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Introduction

The AdS/CFT correspondence

Black hole formation in AdS “ Thermalization in CFT

e Solving the dynamics of CFTs is hard.

« 2D CFT is slightly tractable because the dynamics is highly
constrained by the conformal symmetry.

e The confsymin 2D is infinite dimension (the Virasoro sym).

 Any 2D CFT has an infinite number of commuting conserved

charges known as quantum KdV charges.
(Korteweg & de Vries)



Virasoro algebra
B 2D CFT is controlled by Virasoro algebra.
We consider (1+1)D CFT on a circle ¢ ~ ¢ + 27 .

Stress energy tensor T(SO) — ZLne_imO - 2%

L,, satisfy the Virasoro algebra:

c
(L, Ly = (n—m) Ly, + E(n?’ — N)0n+m.0



Virasoro algebra

B 2D CFT is controlled by Virasoro algebra.
We consider (1+1)D CFT on a circle ¢ ~ ¢ + 27 .

Stress energy tensor T(SO) — ZLne_imO - 2%

L,, satisfy the Virasoro algebra:

c
(L, Ly = (n—m) Ly, + E(n?’ — N)0n+m.0

B The sector of stress-energy tensor is integrable.

Any 2D CFT has an infinite number of commuting conserved
charges known as quantum KdV charges.

(Korteweg & de Vries)



Quantum KdV charges

27
d
Quantum KdV charges Q21 :/ %Tgk(w), k=1,2,---
0
 Local densities
2
Is =1, T4::T2:7 T6::T3:—|—C;_2 :T’Q;, Tg = - --

General expressions are not known but can be constructed order by order.

27
dp c
— _rr — [,h — — <«—— usual Hamiltonian
Q1 /o o (90) 0 24

c-+ 2 C C 11
—12+2S L_,L, — L —
Qs =Lg+2) 12 O+24(24+60>

n=1

They commute with each other. [Qor_1,Q2¢-1] =0



Generalized Gibbs ensemble in CFT

B Equilibration with conserved charges

* We expect that a generic excited state is described by
an equilibrium ensemble after a sufficient time.

 If the system has a conserved charge, the equilibrium
state is generally not the Gibbs ensemble e 7
We need to introduce the chemical potential ¢ ##—+@

Generalized Gibbs ensemble (GGE)

B 2D CFT has infinite # of charges Q2x—1 (H = Lo — i = Ql)

PGGE = € k=1 H2k-1Q2o1 g typical rather than "%



Spectrum of KdV charges

To StUdy GGE pcge = ¢ 2 he1 M2k—1Q2k—1 in CFT,
we need spectrum of KdV charges.

Explicit expressions of the spectrum are unknown.

A tractable way is large c expansion.
|:> a large c spectrum of KdV charges including
(sub)subleading corrections.  [2208.01062]
Large c is also related to grauvity.

I:> New black hole solutions corresponding to
non-trivial GGE [2002.08368]



Outline

Introduction
Review of the classical KdV hierarchy

3D gravity and the KdV hierarchy

[2002.08368]
Spectrum of quantum KdV charges in large c
[2208.01062]

Summary
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B Review of the classical KdV hierarchy



KdV equation

e a mathematical model of waves on shallow water surfaces

u(t, x) - o o =

Fig. from wikipedia

[u — 6uu’ — 4u”’]

Introduced by Boussinesq (1877)
and rediscovered by Korteweg and de Vries (1895).

 Nonlinear but integrable

* |nfinite number of local conserved charges



KdV equation on circle

* Let’s consider the same eq. on 1-dim circle ¢ ~ ¢ + 27

[u = 6uu’ — 4u”’] u(t, )
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* Let’s consider the same eq. on 1-dim circle ¢ ~ ¢ + 27

[’d = 6uu’ — 4u/"] u(t, )

* |nfinite number of local conserved charges

27 27T

d d 4

Ql — / 2_90167 Qg == / i(u2 — —u”), Q5 = e
0 T 0



KdV equation on circle

* Let’s consider the same eq. on 1-dim circle ¢ ~ ¢ + 27

[u = 6uu’ — 4u/"] u(t, )

* |nfinite number of local conserved charges

27 27T

d d 4

Ql — / 2_90167 Qg == / i(u2 — —u”), Q5 = e
0 T 0

General charges are given by the Gelfand-Dikii polynomials

27
d
Q2k—1 =/ _SORk
0 27T

4 8
Ro=1, Ri=u, Ry=u*— §82u, R3 = u® — 4ud?*u — 2(0u)* + 584u

DyRi, Dy =1u'+2ud, — 20, (4 = Dyu)




KdV hierarchy

An infinite tower of equations

y /
u=1u

/77

0 = 6un’ — 4u'" +——— KdVeq.

w = 15u?u’ — 40u'u” — 60un””’ + 240"

u = kDyRE_1



KdV hierarchy

An infinite tower of equations

=
y /
U =mu

/77

U = 6uu’ — 4u"" +—— KdVeq.

KdV hierarchy < = 15u”u’ — 40u'v" — 60uw’” + 24u""

U = k’DuRk_l




KdV hierarchy

An infinite tower of equations

=
. /
Uu=1mu

/77

U = 6uu’ — 4u'"" +—— KdVeq.

KdV hierarchy < = 15u”u’ — 40u'v" — 60uw’” + 24u""

U= KD, Ri_1

-

® Each eq. is integrable and the conserved charges are
given by

2T
[Q2k1 :/ ;Z—ka J classical KdV charges
0




Poisson bracket

Mode expansion on a circle: © = g une’"?

n

Introduce a Poisson bracket for modes

[ iH{Un, Um } = (N — M)Upam + 2n35n+m,0 J




Poisson bracket

Mode expansion on a circle: © = g Une'"?

n

Introduce a Poisson bracket for modes

[ iH{Un, Um } = (N — M)Upam + 2n35n+m,0 J

Each eq. in the KdV hierarchy is generated by KdV charge
U= kDyRi_1 = {Qak—1,u}
KdV charge is a Hamiltonian in this sense.

KdV charges commute with each other in this Poisson bracket.

{Q21-1,Q20-1} =0



Classical limit of Virasoro

The Poisson algebra  i{uy,, um} = (n — m)upim + 2n35n+m,o

is the classical limit of the Virasoro algebra.

1 C



Classical limit of Virasoro

The Poisson algebra  i{uy,, um} = (n — m)upim + 2n35n+m,o

is the classical limit of the Virasoro algebra.
1 C , 3

> [Lyp, Ly, = (n—m)Lyyp + 1—2(77, — 1) 0n+m.0
. C C .
If T — Ln -y T — " zngo7
we set T'(y) Zn: e 5 24zn:ue
the quantum Virasoro alg can be written as

C
24k [una um] — (n — m)un—l-m + 2n35n—|—m,0



Classical limit of Virasoro

The Poisson algebra  i{uy,, um} = (n — m)upim + 2n35n+m,o

is the classical limit of the Virasoro algebra.

1 C
[Lyp, Ly, = (n—m)Lyyp + (n3 — 1) 0n+m.0

i 12
If weset T(p) = ZLne_m“’ —— = — Zu” :
the quantum Virasoro alg can be written as

C

24k [una um] — (n — m)un—l-m + 2n35n—|—m,0

C 1
Replacementrule o —[.] = {, } [usual =1 =1, }J

The effective Planck const Ap¢r = (24) h is small for large c.
The large ¢ physics is effectively classical even at finite h.



Classical and quantum KdV charges

27 dg@
Classical KdV charges: Q5. | = / %(uk +.-)
0

d
Quantum KdV charges: @3, |, = / Qf(T’f + )
0

In the large c limit, quantum KdV charges are reduced to
classical ones.

Replacementrule T ~ iu

k
¢ _(E cl
2k—1 24 2k—1
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B 3D gravity and the KdV hierarchy



AdS/CFT

B [et’'s consider GGE in 2D CFT.

1 CFT
e Zk Hap 1 gk—l

ZGGE

PGGE —

B For holographic 2D CFT, the large c physics is described
by the classical gravity in 3D AdS.

® What is the dual geometry of GGE in 2D CFT?



Generalized Hamiltonian

e partition function Zoap = tre” 2k pop 1 Qa1

* We can regard this as the usual thermal partition functionat f =1
but the Hamiltonian is generalized:

- —H en 1 - CFT q
ZaaE = tre 79 with  Hgep = E tsp—1CQor 1
k



Generalized Hamiltonian

partition function Zgop = tre” 2x pop 1 Qa1

* We can regard this as the usual thermal partition functionat f =1
but the Hamiltonian is generalized:

- —H en 1 - CFT q
ZaaE = tre 79 with  Hgep = E tsp—1CQor 1
k

 Partition function can be obtained by the Euclidean path-int
with the generalized Hamiltonian

AdS/CFT says Zcrr = Zgrav

B Dual geometry is saddle of the gravitational path-int
with generalized Hamiltonian.



Relation to classical KdV

« Large c CFT is related to classical KdV hierarchy.

 classical 3D gravity should be also related to it.

Indeed, that is the case!



Relation to classical KdV

Large ¢ CFT is related to classical KdV hierarchy.

classical 3D gravity should be also related to it.

Indeed, that is the case!
We will see that the generalization of Hamiltonian is

realized by the generalization of the boundary condition of
metric.

problem is reduced to
solving Einstein eq. with new boundary conditions.

We will see this is solving (general) KdV egs.



3D pure gravity

® Einstein gravity can be formulated as Chern-Simons theory

Aj: == (UJCL :|: %€a> Ta [Ta,Tb] = EabCTC, TI‘(TaTb> = %nab
_ _ ¢ 2
S = Scs|Ay] — Scs|A-], Scs|A] = % /Tr (AdA + SA > + (bdry)
62
metric gy = - Tr{(A] — A (A — A))]

® EoM is equivalent to Einstein eq. with cosmological const.

Fr =0 bulk dynamics is topological

® General sols are parametrized only by the bdry d.o.f.



Asymptotic AdS condition

The boundary d.o.f. is called boundary graviton. u+(t, ¢)
(~ CFT stress tensor)

The dynamics depends on the choice of the boundary

condition.

Generic asymptotically AdS boundary condition (in CS

formulation) is given by [Bunster, Henneaux, Perez, Tempo,
Troncoso (2014)].

g 1 11 0 0 0 0 —1
+ _ - _ _
A; N$;T1 [le(o —1)’ T_(l 0)’ T+_(o 0)]

r 14
Aif ~ ZTZE — 4—T’U,Z|:(t, SO)T:F

bdry graviton
/
Af ~ £ (fiAf + fiTh+ Z—TflT$)

N



EOM for boundary gravitons

For the gauge fixing, we have

14
+ :
P, = E(U:I: T Du, f+)

CSEoM F_; =0 mmp dr==D,, fi

On-shell Hamiltonian is given by H*[u ]|+ H ™ [u_]

SH*
where 27— = f4
5ui

EoM can be written by the Poisson bracket for the classical
KdV hierarchy as

[ui — i{Hi,ui}]




ldentification

 boundary gravitons are CFT stress tensors as

24 24 _
T = —T, u =—T
C C

e @Generalized CFT Hamiltonian

CFT g
gen Hop 1o 1

. 24\"
m) A= Zﬂzk 1Q5,_1  with MSEE:(?) H5%—1

i+ = +{H* uy} isthe generalized KdV equation.

=) Integrable EOM



Examples

e conventional choice H* = Q,

‘ EoOM uy = :I:u,’Jr (left or right mover condition)

+

Original Brown-Henneaux boundary cond



Examples

e conventional choice H* = Q,

‘ EoOM uy = :I:fu,’Jr (left or right mover condition)

fr=1 — Af ~+AZ
Original Brown-Henneaux boundary cond
° H* = Q2k—1
m) EoM U+ = £{Q—1,u+} k-th KdV eq.

° E:N2k12k1

‘ more complicated but integrable EoM (general KdV eq.)



left-right symmetric cases

Uy =u_ (= u)

For simplicity, we focus on the case
HT"=H (= H)

From EoM 44 = +={H* uy}
only static solutions are allowed: © =10

In terms of static u(y) , metric is given by

ds* = gy dt® + grrdr® + go,dp®  [Perez, Tempo, Troncoso (2016)]

—

02 A\’ SH
gtt:—<f7“—ﬂ(uf—2f )) fZQWE

2 2\’
grr — _27 ggp(p — (7“ —|_ 4_Tu>

r
N




Static solutions
(" N

52 2 62 52 2
= — _ — — /" = — p— e
gtt = (f?“ Ay (u’f 2f )) 9 grr ?“2 ) gcpgo (T + Ay U)

\ J
StaticEoM a=D,f =0 Any sol is locally AdS.

e.g. u=-1 pure AdS (thermal AdS in Euclidean signature)

u = ug (> 0) BTZ black holes (non-rotating)



Static solutions
( N

02 : 02 2 \?
gtt:_(fr_zr(uf_Qf/,)> ) grr:T_27 g¢¢:<r+_u>

4r
\_ _/

StaticEoM a=D,f =0 Any sol is locally AdS.

e.g. u=-1 pure AdS (thermal AdS in Euclidean signature)

u = ug (> 0) BTZ black holes (non-rotating)

* |n general the metric represents non-rotating black holes

horizon: 7, (p) = g\/fu }Qf"

temperature: T = zi\/fQu + f? =2ff" «—— const.
A




Conventional case

e conventional choice H = Q;

StaticEoM 0= {H,u} =u" mm) u = const. =g

?ug : /2 02 :
= — | T — ry — ; =(r4+ —u
gt Ay ) g r2 Jop Ay 0




Conventional case

e conventional choice H = Q;

StaticEoM 0= {H,u} =u" mm) u = const. =g

?ug : /2 02 :
= — | T — ry — ; =(r4+ —u
gt Ay ) g r2 Jop Ay 0

L. /
* positive u9 —— BTZ black holes r, = 5\/170

. , _ /
* negative uo —— Conical sing. at r = 5V "o
except for ug = —1 —— pure AdS

mm) Allowed solutions are pure AdS or BTZ (No hair theorem)



KdV charges of black holes

 conventional choice H = Q;

mm) u = const. = ug
— Qf =uw, Q% =uf=(QF)

cl

* For generic choices of Hamiltonian H = Zuzk 1&Wor 1

angle-dependent u(y) is allowed. g

— Q% # (@D)"

We will call such geometry KdV-charged black holes.



First nontrivial case

As a first nontrivial case, let’s introduce Q5

Ql ‘|‘M3Q

4
EoM m) ou' + 2uu’ — gu/" =0 o=

total derivative




First nontrivial case

As a first nontrivial case, let’s introduce Q5

H = puf'Qf + ps' QF

4
EoM m) o' + 2uu — gu"’ =0 o=

total derivative

4
Integrate it ™) ou + u’ — gu” =R

Newtoneq. v’ = -9,V (u)



First nontrivial case

As a first nontrivial case, let’s introduce Q5

Ql ‘|‘M3Q
/ / 4 11/ Iucljl
EoM m ov +2uu — —u” =0 Q= 7
3 Sp3
total derivative
. 2 4 1/
Integrate it ™ ou+ v’ — Ju' = R
Newtoneq. v’ = -9,V (u)
Integrate it again
1 1 3 3R
m) V) +V)=FE V) =--u’— X2 2y,

2



Potential problem

[%(u’)2 FV@) =B, V()= —ju® - o ﬁu}

m) u(p) oscillates in the range ug < u < ug

SOO(/ . Elliptic int |
\/(U—U1)(u—u2)(u_u3) IPTIC INtegra




Periodicity

u(¢) should have the period 27 \
It should go around with period 27 /k —>
/ ’UIB\/'U/

2 U1\\’U

27 2 du
2= 2V2
[ k /u3 \/(U—ul)(u—uz)(u—us)J

* This imposes a condition on u1,u2, u3.




Periodicity

u(¢) should have the period 27 \
It should go around with period 27 /k —>
/ ’UIB\/'U/

2 U1\ u

27 he du
i, WO
[ k /u3 \/(U—ul)(u—uz)(u—us)J

* This imposes a condition on u1,u2, u3.

. 3
 Another condition [ U1l + U2 + U3 = _5& ]

Uz — U3

One parameter is still free. m =
Uy — us

m=) non-trivial KdV charged black holes parametrized by m



Leading saddle?

Our question is what geometry is the leading saddle of

ZaqE = tr e~ Hgen

Non-trivial KdV charged black holes can be saddles

but it is not sure whether they are leading saddles
because BTZ is also a saddle.

Leading saddle is a classical solution minimizing
the (generalized) free energy: F'= Hyep, — S



Hawking-Page phase transition

 conventional case H = u{Q¢

* the leading saddle is
(Euclidean) BTZ black hole or thermal AdS.

H1

21 1st order phase transition at u; = 27

Hawking-Page phase transition



New phase ?

Q: Can KdV-charged black holes be the leading saddle
when we turn on chemical potentials?

H = Z tok—1Q2k—1
k

* No, if we have only y; and us.

The leading saddle is BTZ or thermal AdS.

* Yes, if we also add us.

New phase!



Phase-diagram on u- u; plane

® |eading saddle is BTZ or thermal AdS

H1 Hawking-Page

~ AdS

37T -

27T

n'f

BIZ U3

No new phase



Turn uz on

B Difficult to draw phase diagram on u¢-u3-us space.

B There exists a parameter region where a non-trivial
solution has smaller free energy than BTZ and thermal AdS.

Strateqgy

* Pick up a KdV solution
* uy & g are fixed in terms of uc
« Compare free energies



Red: KdV
Blue: BTZs
Brown: Thermal AdS

50

_100

150 -

Non-trivial KdV black holes can be a leading
saddle for specific parameters.

New phase (translation broken)



Outline

B Spectrum of quantum KdV charges in large ¢



Spectrum of KdV charges

To study GGE pace = e~ &=t 1219261 i CFT,
we need spectrum of KdV charges.

Explicit spectra of general ()21 are not known.

Our strategy is using large c limit and relation to
classical KdV charges.

c\k .
ng—ﬂ"(ﬂ) 2lk—1



Rep. of Virasoro (Verma module)

® Primary state (highest weight state) |A)
Lo|A) = A|A), LpsolA) =0

® Descendant states
A {n}) = (L-1)™ (L_2)™ -+ (L_g)™" - |A)

Lo [A, {nk}) = (A + > kn) |A, {n})

level

level 0  |A) dim=1
levell  L_1]|A) dim=1
level 2 (L_1)2 IAY, L_5]|A) dim =2

level £ (L_1)"|AY, (L_1)""2L_5|A),--- dim=p(¢)



KdV charges on Verma module

. Spectrum of Q, is easy
Qu="Lo—5; mmp QA {n}) = (A —og T Zlmk> A, {nk})

 KdV charges do not change the level.
Lo, Q2n—1] =0

Different levels are not mixed by KdV charges.

Qs
( 1 \
mm) Block diagonal Q21 = " (2)

2n—1

However, it’s hard to obtain the matrix elements of each block.
Even QY. is not known for general n.



KdV charges on primary state
Qan-114) = Q51 1A)

The exact expressions are known up to Qﬁ?

vac [Bazhanov, Lukyanov, Zamolodchikov (1994)]
IT(A) = A — ﬂ

c+ 2 ¢ (be+ 22)
A
12 i 2880

]l(lC(A) _ AQ L
(c+2) (3¢ + 20)

o . 4+ 4 - (3c+14) (7c + 68
]éac<A) _ A.S o C —g AZ + — A . C ( ( +290)‘3(<)4( -+ ) ?
YL 90.
N S S S 15¢2 + 194¢ + 568 .
JYe(A) = A—l . ¢ AS AZ—
o (A) 6 i 1440

(c+2) (¢+10) (3¢ + 28) AL S (3¢ +46) (25¢? + 426¢ + 1400)
10368 24883200




Large ¢ KdV charges on primary state

The known results satisfy

W)= (a-2) o

where | suppose that conf dim is also large A ~ ¢

cl

. . k
This reminds us of Q5,._; = (Qf')" for u = const. = ug

We extend this to non-const u =) u,e™?



Classical phase space

u(p) = 3 une'™?

Phase space is parametrized by u, (n=0,£1,42,---)

This space has the Poisson structure:

iU, Uy } = (M — M) Up1m + 2n35n+m,0

There is a conserved quantity: {h,u,} = 0 forany u,

st. h=wug+ C’)(u2)

Inversely, uo is parametrized by h, u, (n # 0)



Action-angle variables

We can take more convenient coordinates Ii,0, (k=1,2,---)
rather than u, (n # 0) such that

{0k, Lo} =0ke, uo=h-+ Zk‘]k
k

The relation between the variables are complicated.

. 1 1 1
V Ike_wk — U + — E ——Up, Up, T O(u3>
2
V2k(k2 + ) 1 i p1p2
2

The KdV charges only depend on the action variables.

Q1 =up=h+ Z/dk, Qan—1 = h" + O(ly)
k



Old quantization

B Classical KdV charges

co n—1 1
n 2n —DI'(n+1)I'(5) 1. o
Qan—1=h"+> (2I‘(j+ §)F(n—j)2 RIS 4+ O(1).
— 2




Old quantization

B Classical KdV charges

o o n—1 (2n — 1)I'(n + 1)F(%)
Qan—1 = h" + Z Z 2I(j + 2)T'(n — j)

k=1 j=0
We will guess the spectrum of the quantum KdV charges by
using the semiclassical quantization.

pr IR 4+ O(T7).

B Bohr-Sommerfeld quantization

(Einstein-Brillouin-Keller method) {0k, I} = Ok
Pegy
Classical trajectory is a closed circle. /
: : : : 1 24 1
mm) Action variable is quantized as I, = . ]{Ikdek = (nk + 5)

We will see it works at O(1/c).



Semiclassical quantization

C mn
* Naive guessis Q7 | = (ﬂ) -

) 24 1
with replacement I = — + 5



Semiclassical quantization

C mn
* Naive guessis Q7 | = (ﬂ) -

) 24 1
with replacement I = — (nk + 5)

For exapmple, n = 1,

(i) P = (24) h+zk[‘“

2 24( 1)
C > 1 C 2

| o 2 zeta function regularization
¢ 1
:2—4h—2—4+;knk C(_l)__ﬁ

It reproduces Qf = A——+ank if we set f — 22 <A—C2_41)
c




KdV spectra at O(1/c)

U (2n - DT(n+ 1)I(L)

2n 1—h"—|—zz 2F]—|— T — )

k=1 53=0

C\" e 24 24 1
@ gn—l = (ﬂ) zln—p h = ?A, I, = - (nk + 5)
c—1

hn 1— jk2]+1l —|—O(Ik)

It is consistent with explicit diagonalization for small level with small n
and also the known results for

P (A (n=1,---,8),  Tr(Qan_1eP9) (n=1,---,7)



Extension to higher orders

At the 2nd order of the action variables, the KdV charges are

S =R eI +Z <”2)Ik+ S0+ 0 (1)
=1 kﬁ 1

O (I7)

) _ ”i (2n —1)(2mn +2n — 3m — 2)T'(n + 1T (1)
g 16T (m + 2) T'(n — m)

m=0

hn—m—lem

n—1 2 1 n—m—1 m—1
(n) (2n = 1)T(n+ 1T (3) h 2(m—s)—1y2s+1
bke_z 22I‘(n—m)F(m—|—%> Zk ¢

m=1 s=0




Naive semiclassical results

* No reason that semiclassical quantization works at the
subsubleading order. But let’s try it.



Naive semiclassical results

* No reason that semiclassical quantization works at the
subsubleading order. But let’s try it.

n 24 ~ 24 1
Replacement Q2 | = (i> g?n_l, h=—A, I,=— (nk 4 =
C

24 cC 2
gives
. Cn—1Tn+1T(5) / e\ xp 1 i 9101~
nglve An 4+ e A" I fe ]—}—1n
ot ;JZO 2I (j + 2)L(n —j) (24> :
Znil (2n —1)(2mn +2n —3m — 2)I'(n + 1)T (%) (£>m—1 An-m—1;.2m-2
, — — 16T (m + 3) I'(n — m) 24 g
O(c"™7) i
1 - 2n—1 2F(n+1)r( ) c\m! An—m—1 2(m—s)—1p2s+1~ ~
+§k 22122Fn— )F( 3) (ﬂ) A Zk ‘ e
T 0" ~ 1
Nk = Nk + =

2



Naive semiclassical results

* No reason that semiclassical quantization works at the
subsubleading order. But let’s try it.

c\" 24 - 24 1
Replacement Q% . = (—) o h=22A, =" (ng+ -
P @21 21 o2n—1 C k= K+ 5
gives
: Cn—1Tn+1T(5) / e\ xp 1 i 9101~
nglve An 4+ : e A" I fe Jj+1
2n—1 ;JZ() QF ]+ )I‘(n—]) (24> "k
_ _ _ 1 m—1 _
—Z 2n — 1)( 2771?; 2n 3377; 2T(n+ 1) (5) (L) b Anmetpam2
_2) k. m=0 (m+ _> (n_m)
O(c" .
1 S n_l 2F(n—|—1)F( ) c\m ! An—m—1 2(m—s)—1p2s+1~ ~
+§szlz2rn— m)T (m + 3) () & Zk O
T+ O ) 1
NE = Ng + 5

It fails because it is not consistent with the known results.



Thermal 1pt function
4| The differences of thermal 1-pt functions I
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Guess

4| The differences of thermal 1-pt functions

<Q3>q o <Q3>sc —
(Qs5)q — (Qs5)sc =
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/é@ET+UA\\1
— + =55 Ba
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Guess

4| The differences of thermal 1-pt functions

/3 (2B, + 1) AD 1

PR - — E
(Q3)g — (@3)sc » 535 L4
(=15E, — B)A%2| 7 . Fge
— sc — E A —
\@s)q = (Qs) c T 96742 T 2502
(—42E5 —21)A3 | 259 _ -, EgcA  127Esc?
— sc — EjA* —
\@r)q = (Qr) c 720 200 2592000
<Q13>q o <Q13>sc :\ j
Our guess about general terms:
4 ™
nn—1)2n —1 An—1
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Guess

4| The differences of thermal 1-pt functions

~

/1
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Our guess about general terms:




Guess

4| The differences of thermal 1-pt functions

Q) — (O3] __3(2E2+1)A+KE \
3/¢ T \%8/sc = 2c 288"
(—15E; — ) A% 7 - Fee
(@5)q = (@s)se = c T 96712 T 9500
B _ (—42B, —21)A3| 259 <,  EgcA  127Egc?
(@7)g = (Q)se = c 7207 T 200 T 2592000
(Qi13)q — (Q13)sc = k /
Our guess about general terms:
. )
(2n — 1)I'(n + 1)I($)¢(—25 — 1) e 1 135 + 6
16T (j + 3)I'(n — j) (2n=1) EZ:% 2+1 6
J—1 .
_ X Eo9jyo (i) AP Y




KdV spectra at O(1/c?)

Our conjectured result:

N n—l)F(nJrl)F(%) C\T X121
Q3 1_A +ZZ 2I‘(3—|— )0 (n — ) (ﬂ) A Ll

n(n — 1)( — 1)Ar—!

() 135+ 6(2n — 1) i 6 <£>j_1An_1_jk2j+1ﬁk;
48T (5 + 2)T'(n — j) 20 +1 24

— 2n—1)(2mn+2n—-3m —2)I'(n+ 1)T (%)(
16T (m+ 3)T'(n —m)

%) An m— 1k2mnk

= 2n—1)T(n+ DT (3) / c\m-1 4 . ,
- n—m-— (m—s)—1p2s+1> =~
Z 22T (n — m)T (m + 3) (24) A Zk e it

It is consistent with the known results for thermal 1pt functions:
Tr(Qan—1e ") (n=1,---,7)



Check

B Our result at O(1/c?) also passes other consistency checks.

q
Q2n—1

Explicit diagonalization for small level with small n.

For primary states, we can compute the large ¢ spectrum
of KdV charges recursively from small n using the OED/IM

correspondence.

The result reproduces our conjecture for primary states.
ne — 0
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Summary 1

Any 2D CFT has an infinite number of commuting local
charges (KdV charges).

The generalized Gibbs ensemble including KdV charges is
related to understanding the thermalization in 2D CFT and

formation of 3D black holes.

To analyze the GGE, the spectra of KdV charges are useful.
We are investigating the spectra at the large ¢ limit.
Guessed the spectra at 0(c~%) from the semiclassical
guantization.

Proof?



Summary 2

We have also investigated the gravitational theory
corresponding to the generalized Hamiltonian.

There are non-trivial black holes corresponding to the
solutions of KdV hierarchy.

What microstates correspond to these solutions?

There are a lot of things that we have to understand both in

CFT and gravity sides.






BLZ’s work

B Bazhanov, Lukyanov, Zamolodchikov introduced T-operator

which is quantum analog of classical transfer matrix.
[Bazhanov, Lukyanov, Zamolodchikov (1996)]

The T-operator is a generating function of KdV charges.

log T(\) ~ kA'TET — Z C, A2+ (A — 00)

1 S 2n
2\/_F (2 2) - p )>1+£ c, V(1L +€)B°"T ((n - ‘)(1 + §)) (F (1 . 52))—(2n—1)(1+€)

T T+ D1+ (n— 1))

/1—c /25—c
b= 24 1—52

* classical case TCl()\) = tr M ()

l\')lcl‘l‘r |

M is the monodromy matrix for Schrodinger op. L = 02 + u(p) — A°
L; =0

(V1(p +2m), (@ + 2m)) = (Y1(p), P2(p)) M (A)



BLZ’s Q operator

B BLZ also introduced Q-operator [T()\),Q()\)] =0

For primary states, we define
T(A,N) = (A|T() [A),  A(A,N) = A2/ (A|Q(V) [A)

2

P c—1
A==—

52" g

They satisfy  T(A\)A(\) = e™PA(g\) + e > A(q 1)),  g=e""

In principle we can obtain the KdV charges for primary states
if we know the function A(A,)).



ODE/IM correspondence 1

[Dorey, Tateo (1998), Bazhanov, Lukyanov, Zamolodchikov (1998)]

B There is a miracle relation between A(A,)\) and
the spectral determinant for QM on half line.

[(1+1)

02U (x) + (E A ) U(x) =0 (x > 0)

1 2
ool i

* LetE, bethe eigenvalues for the following boundary cond:

[+1
%\/ 2—|—2a ~2t%a ‘ + O(2'3) (x — 0),
r 1+ 2l+1)

242«

. at E
Spectral determinant: D(E,l) = H (1 — E—n>

n=1



ODE/IM correspondence 2

[Dorey, Tateo (1998), Bazhanov, Lukyanov, Zamolodchikov (1998)]

. O E
* Spectral determinant: D(E,[) = (1 - _>

n=1
2

228
* Set E = p\ with p= (?> I'?(1— 6%

We then have A(A,\) = D(p, 1)

B Determining A(A, ) is equivalent to finding the spectral
determinant.



