, ‘08]




CCFT VS BCFW

Consider [2,1)-shift

Pl =Pi=%2q .. Py = Dhteqg, g==|2)H]
Equivalent to transforming celestial variables as follows (¢, = & = 1)

b
= W —24/0,0, LWy P & W) = W)+ Z4/00

G

Zz'—)Zé

=i
{1

Take z — oo limit, im,_, 71 =2, = 25 and lim,_, . Z) = Z; = Z] © coincident

limit on CS




CCFT VS BCFW

ldea/Plan:

kO¢ @570k (5 2))

Implement [2,1)-shift
Take 7 — o0 limit
Look at how OPE transforms

Extract the large-z scaling




FROM CELESTIAL OPE TO LARGE-Z2 BEHAVIOR

[Arkani-Hamed, Kaplan, ‘08]



FROM CELESTIAL OPE TO LARGE-Z BEHAVIOR

STEP 1: HOW THE BCFW SHIFT OPERATIONS ACT ON @A,J

Consider the Lorentz transformation acts on the spinors:

Ay = N[ 4) (di Ci> ~ ' _1_91‘
% 5 Al — Al ==

. Work in (2,2) signature

A=10,G#1)

2,1)-shi - .
[2,1)-shift < {A]:uz(];ez)




FROM CELESTIAL OPE TO LARGE-Z BEHAVIOR

STEP 1: HOW THE BCFW SHIFT OPERATIONS ACT ON @A,J

1
| 41) = \/‘6121"‘&'1‘ €14/ 20 <Z,>
1
W = = ] / _Zé
| A5] \/‘szz‘l‘dz‘ \/20)2< 1)

= Al bl s 6_1222 4 b2
o s
C1<1 ~+= dl

&2, + d,

= wlaz+d| o) = @,|65+4d,]

Little group scaling + dacobian coming from w-scaling
AVPAY) <@A1,Jl(€19 21, 2004 1162 % Zz)'“>

A =l = Z
s ez bdll Llen hd | <@A1,J1(€i’ 215 Z,l)@Al,Jl(Gé, % >
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FROM CELESTIAL OPE TO LARGE-Z BEHAVIOR

STERP:.2: TAKE 72— 60 L TMIFT

O, and O, go to coincident limit

[ s=)

X 2 Dl ek
Ay A2< I I On.1(€5 3 Zj)> = |z +d;| 62 + 4| 2<@A1,J1(Z
J

1 Zl)@AI,Jl(Z,’ Zse >

— izt di| Hlen, tdili” Z Ciop(2) <@p(Z’ _’)'">
P
We know

XXY)

CCFT VS BCFW
C1Z1+d1NZ 5222+d2NZ

. Consider [2,1)-shift

Pl =P1—29 , p; = pr+2q , g=—|2)[1]
- Equivalent
/ =/ =
Ly G 28y T

to transforming celestial variables as follows (g; = &, = 1)

w, & &)

W)+ 24/0,0,

(o) Lokl
= Z1p
= z2+—\/n_]Z
ﬁ+z

Take z — oo limit, lim,_, 2] =2 = z) and lim,_, 7} = Z; = Z] © coincid
limit on CS




FROM CELESTIAL OPE TO LARGE-Z BEHAVIOR

STEP 3: DETERMINE C;,p(2)

Given the OPE

yi+h=Tp=1

;=1 ;=1 (212
@AI’JI(ZI’ Zl) @Az,J2(ZZ, Zz) e Z ngP Z/ B(AI T 1 + J2 T JP’ Az SE 1 + Jl Gor JP) @AP’JP
e

(Zi 2)JP—J1 —J,—1

BlA ==t ikl == L) @AP,JP

=,

<12

[Pate, Raclariu, Strominger, Yuan, ‘19], [Himwich, Pate, Singh, '21]

g1op is the 3pt coupling constant and B(a, b) is the Euler Beta function

We know 7, ~ — and 7}, ~ —
Z

Inverse Mellin: Beta function tells us o* ~ 7"




FROM CELESTIAL OPE TO LARGE-Z BEHAVIOR

STEP 4: POWER COUNTING

Recall that

- . e g e
Ay Ay <H O 5,502 Zj)> — et dpls 165
J

(Onte




FROM CELESTIAL OPE TO LARGE-Z BEHAVIOR

EXAMPLE: PURE YANG-MILLS

. 3-point interaction selects Jp

7
;)Jp Tp @i
7y

1 e
. ——term ~ MHV vertex J, =J; + ./, — |
<12

1
. ——term ~MHV vertex /s =J + /5 + 1

212




FROM CELESTIAL OPE TO LARGE-Z BEHAVIOR

EXAMPLE: PURE YANG-MILLS

{J1, /5]

ok

<+7_]

<_’+]

(o o

Match the ones expected [Arkani-Hamed, Kaplan, ’08]




FROM CELESTIAL OPE TO LARGE-Z BEHAVIOR

Comments:

For Yang-Mills, the color factors were suppressed in the OPE

@61’@[2’ ~ ifabcﬁf)
Color-ordered: leading singularity comes from 1 and 2 adjacent

Look at the final result 7/27/1%/r: double copy relation is manifest via

b
ZGR = <ym




FROM CELESTIAL OPE TO LARGE-Z BEHAVIOR

COMMENTS

Celestial OPE = Splitting function

=P
L s Z
Sl b L= 2B (o) (w0 + 6,0,
<12
P
- Z
Sphtif,_s;ﬁsﬁpﬂ = Z_lz(gla)l)p (0P T (€101 + £,0)) 7"
12

[Fan, Fotopoulos, Taylor, '19]

- ¢S X
Sphite e =c 72

Proper little group factors to remove the z-dep. from (n-1)-pt

SH—S1ES;

amplitude = Z




FROM CELESTIAL OPE TO LARGE-Z BEHAVIOR

Outlook/Open questions

Unitarity and locality encoded in CCFT data?

Can we use CCFT data to constrain the bulk interaction?

Can we relate celestial BCFW and conformal block decomposition?




INFINITESIMAL-Z STORY

.




BG EQUATION VS BCFW

Story begins with [Hu, Ren, Yelleshpur Srikant, Volovich, ’21]

Color-ordered Banerjee-Ghosh equation is equivalent to infinitesimal

BCFW shift acting on Parke-Taylor formula

BG equation derived in [Banerjee, Ghosh, ’20] can be used to constrain

MHYV gluon correlators

Null states, lean to celestial bootstrap program,...




BG EQUATION VS BCFW

In this work, we continue this exploration

BCFW as angle-dependent Lorentz transformation

BCFW interpreted as energy-dependent generalization of the hard

superrotation transformation

Impletment BCFW shifts to all operators — recast as soft insertion —

BG equation

Extend this story for super-BCFW




REVIEW OF BG EQUATION

Soft and collinear limit commutes

Leading soft gluon current j© = lim (A — 1) O jis a Kac-Moody current
A—1

Ward ldentity:

n

z =L (e

? is the SU(N) generator: I = Oy fabC@C

Restatment of the leading soft gluon theorem




REVIEW OF BG EQUATION

Subleading soft gluon current ST =lim A0, ,
A—0

Ward ldentity:

(5342 H 0, Z))

5 i 5 th bt Z)ak OV“T_I <H @ )>

emm ey

T’ is the conformal weight shifting operator: T}, @AJ,J]- = Oy @Aj+1,Jj

Restatement of the subleading soft gluon theorem




REVIEW OF BG EQUATION

CONSTRAINT ON OPE

From the Ward ldentity, we can extract the OPE Stz 2 @+’b(21, Z1)

SH(z,7) 6M0(z,7,) ~ [

(- >+2<z—zl>P< )| 0+, 7)

G e |

+@-z) | ——t >+Z<z—zl>p< )| 04z, 2)

-l

On the other hand, the OPE of two hard gluons is determined by

asymptotic symmetries / collinear limits

$P(2,2) 04, 7,) = lim A6}(z.2) 02, 2)




REVIEW OF BG EQUATION

Equating these two (z= 2 gives us
P = 9P @Z’f‘(zl,il) =0
P is a null state: L'V = L, P = jH9¥’ = () (BMS primary)

Inserting this into a correlation function yields the differential equation

<\Pa ﬁizz,fzmﬁilw) —




REVIEW OF BG EQUATION

BG EQUATION

Benerjee-Ghosh equation for MHV gluon:

Cyq 0 - TiaT]q
[Ta—z;hzzzi_zj

j=1
J#i
B -\ 8
1o (hi-1-GE-2)E&) (1
+52. L TAP; leP_l,—l(z)]<HOZZ,M(Z’“’Z’“)> -

=1 Zi T Zj P MHV
J#i

[Banerjee, Ghosh, '21]
One equation for each positive helicity gluon

No obvious momentum space origin

Easier to deal with color-ordered amplitudes




REVIEW OF BG EQUATION

MOMENTUM SPACE ORIGIN

Look at the color-ordered version of the BG:

A, 1 Ay —=Jis =147 0,

: =

d = z REC | Ty
L1 e <i—1,i

Map back to the {1,1} basis:

. 5= 1, . + 1
Do i = 4 ; = : ; l . >An
; - . (i+1,1)

~

LHS: BCFW shift A, > A, +z4,_, , A,_; = A,_; — zA; can be implemented via
A(z) = expz D;;_1A(0)

RHS: Parke-Taylor formula

[Hu, Ren, Yelleshpur Srikant, Volovich, ‘21]




BCFW AS HARD SUPERROTATION

. Hard superrotation charge Oyl&y] = iZ;

1
: 35 | Dy Zy» Zk> = [ YlfaZk it EDZYZ(_a)kaa)k -+ Sk) +h.c. ] | Wiy Lo Zk)

. For BCFW shift, w —»> 0
g B GEPw— g fiw

. w; scaling > D_Y(z;) = 2w

W W[ﬁ,-—206,-(Z—Z,-)+@((Z—Zi)z)]+@(W2)

34



BCFW AS HARD SUPERROTATION

Given Yz ~2) = w[fi—2a,—2)+ 0@ — ) ] + Ow?)

We can match this behavior with meromorphic Y*(z) following

[Pasterski, "15]

-
Schematically Y|z~z- X W‘ /—] [Zij T 2(7 a) L ] for ;> A+ wi
1 a)i

Energy-dependent generalization of hard superrotation




BCFW AS SOFT INSERTION

- Yang-Mills, gluon correlator

Consider (i, k]-shift for all k # i with fixed i

(~2)o,

l a
g

Gky-

. Shift parameter as z
- This shift can be impletmented by the exponential

(—2)w:; 0 i
= i gra [,1 ——z.—~] A
P& { Z <lk> k kd/li la;tk } n

k#i




BCFW AS SOFT INSERTION

Impletment to the celestial correlator as

exp {z O L) + 20 D+ Py (D, O } (0% @ n]]0%,@2)

J

. Jo) = — J7  gauge transformation

2 al SDAR al .
P‘%’_%(l)@%fi = @A,-H,Ji global translation

’a ®. 2 gz ° ° ° ° ° ° °
e Z , inserting a leading soft (A — 1) helicity +1 gluon collinear with 0,
. <k
ki

2h, — 1+ 7.0
(I)e= Z €€ . S Tk_1 J{  inserting a sub-leading soft (A — 0)

S
e
2?2 :
ki ik

helicity +1 gluon collinear with O,




BCFW AS SOFT INSERTION

. Act on the MHV correlator

exp { zZ[- 1K vy = { vy + 201 vy + 0%

Compare both sides of the equation = 1st order PDE

. Take J; = + 1 = Banerjee-Ghosh equation

— ROL® + @h= DD + Py 452, )]

<@Z,+(z,-, 2] e zj)> %G
J

MHV




BCFW AS SOFT INSERTION

Extend to super-BCFW is straightforward

(2w,
(ik)

/V=45YM:77;<4 — n,f—z knA forall k # i

Implement to the celestial superamplitude

I
=04 = : a;
exp 2 {same as above - —= 0", _ i(z)S_%’%(z)} <HQ}>

V2 J-

1
g D) = 8,-\/57?17;4 i-th supercharge
7

: e 1 1
(1) = Z SkT inserting a leading soft (A — —) helicity +—
2 o e i 2 2

gluino that is collinear with O,

SCl

e
4




BCFW AS SOFT INSERTION

Act on the MHV correlator

1st order PDE takes the following form

(i) 5

L
4 ’

1
D

1 NA
same as above (BG operator) — —Q

Look at the component level:

J. = + 1 = Banerjee-Ghosh equation [BG operator] <@?

JS=—1=> [BG operator] <@?1_0?S_H @;lf_l_> 2 Z () <I?i4/1]§’s’AH @;‘j>
1 i

k#i,s

O%(i) = BG operator as raising the helicity of O,




INFINITESIMAL-Z STORY

Outlook:

BCFW vs BG equation for MHV Graviton?

Extend to NMHYV or higher order?

Extend to finite-2?




THANK YOU!



