

CELESTIAL RECURSION

YANGRUI HU
BIMSA JOINT HET SEMINAR OCT 26 2022

Based on 2208.11635 with Sabrina Pasterski

OUTLINE

- · Review of Celestial Holography
- · Celestial CFT vs BCFW
- From Celestial OPE to Large-z behavior
- · Infinitesimal-z story
 - · BCFW as Hard Superrotation
 - · BCFW as Soft Insertion

REVIEW OF CELESTIAL HOLOGRAPHY

CELESTIAL HOLOGRAPHY

- · Holography: quantum gravity in AFS & codim-2 CCFT
- · Symmetries, reorganize observables
 - · ∞-diml symmetry enhancements
 - · Central objects of study: celestial amplitudes
- · For concretness, I will focus on massless scattering in 4D
- · Global Symmetries
 - $SO(1,3) \simeq SL(2,\mathbb{C}) \qquad SO(2,2) \simeq SL(2,\mathbb{R}) \times SL(2,\mathbb{R})$
 - · Celestial amplitudes as correlation functions of a 2D CFT

CELESTIAL AMPLITUDE

. Massless: $P^{\mu} = \epsilon \, \omega \, q^{\mu}$

- $\epsilon = \pm 1$ incoming/outgoing in (1,3)
- $q^{\mu} = (1 + z\bar{z}, z + \bar{z}, -i(z \bar{z}), 1 z\bar{z})$
- Overall scaling ω = energy
- · Map between spinor-helicity variables & celestial variables

$$\lambda_{i}^{\alpha} = |\lambda_{i}\rangle^{\alpha} = \epsilon_{i}\sqrt{2\omega_{i}t_{i}} \begin{pmatrix} 1 \\ z_{i} \end{pmatrix} , \quad \lambda_{i\alpha} = \langle \lambda_{i}|_{\alpha} = \epsilon_{i}\sqrt{2\omega_{i}t_{i}} \begin{pmatrix} -z_{i} \\ 1 \end{pmatrix} ,$$

$$\tilde{\lambda}_{i,\dot{\alpha}} = |\tilde{\lambda}_{i}|_{\dot{\alpha}} = \sqrt{2\omega_{i}t_{i}^{-1}} \begin{pmatrix} -\bar{z}_{i} \\ 1 \end{pmatrix} , \quad \tilde{\lambda}_{i}^{\dot{\alpha}} = [\tilde{\lambda}_{i}|^{\dot{\alpha}} = \sqrt{2\omega_{i}t_{i}^{-1}} \begin{pmatrix} 1 \\ \bar{z}_{i} \end{pmatrix} ,$$

CELESTIAL AMPLITUDE

- Find the basis of solutions to the EOM which diagonalize L_0 and $ar{L}_0$ simultaneously o conformal partial wave

$$m = 0 \qquad \Phi_{\Delta,J}^{|J|} \sim \int_0^\infty d\omega \, \omega^{\Delta - 1} \, \varepsilon_{\mu_1 \cdots \mu_{|J|}} \, e^{\pm i\omega q \cdot X_\pm}$$

[Pasterski, Shao, Strominger, '16, '17], [Law, Zlotnikov, '20]

· Celestial amplitude

$$\langle \mathcal{O}_{\Delta_1,J_1}(z_1,\bar{z}_1)\cdots\mathcal{O}_{\Delta_n,J_n}(z_n,\bar{z}_n)\rangle = \left[\prod_i \int_0^\infty d\omega_i\,\omega_i^{\Delta_i-1}\right] A_n(\omega_i,z_i,\bar{z}_i)$$

ASYMPTOTIC SYMMETRIES

- In 1960s, Bondi, Burg, Metzner, and Sachs: BMS^\pm group (∞ -dimlesterment extension of the Poincaré group)
- BMS = Lorentz + supertranslation
- · Supertranslation = angle-dep. translation of generators of null infty
- Superrotation = local enhancements of Lorentz

ASYMPTOTIC SYMMETRIES

- . Ward identity of supertranslation $\langle \text{out} | [Q_f, S] | \text{in} \rangle = 0 \Leftrightarrow \text{Weinberg's soft}$ graviton theorem
- Ward identity of superrotation $\langle \text{out} | [Q_Y, S] | \text{in} \rangle = 0 \Leftrightarrow \text{sub-leading soft graviton}$ theorem

 [Kapec, Mitra, Raclariu, Strominger,

$$\langle \text{out} | [Q_S, S] | \text{in} \rangle = \sum_{k=1}^n \left[\frac{\hat{h}_k}{(z - z_k)^2} + \frac{1}{z - z_k} \partial_{z_k} \right] \langle \text{out} | S | \text{in} \rangle$$

[Kapec, Mitra, Raclariu, Strominger, '17]

[He, Kapec, Raclariu, Strominger, '17]

[Donnay, Ruzziconi, '21]

- Holographic dual to QG in 4D AFS must admit a 2D conformal symmetry!
- More reviews: [Strominger, 1703.05448], [Pasterski, 2108.04801], [Raclariu, 2107.02075]

CCFT VS BCFW

CCFT VS BCFW

- · CCFT: symmetries, OPE, spectrum
- BCFW: 3-pt amplitude + unitarity + locality + large-z behavior

$$\begin{cases} \lambda_i \mapsto \lambda_i + z\lambda_j \\ \tilde{\lambda_j} \mapsto \tilde{\lambda_j} - z\tilde{\lambda_i} \end{cases}$$

$$A(0) = \oint_{\gamma} \frac{dz}{2\pi i} \frac{A(z)}{z} = -\sum_{I} \operatorname{Res}_{z \to z_{I}} \frac{A(z)}{z} + B_{\infty}$$

- . Locality: A(z) only has simple poles at tree-level $\leftrightarrow \frac{1}{P_I^2}$
- . Unitarity: at this pole, $A = A_L \frac{1}{P_I^2} A_R$
- · Recursively generate n-pt amplitude from 3-pt amplitude

LARGE-Z BEHAVIOR

· In order to use BCFW recursion, we assume the boundary term vanishes.

$$\lim_{z \to \infty} A(z) = 0$$

- · This condition is far from obvious
- · In pure YM, an argument based on background field method

 $\langle i, j \rangle \qquad \langle -, - \rangle \qquad \langle +, - \rangle \qquad \langle +, + \rangle \qquad \langle -, + \rangle$ $A_n(z) \sim \qquad \frac{1}{z} \qquad \frac{1}{z} \qquad \frac{1}{z} \qquad z^3$

[Arkani-Hamed, Kaplan, '08]

CCFT VS BCFW

• Consider [2,1)-shift

$$p_1' = p_1 - zq$$
, $p_2' = p_2 + zq$, $q = -|2\rangle[1]$

- Equivalent to transforming celestial variables as follows ($arepsilon_1=arepsilon_2=1$)

$$\varepsilon_{1} \omega_{1} \mapsto \varepsilon'_{1} \omega'_{1} = \omega_{1} - z \sqrt{\omega_{1} \omega_{2}}
z_{1} \mapsto z'_{1} = z_{1} + \frac{z_{12} z}{\frac{\varepsilon_{1} \sqrt{\omega_{1}}}{\varepsilon_{2} \sqrt{\omega_{2}}} - z}
\bar{z}_{1} \mapsto \bar{z}'_{1} = \bar{z}_{1}$$

$$\varepsilon_{2} \omega_{2} \mapsto \varepsilon'_{2} \omega'_{2} = \omega_{2} + z \sqrt{\omega_{1} \omega_{2}}
z_{2} \mapsto z'_{2} = z_{2}
\bar{z}_{2} \mapsto \bar{z}'_{2} = \bar{z}_{2} + \frac{\bar{z}_{12} z}{\sqrt{\omega_{2}}}
\bar{z}_{2} \mapsto \bar{z}'_{2} = \bar{z}_{2} + \frac{\bar{z}_{12} z}{\sqrt{\omega_{2}}} + z$$

. Take $z\to\infty$ limit, $\lim_{z\to\infty}z_1'=z_2=z_2'$ and $\lim_{z\to\infty}\bar{z}_2'=\bar{z}_1=\bar{z}_1'\Leftrightarrow$ coincident limit on CS

CCFT VS BCFW

Idea/Plan:

•
$$\langle \mathcal{O}_{\Delta_1,J_1}(z_1,\bar{z}_1)\cdots\mathcal{O}_{\Delta_n,J_n}(z_n,\bar{z}_n)\rangle$$

- Implement [2,1)-shift
- Take $z \to \infty$ limit
- · Look at how OPE transforms
- · Extract the large-z scaling

STEP 1: HOW THE BCFW SHIFT OPERATIONS ACT ON $\mathcal{O}_{\Delta,J}$

· Consider the Lorentz transformation acts on the spinors:

$$\left\{ \begin{array}{ll} |\lambda_i\rangle \mapsto \Lambda_i |\lambda_i\rangle \\ |\tilde{\lambda}_i] \mapsto \tilde{\Lambda}_i |\tilde{\lambda}_i] \end{array} \right. \Lambda_i \, = \, \begin{pmatrix} d_i & c_i \\ b_i & a_i \end{pmatrix} \qquad \tilde{\Lambda}_i \, = \, \begin{pmatrix} \bar{a}_i & -\bar{b}_i \\ -\bar{c}_i & \bar{d}_i \end{pmatrix}$$

· Work in (2,2) signature

$$\left\{ \begin{array}{l} \Lambda_i = \mathbb{I}_2 \ (i \neq 1) \\ \tilde{\Lambda}_j = \mathbb{I}_2 \ (j \neq 2) \end{array} \right.$$

STEP 1: HOW THE BCFW SHIFT OPERATIONS ACT ON $\mathcal{O}_{\Delta,J}$

$$|\lambda_1'\rangle = \Lambda_1 \epsilon_1 \sqrt{2\omega_1} \begin{pmatrix} 1 \\ z_1 \end{pmatrix} = \sqrt{|c_1 z_1 + d_1|} \epsilon_1' \sqrt{2\omega_1'} \begin{pmatrix} 1 \\ z_1' \end{pmatrix}$$
$$|\tilde{\lambda}_2'\rangle = \tilde{\Lambda}_2 \sqrt{2\omega_1} \begin{pmatrix} -\bar{z}_1 \\ 1 \end{pmatrix} = \sqrt{|\bar{c}_2 \bar{z}_2 + \bar{d}_2|} \sqrt{2\omega_2'} \begin{pmatrix} -\bar{z}_2' \\ 1 \end{pmatrix}$$

· where

$$z'_{1} = \frac{a_{1}z_{1} + b_{1}}{c_{1}z_{1} + d_{1}} \quad \bar{z}'_{2} = \frac{\bar{a}_{2}\bar{z}_{2} + \bar{b}_{2}}{\bar{c}_{2}\bar{z}_{2} + \bar{d}_{2}}$$

$$\omega'_{1} = \omega_{1}|c_{1}z_{1} + d_{1}| \quad \omega'_{2} = \omega_{2}|\bar{c}_{2}\bar{z}_{2} + \bar{d}_{2}|$$

- Little group scaling + Jacobian coming from ω -scaling

$$\begin{split} &\Lambda_{1}\,\tilde{\Lambda}_{2}\,\Big\langle \mathcal{O}_{\Delta_{1},J_{1}}(\epsilon_{1},z_{1},\bar{z}_{1})\mathcal{O}_{\Delta_{2},J_{2}}(\epsilon_{2},z_{2},\bar{z}_{2})\cdots\Big\rangle \\ &= \|c_{1}z_{1}+d_{1}\|^{-2h_{1}}\|\bar{c}_{2}\bar{z}_{2}+\bar{d}_{2}\|^{-2\bar{h}_{2}}\Big\langle \mathcal{O}_{\Delta_{1},J_{1}}(\epsilon_{1}',z_{1}',\bar{z}_{1}')\mathcal{O}_{\Delta_{1},J_{1}}(\epsilon_{2}',z_{2}',\bar{z}_{2}')\cdots\Big\rangle \end{split}$$

STEP 2: TAKE $z \to \infty$ LIMIT

. \mathcal{O}_1 and \mathcal{O}_2 go to coincident limit

$$\begin{split} \Lambda_{1} \tilde{\Lambda}_{2} \left\langle \prod_{j} \mathcal{O}_{\Delta_{j}, J_{j}}(\epsilon_{j}, z_{j}, \bar{z}_{j}) \right\rangle &= \|c_{1}z_{1} + d_{1}\|^{-2h_{1}} \|\bar{c}_{2}\bar{z}_{2} + \bar{d}_{2}\|^{-2\bar{h}_{2}} \left\langle \mathcal{O}_{\Delta_{1}, J_{1}}(z'_{1}, \bar{z}'_{1}) \mathcal{O}_{\Delta_{1}, J_{1}}(z'_{2}, \bar{z}'_{2}) \cdots \right\rangle \\ &= \|c_{1}z_{1} + d_{1}\|^{-2h_{1}} \|\bar{c}_{2}\bar{z}_{2} + \bar{d}_{2}\|^{-2\bar{h}_{2}} \sum C_{12P}(z) \left\langle \mathcal{O}_{P}(z'_{2}, \bar{z}'_{2}) \cdots \right\rangle \end{split}$$

We know

•
$$c_1 z_1 + d_1 \sim z$$
 $\bar{c}_2 \bar{z}_2 + \bar{d}_2 \sim z$

•
$$z_2' \sim z_2$$
 $\bar{z}_2' \sim \bar{z}_1$

CCFT VS BCFW

- Consider [2,1)-shift

$$p_1' = p_1 - zq$$
, $p_2' = p_2 + zq$, $q = -|2\rangle[1|$

- Equivalent to transforming celestial variables as follows ($arepsilon_1=arepsilon_2=1$)

$$\begin{array}{lll} \varepsilon_{1}\omega_{1} \; \mapsto \; \varepsilon_{1}^{\prime}\omega_{1}^{\prime} \; = \; \omega_{1} - z\sqrt{\omega_{1}\omega_{2}} & \qquad & \varepsilon_{2}\omega_{2} \; \mapsto \; \varepsilon_{2}^{\prime}\omega_{2}^{\prime} \; = \; \omega_{2} + z\sqrt{\omega_{1}\omega_{2}} \\ z_{1} \; \mapsto \; z_{1}^{\prime} \; = \; z_{1} + \frac{z_{12}\,z}{\varepsilon_{1}\sqrt{\omega_{1}}} & \qquad & z_{2} \; \mapsto \; z_{2}^{\prime} \; = \; z_{2} \\ & \qquad & \bar{z}_{2} \; \mapsto \; \bar{z}_{2}^{\prime} \; = \; \bar{z}_{2} + \frac{\bar{z}_{12}\,z}{\sqrt{\omega_{2}}} \\ \bar{z}_{1} \; \mapsto \; \bar{z}_{1}^{\prime} \; = \; \bar{z}_{1} & \qquad & \bar{z}_{2}^{\prime} \; \mapsto \; \bar{z}_{2}^{\prime} \; = \; \bar{z}_{2} + \frac{\bar{z}_{12}\,z}{\sqrt{\omega_{2}}} \\ \end{array}$$

. Take $z \to \infty$ limit, $\lim_{z \to \infty} z_1' = z_2 = z_2'$ and $\lim_{z \to \infty} \bar{z}_2' = \bar{z}_1 = \bar{z}_1' \Leftrightarrow$ coincident limit on CS

STEP 3: DETERMINE $C_{12P}(z)$

· Given the OPE

$$\mathcal{O}_{\Delta_{1},J_{1}}(z'_{1},\bar{z}'_{1}) \mathcal{O}_{\Delta_{2},J_{2}}(z'_{2},\bar{z}'_{2}) \sim \sum_{J_{P}} g_{12P} \frac{(\bar{z}'_{12})^{J_{1}+J_{2}-J_{P}-1}}{z'_{12}} B(\Delta_{1}-1+J_{2}-J_{P},\Delta_{2}-1+J_{1}-J_{P}) \mathcal{O}_{\Delta_{P},J_{P}}$$

$$+ \sum_{J_{P}} g_{12P} \frac{(z'_{12})^{J_{P}-J_{1}-J_{2}-1}}{\bar{z}'_{12}} B(\Delta_{1}-1-J_{2}+J_{P},\Delta_{2}-1-J_{1}+J_{P}) \mathcal{O}_{\Delta_{P},J_{P}}$$

[Pate, Raclariu, Strominger, Yuan, '19], [Himwich, Pate, Singh, '21]

- · g_{12P} is the 3pt coupling constant and B(a,b) is the Euler Beta function
- We know $z_{12}' \sim \frac{1}{z}$ and $\bar{z}_{12}' \sim \frac{1}{z}$
- Inverse Mellin: Beta function tells us $\omega^{\#} \sim z^{\#}$

STEP 4: POWER COUNTING

· Recall that

$$\Lambda_{1} \tilde{\Lambda}_{2} \left\langle \prod_{j} \mathcal{O}_{\Delta_{j}, J_{j}}(\epsilon_{j}, z_{j}, \bar{z}_{j}) \right\rangle = |c_{1}z_{1} + d_{1}|^{-2h_{1}} |\bar{c}_{2}\bar{z}_{2} + \bar{d}_{2}|^{-2\bar{h}_{2}}$$

$$\left[\sum_{J_P} \frac{C_{12P}^{(1)}}{z_{12}'} + \sum_{J_P} \frac{C_{12P}^{(2)}}{\bar{z}_{12}'} \right] \left\langle \mathscr{O}_P(z_2, \bar{z}_1) \cdots \right\rangle$$

$$\frac{1}{z_{12}} \text{ term } \sim z^{J_2 - J_1 - J_P}$$

$$\frac{1}{\bar{z}_{12}}$$
 term ~ $z^{J_2-J_1+J_P}$

EXAMPLE: PURE YANG-MILLS

- 3-point interaction selects J_{P}

.
$$\frac{1}{z_{12}}$$
 term ~ $\overline{\text{MHV}}$ vertex $J_P = J_1 + J_2 - 1$

.
$$\frac{1}{\bar{z}_{12}}$$
 term ~ MHV vertex $J_P = J_1 + J_2 + 1$

EXAMPLE: PURE YANG-MILLS

	$\frac{1}{z_{12}}$ term		$\frac{1}{\bar{z}_{12}}$ term	
$\langle J_1, J_2]$	$J_P = J_1 + J_2 - 1$	$z^{J_2-J_1-J_P}$	$J_P = J_1 + J_2 + 1$	$z^{J_2-J_1+J_P}$
(+,+]	1	$\frac{1}{z}$	3	
<pre>< + , -]</pre>	-1	$\frac{1}{z}$	1	$\frac{1}{z}$
⟨ − , +]	-1	z^3	1	z^3
⟨ − , −]	-3		-1	$\frac{1}{z}$

· Match the ones expected [Arkani-Hamed, Kaplan, '08]

Comments:

- For Yang-Mills, the color factors were suppressed in the OPE $\mathcal{O}_1^a\,\mathcal{O}_2^b\,\sim\,if^{abc}\,\mathcal{O}_P^c$
- · Color-ordered: leading singularity comes from 1 and 2 adjacent
- . Look at the final result $z^{J_2-J_1\pm J_P}$: double copy relation is manifest via $z_{GR}=z_{YM}^2$

COMMENTS

• Celestial OPE \simes Splitting function

$$Split_{s_{1},s_{2}}^{s_{3}=s_{1}+s_{2}-p-1} = \frac{\bar{z}_{12}^{p}}{z_{12}} (\varepsilon_{1}\omega_{1})^{p-s_{1}} (\varepsilon_{2}\omega_{2})^{p-s_{2}} (\varepsilon_{1}\omega_{1} + \varepsilon_{2}\omega_{2})^{s_{3}}$$

$$Split_{s_{1},s_{2}}^{s_{3}=s_{1}+s_{2}+p+1} = \frac{z_{12}^{p}}{\bar{z}_{12}} (\varepsilon_{1}\omega_{1})^{p+s_{1}} (\varepsilon_{2}\omega_{2})^{p+s_{2}} (\varepsilon_{1}\omega_{1} + \varepsilon_{2}\omega_{2})^{-s_{3}}$$

[Fan, Fotopoulos, Taylor, '19]

• Split
$$_{s_1,s_2}^{s_3} \sim z^{\pm s_3}$$

• Proper little group factors to remove the z-dep. from (n-1)-pt amplitude $\Rightarrow z^{s_2-s_1\pm s_3}$

- · Outlook/Open questions
 - · Unitarity and locality encoded in CCFT data?
 - · Can we use CCFT data to constrain the bulk interaction?
 - · Can we relate celestial BCFW and conformal block decomposition?

. ...

INFINITESIMAL-Z STORY

BG EQUATION VS BCFW

- Story begins with [Hu, Ren, Yelleshpur Srikant, Volovich, '21]
 - Color-ordered Banerjee-Ghosh equation is equivalent to infinitesimal BCFW shift acting on Parke-Taylor formula
 - BG equation derived in [Banerjee, Ghosh, '20] can be used to constrain MHV gluon correlators
 - · Null states, lean to celestial bootstrap program,...

BG EQUATION VS BCFW

- In this work, we continue this exploration
 - · BCFW as angle-dependent Lorentz transformation
 - BCFW interpreted as energy-dependent generalization of the hard superrotation transformation
 - Impletment BCFW shifts to all operators \rightarrow recast as soft insertion \rightarrow BG equation
 - Extend this story for super-BCFW

- · Soft and collinear limit commutes
- . Leading soft gluon current $j^{+,a} = \lim_{\Delta \to 1} \left(\Delta 1\right) \mathcal{O}_{\Delta,J}$ is a Kac-Moody current
 - · Ward Identity:

$$\left\langle j^{+,a}(z) \prod_{i=1}^{n} \mathcal{O}_{\Delta_{i},J_{i}}^{a_{i}}(z_{i},\bar{z}_{i}) \right\rangle = -\sum_{k=1}^{n} \frac{\mathcal{F}_{k}^{a}}{z - z_{k}} \left\langle \prod_{i=1}^{n} \mathcal{O}_{\Delta_{i},J_{i}}^{a_{i}}(z_{i},\bar{z}_{i}) \right\rangle$$

- \mathcal{T}_k^a is the SU(N) generator: $\mathcal{T}_k^a\mathcal{O}_j^b = \delta_{kj} i f^{abc}\mathcal{O}_j^c$
- Restatment of the leading soft gluon theorem

- Subleading soft gluon current $S^{+,a} = \lim_{\Delta \to 0} \Delta \, \mathcal{O}_{\Delta,J}$
 - · Ward Identity:

$$\langle S^{+,a}(z,\bar{z}) \prod_{i=1}^{n} \mathcal{O}_{\Delta_{i},J_{i}}^{a_{i}}(z_{i},\bar{z}_{i}) \rangle$$

$$= \sum_{k=1}^{n} \epsilon_{k} \frac{2\bar{h}_{k} - 1 + (\bar{z}_{k} - \bar{z})\bar{\partial}_{k}}{z - z_{k}} \mathcal{T}_{k}^{a} T_{k}^{-1} \langle \prod_{i=1}^{n} \mathcal{O}_{\Delta_{i},J_{i}}^{a_{i}}(z_{i},\bar{z}_{i}) \rangle$$

- . T_k is the conformal weight shifting operator: $T_k\,\mathcal{O}_{\Delta_j,J_j}=\delta_{kj}\,\mathcal{O}_{\Delta_j+1,J_j}$
- · Restatement of the subleading soft gluon theorem

CONSTRAINT ON OPE

From the Ward Identity, we can extract the OPE $S^{+,a}(z,\bar{z})$ $\mathcal{O}^{+,b}(z_1,\bar{z}_1)$

$$S^{+,a}(z,\bar{z}) \mathcal{O}^{+,b}(z_1,\bar{z}_1) \sim \left[\frac{1}{z-z_1} (\cdots) + \sum_{p=0}^{\infty} (z-z_1)^p (\cdots) \right] \mathcal{O}^{+,b}(z_1,\bar{z}_1)$$

+
$$(\bar{z} - \bar{z}_1) \left[\frac{1}{z - z_1} (\cdots) + \sum_{p=0}^{\infty} (z - z_1)^p (\cdots) \right] \mathcal{O}^{+,b}(z_1, \bar{z}_1)$$

On the other hand, the OPE of two hard gluons is determined by asymptotic symmetries / collinear limits

$$S^{+,a}(z,\bar{z}) \mathcal{O}^{+,b}(z_1,\bar{z}_1) = \lim_{\Delta \to 0} \Delta \mathcal{O}_{\Delta}^{+,a}(z,\bar{z}) \mathcal{O}_{\Delta_1}^{+,b}(z_1,\bar{z}_1)$$

- Equating these two $(\bar{z}=\bar{z}_1)$ gives us

$$\bullet \ \Psi^a \equiv \mathcal{D} \mathcal{O}_{\Delta_1}^{+,a}(z_1,\bar{z}_1) = 0$$

- . Ψ^a is a null state: $L_1\Psi^a=\bar{L}_1\Psi^a=j_m^{+,a}\Psi^b=0$ (BMS primary)
- · Inserting this into a correlation function yields the differential equation

$$\cdot \left\langle \Psi^a \mathcal{O}^{a_2}_{\Delta_2, J_2} \cdots \mathcal{O}^{a_n}_{\Delta_n, J_n} \right\rangle = 0$$

BG EQUATION

· Benerjee-Ghosh equation for MHV gluon:

$$\begin{split} & \left[\frac{C_A}{2} \frac{\partial}{\partial z_i} - h_i \sum_{\substack{j=1 \ j \neq i}}^n \frac{T_i^a T_j^a}{z_i - z_j} \right. \\ & + \frac{1}{2} \sum_{\substack{j=1 \ j \neq i}}^n \frac{\epsilon_j \left(2\bar{h}_j - 1 - (\bar{z}_i - \bar{z}_j) \frac{\partial}{\partial \bar{z}_j} \right)}{z_i - z_j} T_j^a P_j^{-1} T_i^a P_{-1,-1}(i) \right] \left\langle \prod_{k=1}^n \mathcal{O}_{h_k,\bar{h}_k}^{a_k}(z_k, \bar{z}_k) \right\rangle_{\text{MHV}} = 0 \end{split}$$

[Banerjee, Ghosh, '21]

- · One equation for each positive helicity gluon
- · No obvious momentum space origin
- · Easier to deal with color-ordered amplitudes

MOMENTUM SPACE ORIGIN

· Look at the color-ordered version of the BG:

$$\left(\partial_{i} - \frac{\Delta_{i}}{z_{i-1,i}} - \frac{1}{z_{i+1,i}} + \epsilon_{i}\epsilon_{i-1} \frac{\Delta_{i-1} - J_{i-1} - 1 + \bar{z}_{i-1,i}\bar{\partial}_{i-1}}{z_{i-1,i}} T_{i}T_{i-1}^{-1}\right) \tilde{A}_{n}(1,\dots,n) = 0$$

. Map back to the $\{\lambda, \tilde{\lambda}\}$ basis:

$$D_{i,i-1}A_n := \left(\lambda_{i-1}\frac{\partial}{\partial \lambda_i} - \tilde{\lambda_i}\frac{\partial}{\partial \tilde{\lambda_{i-1}}}\right)A_n = \frac{\langle i-1, i+1 \rangle}{\langle i+1, i \rangle}A_n$$

. LHS: BCFW shift $\lambda_i\mapsto \lambda_i+z\lambda_{i-1}$, $\tilde{\lambda_{i-1}}\mapsto \tilde{\lambda_{i-1}}-z\tilde{\lambda_i}$ can be implemented via $A(z)=\exp z\,D_{i,i-1}A(0)$

RHS: Parke-Taylor formula

BCFW AS HARD SUPERROTATION

. Hard superrotation charge $Q_H[\xi_Y] = i \mathcal{L}_\xi$

$$\mathscr{L}_{\xi} | \omega_k, z_k, \bar{z}_k \rangle = \left[Y_k^z \partial_{z_k} - \frac{1}{2} D_z Y^z (-\omega_k \partial_{\omega_k} + s_k) + h.c. \right] | \omega_k, z_k, \bar{z}_k \rangle$$

• For BCFW shift, $w \to 0$

$$z_i \mapsto z_i + \beta_i w - \alpha_i \beta_i w^2 + \cdots$$

• ω_i scaling $\Rightarrow D_z Y^z(z_i) = -2\alpha_i w$

$$Y^{z}(z \sim z_{i}) = w \left[\beta_{i} - 2 \alpha_{i} (z - z_{i}) + \mathcal{O}((z - z_{i})^{2}) \right] + \mathcal{O}(w^{2})$$

BCFW AS HARD SUPERROTATION

• Given
$$Y^{z}(z \sim z_{i}) = w \left[\beta_{i} - 2 \alpha_{i} (z - z_{i}) + \mathcal{O}((z - z_{i})^{2}) \right] + \mathcal{O}(w^{2})$$

We can match this behavior with meromorphic $Y^z(z)$ following [Pasterski, '15]

. Schematically
$$Y|_{z\sim z_i} \propto w \sqrt{\frac{\omega_j}{\omega_i}} \left[z_{ij} + 2(z-z_i) + \ldots \right]$$
 for $\lambda_i \mapsto \lambda_i + w \lambda_j$

· Energy-dependent generalization of hard superrotation

- · Yang-Mills, gluon correlator
- Consider (i, k]-shift for all $k \neq i$ with fixed i
- . Shift parameter as $z = \frac{(-2)\omega_i}{\langle ik \rangle} \mathcal{T}_k^a$
- · This shift can be impletmented by the exponential

$$\exp z \left\{ \sum_{k \neq i} \frac{(-2)\omega_i}{\langle ik \rangle} \mathcal{T}_k^a \left[\lambda_k \frac{\partial}{\partial \lambda_i} - \tilde{\lambda_i} \frac{\partial}{\partial \tilde{\lambda_k}} \right] \right\} A_n$$

· Impletment to the celestial correlator as

$$\exp\left\{z\left[-j_0^a(i)\,L_{-1}(i)+2\,h_i\,j_{-1}^a(i)+P_{-\frac{1}{2},-\frac{1}{2}}(i)\,\mathcal{J}^a_{-\frac{1}{2},\frac{1}{2}}(i)\right]\right\}\left\langle\mathcal{O}^{a_i}_{\Delta_i,J_i}(z_i,\bar{z}_i)\prod_j\mathcal{O}^{a_j}_{\Delta_j,J_j}(z_j,\bar{z}_j)\right\rangle$$

- . $j_0^a(i) = \mathcal{T}_i^a$ gauge transformation
- . $P_{-\frac{1}{2},-\frac{1}{2}}(i)\mathcal{O}^{a_i}_{\Delta_i,J_i}=\mathcal{O}^{a_i}_{\Delta_i+1,J_i}$ global translation
- . $j_{-1}^a(i) = \sum_{k \neq i} \frac{\mathcal{T}_k^a}{z_{ki}}$ inserting a leading soft ($\Delta \to 1$) helicity +1 gluon collinear with \mathcal{O}_i

$$\mathcal{J}^a_{-\frac{1}{2},\frac{1}{2}}(i) \ = \ \sum_{k \neq i} \, \varepsilon_i \varepsilon_k \, \frac{2\bar{h}_k - 1 + \bar{z}_{ki} \bar{\partial}_k}{z_{ik}} \, T_k^{-1} \, \mathcal{T}^a_k \quad \text{inserting a sub-leading soft ($\Delta \to 0$)}$$

helicity +1 gluon collinear with \mathcal{O}_i

· Act on the MHV correlator

$$\exp\{z[\cdots]\}\langle \rangle_{\text{MHV}} = \langle \rangle_{\text{MHV}} + z[\cdots]\langle \rangle_{\text{MHV}} + \mathcal{O}(z^2)$$

- Compare both sides of the equation \Rightarrow 1st order PDE
- Take $J_i = +1 \Rightarrow$ Banerjee-Ghosh equation

$$\left[-j_0^a(i) L_{-1}(i) + (2h_i - 1) j_{-1}^a(i) + P_{-\frac{1}{2}, -\frac{1}{2}}(i) \mathcal{J}_{-\frac{1}{2}, \frac{1}{2}}^a(i) \right]$$

$$\left\langle \mathcal{O}_{\Delta_i, +}^{a_i}(z_i, \bar{z}_i) \prod_j \mathcal{O}_{\Delta_j, J_j}^{a_j}(z_j, \bar{z}_j) \right\rangle_{\text{MHV}} = 0$$

· Extend to super-BCFW is straightforward

$$\mathcal{N} = 4 \text{ SYM: } \eta_k^A \ \mapsto \ \eta_k^A - z \, \frac{(-2)\omega_i}{\langle ik \rangle} \, \mathcal{T}_k^a \, \eta_i^A \quad \text{for all } k \neq i$$

· Implement to the celestial superamplitude

$$\exp\,z\,\left\{\,\text{ same as above}\,-\frac{1}{\sqrt{2}}\tilde{Q}^A_{-\frac{1}{4},-\frac{1}{4}}(i)\,S^a_{-\frac{3}{4},\frac{1}{4}}(i)\,\right\}\,\left\langle\,\prod_j\Omega_j^{a_j}\right\rangle$$

.
$$\tilde{Q}^A_{-\frac{1}{4},-\frac{1}{4}}(i) = \varepsilon_i \sqrt{2} \, T_i^{\frac{1}{2}} \eta_i^A$$
 i-th supercharge

$$S_{-\frac{3}{4},\frac{1}{4}}^{a}(i) = \sum_{k \neq i} \varepsilon_k T_k^{-\frac{1}{2}} \frac{(-1)^{\sigma_k} \mathcal{T}_k^a}{z_{ik}} \frac{\partial}{\partial \eta_k^A} \quad \text{inserting a leading soft } (\Delta \to \frac{1}{2}) \text{ helicity } + \frac{1}{2}$$

gluino that is collinear with \mathcal{O}_i

- · Act on the MHV correlator
- · 1st order PDE takes the following form

same as above (BG operator)
$$-\frac{1}{\sqrt{2}}\tilde{Q}^{A}_{-\frac{1}{4},-\frac{1}{4}}(i)S^{a}_{-\frac{3}{4},\frac{1}{4}}(i)$$
 $\left\langle \prod_{j} \Omega^{a_{j}}_{j} \right\rangle_{\mathrm{MHV}} = 0$

- · Look at the component level:
 - . $J_i=+1\Rightarrow$ Banerjee-Ghosh equation $\left[$ BG operator $\left]\left\langle \mathcal{O}_{i,+}^{a_i}\prod_j\mathcal{O}_j^{a_j}\right\rangle =0$

$$J_i = -1 \Rightarrow \left[\text{BG operator} \right] \left\langle \mathcal{O}_{i,-}^{a_i} \mathcal{O}_{s,-}^{a_s} \prod_j \mathcal{O}_{j,+}^{a_j} \right\rangle = \sum_{k \neq i,s} \left(\cdots \right) \left\langle \tilde{\lambda}_{i,A}^{a_i} \lambda_k^{a_s,A} \prod_j \mathcal{O}_j^{a_j} \right\rangle$$

- $ilde{Q}^A(i) \;\Rightarrow { t BG}$ operator as raising the helicity of \mathcal{O}_i

INFINITESIMAL-Z STORY

- Outlook:
 - . BCFW vs BG equation for MHV Graviton?
 - Extend to NMHV or higher order?
 - Extend to finite-z?

• •••

THANK YOU!