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This talk 1s about using computational algebraic geometry methods
for
various areas of theoretical physics

® leynman integrals

® Integrable Spin Chain




For details, please have a look at my lecture in SAGEX Network 2021

https:/ www.voutube.com/watch?v=00Q-1QO0IITKY



https://www.youtube.com/watch?v=0Q-1Q0lIIKY

Motivation

In the research direction of QIF'I" and integrable spin chain
we have a lot of physical quantities which can be difficult to calculate

Multi-loop scattering amplitude
Feynman integrals
Partition function

Somehow, they all have roots from polynomials/rational functions

Theretore, we try computational algebraic geometry
a modern mathematical branch to deal with polynomials



Algebraic Geometry
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Algebraic geometry originates from the study of curves/surfaces defined by
multivariate polynomial equations.

Modern algebraic geometry generalised these geometric objects to abstract
objects (like scheme), and has been applied to number theory, complex analysis

, topology and physics.



Computational Algebraic Geometry (CAG)

Algebraic Computer
Geometry Algorithms
originated 1n 1970s

thrive from 2000s
Computational

Algebraic Geometry

Bruno Buchberger, Frank-Olaf Schreyer, Jean-Charles Faugere

David Eisenbud, Michael Stillman, Daniel Grayson, Wolfram Decker ...

Personally I learnt CAG from

Professor Michael Stillman.



CAG 1n one shde

Groebner basis

Trinity of CAG

Syzygy Laft



CAG 1n one shde

“(GGaussian elimmation”

for several multivariate polynomials

roebner 1
Groebner basis Buchberger algorithm

Trinity of CAG

Syzygy Laft
Solve homogeneous linear equations Solve inhomogeneous linear equations
with polynomial solutions with polynomial solutions

Schreyer algorithm



Polynomial ring and 1deal

Polynomial ring R = F[Xl, e ,xn]

field, C,Q,Z/p,Qlci,...cpnl,- ..

An ideal 7 in the polynomial ring R = F|z;,...z,]| is a linear subspace of R
such that, For Vfe Iand Vh € R, hf € I.

The ideal in the polynomial ring generated by a polynomial set S 1s the
collection of all such polynomals,

> hfi, hi€R, fi€S.

This 1deal 1s denoted as (S).

(Noether) Any ideal in a polynomial ring 1s finitely generated.
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Ideal and algebraic set

To solve fi = ... = f; = 0 1s equivalent to solve all polynomials in (f1, ... f;)

common zero set i [F”
Z(I), with I an ideal is called an affine algebraic set.

(Zariski topology) Define Zariski topology of F" by setting all algebraic set
to be topologically closed.

N, Z2W) = Z2(U; L), Zh)UZ(L) = Z(LNh)

Zariski topology is different from the usual topology defined by Kuclidean
distance.

For example, the “open” unit disc defined by D = {z||z| < 1} is not Zariski
open in C. C— D = {z||z| > 1} is not Zariski closed, 1.e. it cannot be the
solution set of one or several complex polynomials 1n z.



Variety

With Zariski topology, an algebraic set (closed set) may be a union of several
closed set

V=V u...V

If V' cannot be decompose as a nontrivial union, then V is called an affine
variety. -

In C, {0,1} = {0} L J{1}.
In (Cz, Z(ZlZz) = Z(Zl> U Z(Zz) zy =0

Algebraic geometry 1s a subject to study the relation between 1deals
and algebraic sets (varieties).



Hilbert’s weak Nullstellensatz

(Hilbert) Let I be an ideal of Flxy,...x,| and F 1s algebraically closed. 1f
Z(I) =0, then I = (1).
See Commutative algebra, Zariski and Samuel, Chapter 7 for the proof.

e F=C. Z({x* — 1,x> +x)) = 0 and the we

I = ( 1)(x2—1)+)2—c(x3+x)

L

e F=C, Z(x* —y*,x+y+1,2x —y) = 0 and the we

| — :3()62 _yz) + (1 +3x=3y)(x+y+1) —2(2x —y)

e F=Q, Z(x* —2) = 0 and the we cannot claim

not algebraically closed <x2 —2) = (1)

The theorem itselt does not give coetficients,
it 1s the task of computational algebraic geometry



Hilbert’s Nullstellensatz

Given a set Un F”, we want to go backwards to find all s in the polynomial
ring such that

fip) =0, VYpeU
Such f’s form an ideal, which is denoted as Z(U). One may naively think that

Z(2(1) =1 X

For example, F = C, I = (x*) and Z(I) = {0}. However, Z({0}) = (x) # L

(Hilbert) Let F be an algebraically closed field and R = F|z;,...z,]. LetIbe
an 1deal of R. If f € R and,

fir) =0, Vpe Z(I),

then there exists a positive integer k such that /* € 1.




Groebner basis

This 1s like a “nonlinear” version of Gaussian elimination

For an 1deal I in Flx,...,x,] with a monomial order, a Groebner basis
G(I) = {g1,...gn} 1s a generating set for / such that for each f € I, there always

exists g; € G(I) such that,
LT (g:) LT (/).

imvented by B. Buchburger, in the namesake of his supervisor, W.Groebner

* Polynomial division over a Groebner basis, provide a unique remainder,
independent of the polynomial order. . -

o [ffecl, th%%alihe rem nder f over tbLe Groebner basis 1s zero.

mein GI’S 1p pI’O 1S SO1ve

* The remainder provides a canonical representation of Flxi,...,x,]/1I.

e With a fixed monomial order, the reduced Groebner basis 1s uni ue.

R R e R D A I R e S A P R I N e P N R PR D SR N i o m s,

ldeal identification problem 1s solved




Buchberger’s algorithm

Algorithm 3 Buchberger algorithm

1: Input: B={f,...f,} and a monomial order >

2: queue := all subsets of B with exactly two elements

3: while queue! = () do s s
) 1/, 9} := head of queue ST = S (TG LT aed (LT(). LT(7)
5: r:=S(f,9) <  S-pa

6: if » # 0 then “patt

7 B:=BUr

8: queue << {{By,r},...{last of B,r}}

9: end if

10: delete head of queue

11: end while

12: return B (Grobner basis)

Buchberger algorithm calculates Groebner basis

can be thought as a non-linear generalization of Gaussian elimination

Buchberger algorithm is computationally very heavy, double exponentially
in the number of variables.



Groebner basis, A first look in Mathematica

PolynomialSetl={x-y ,x+y-1,x-2};
Grl=GroebnerBasis[PolynomialSetl, {x,y},MonomialOrder->DegreeReverselLexicographic]
PolynomialSet2={x-y ,x y-y+1};

Gr2=GroebnerBasis[PolynomialSet2, {x,y},MonomialOrder->DegreeReverselLexicographic]

(1) The equation system has no solution

E e

{x-y, 1-y+y*]

PolynomialSet3={x"3-2 x y,x"2 y-2 yA2+x};
Gr3=GroebnerBasis[PolynomialSet3, {x,y},MonomialOrder-DegreeReverselLexicographic]

PolynomialReduce [x"A3,PolynomialSet3, {x,y},MonomialOrder-DegreeReverselLexicographic]

PolynomialReduce [x"3,Gr3, {x,y},MonomialOrder-DegreeReverselLexicographic]
{[-x+2y?%, xy, x*}

({1, 0}, 2xy} remainder nonzero, x"3 1s not in the ideal ?

L

{{0, 0, x}, O}

remainder 1s zero for the Groebner basis
x"31s 1s 1n the 1deal !



Application of algebraic geometry
for Feynman integrals
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Based on

Bendle, Boehm, Heymann, Ma, Rahn, Wittman, Ristau, Wu, YZ 2021

“Two-loop five-point integration-by-parts relations in a usable form”, 2104.06866

Boehm, Wittmann, Xu, Wu and YZ

“IBP reduction coefficients made simple ” JHEP 12 (2020) 054

Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, and YZ
“Integration-by-parts reductions of Feynman integrals using Singular and GPIl-Space” JHEP 02 (2020) 079

Chicherin, Gehrmann, Henn, Wasser, YZ, Zoia

“All master integrals for three-jet production at NNIL.O”, PhysRevl.ett. 123 (2019), no. 4 041603
“Analytic result for a two-loop five-particle amplitude”, PhysRevlett. 122 (2019), no. 12 121602
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Particle Physics, precision era

particle scattering

L.arge Hadron Collider Run 111

(Geneva, Switzerland)

HL-LHC i progress
CEPC, FCC, 1L.C proposed

18



Feynman integrals
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Basic tool for the theoretical prediction in particle physics
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FFeynman integrals, nowadays

Julius Wess

precision Supermmery fﬁl‘mal
' theory

particle

physies

N=8 supergravity
1s UV-finite untl
five loop

Feynman
Integrals

Gravitational wave



Feynman integrals, nowadays

It 1s still a basic tool in quantum field theory;
Crucially for precision high-energy physics, formal theories,

Differential

equation \

Transcendental

Algebraic

Structure

Feynman
integrals

Computer

Functions Science

Significant progress after 2010

21



Why analytic Feynman integrals?

® Once the analytic expression 1s obtained, the phase point generation 1s extremely fast
® Avoid unstable numeric phase points
® Understand the deep structure and hidden symmetry in quantum field theory

and yes, we can.



Main stream Feynman integral computation method
Canonical Differential Equation for Analytic Feynman integrals

Feynman integrals

l — Syzygy method
master integrals
l «——  Module Lift method
UT Feynman mtegrals .
l Computational algebraic geometry
Canonical Differential Equation
It 1s usually easier to compute
Feynman mtegrals with differential equations
Analytic Feynman Integrals than by the direct integration.

23



From Feynman integrals to master integrals

lFor a scattering process, there are a huge number of integrals

After a tensor / dP 1, / dPlr, 1 negative index means

. : . , o; € /7,
reduction i D /2 i D /2 D7t ... Dz"“ ’ ’ the numerator

IBP reduction

at the two/three loop orders,

IBP reduction can reduce millions of Feynman integrals to hundreds of master integrals.

4P, dPl; O o |
Dz | D/ 0[? Do .ng = ( Chetyrkin, Tkachov 1981

24



IBP reduction

/ APl / dPl, 0 vl -
iwP/2 77" | inP/2 91 DY ... DYE

Usually by choosing different vectors, we also have a huge number of 1BP relations

To get the complete reduction: Gaussian Elimination (Laporta algorithm 2000)

Two 1ssues:

1. The Gaussian Elimimation 1s computationally heavy, sometimes

the most time consuming step for a scattering amplitude computation

2. The IBP reduction coefficients may be too large to use.

Use computational algebraic geometry for help!

25



Our method

module 1ntersection

26



IBP in Baikov representation

D D =
/ d”1; o / a~ L : X / dzi...dz, Fal T Baikov 1996
imD/2 iwP/2 DY ... DY 0 21

No boundary term

Jeel free to set some of z s to zero (unitary cut)



IBP in Baikov representation with constraints

polynomials
Require

.. a Z)) form a modul@C R

a;i(z) € (zi), 1<i<m  These (ai(z),...ar(z)) form a modul@C Rk

k
1. no shifted exponent: Z a;(z) gF -B(z)F =0 These (a(z),
Zj

2. no propagator
degree increase:

Larsen, YZ 2015 Both M and M, are pretty simple ...
Y7 2016

Intersection of two modules

M,y 1 M a typical




Determine the first module

oOF o
Z a;(z) p - B(z)F =0 ® syzygy for th 8—5, Ce s %’@ Roman l.ee’s trick
Z.
=1 J : . .
More Advanced nnihilator of F* 1n Weyl algebra. Bitoun, Bogner,
Klausen, Panzer
. . . . Co L.ett.Math.Phys.
If F1s a determinant matrix whose elements are free variables, this kind of 109 <2%19> Ial 0.3. 453-564

syzygy module 1s simple.

aip  an A1n
dr A U2
A= , .
, . . eqquivalent to
a,1 ap ... Qy, canonical 1BP

| In momentum space
Laaplace expansion

det A
Zakljﬁ( - ) 5k7i°detA:O

861,‘J

J
Get all first order annihilator, proved by Gulliksen—Negard and Jozefiak exact sequences

Boehm, Georgoudis, Larsen, Schulze, YZ 2017



Module Intersection

Ml — <V|‘ / V; L Vm> EQCA Vf- : 't—af"m Yo un) Vecj‘or

. = a ol s oy
Computatlonal Mo =M, sy o oo, g D Eaen, i t—dim  row vector
algebraic geometry (40) X (m+n42)
problem V) l \
V, l
Vm I
U, ! ﬁ
.o Uy '
very similar \ By
to linear space intersection, Un S /
but only polynomials f f
Y POLY T columng M+N  Columng

are allowed

Grobner BRBess &m,?u‘fd‘qu_ To eliminate

first components af Q  Yow



Example, massless double box

@(S, f) [Zl, ..

.zg]: 2 parameters, 9 variables

(Kach row 1s a module generator)

2 3
z; 0 0 0 0 0 0 0 0
© z, 6 06 0 0 0 0 0
- _ = © 0 z3 06 0 0 0 0 0
1 ® 0 0 z4 6 0 0 0 0
| | | Mry= |0 0 0 06 z 6 0 0 0
© 0 0 0 0 z¢ 0 0 O
n .- o © 0 06 06 0 0 zz 0 0
© 0 0 06 0 0 06 1 0
© 0 0 06 0 0 06 01
4
Z1 -2y Z1- 2> -S+2Z1- 25 0] © 0] Z1 -7y —Zg + Zg t+2z1 -2 0]
0] 0] © S - Zg+ Zg -t -2Zg+ Z9 ~Zg + Zg Z1 -2y - Zg + Zg Q] ~Zg + Z9g
S+Zy - Z3 Zy — Z3 Zy, — Z3 0] 0] 0] Zy) —2Z3+2Z4-2Z9 -Tt+2Zy-23 0]
0] 0] © Z4 — Zg t+24 - 29 —~S+Z4-29 Zy—Z3z+ Zs - Zg Q] Z4 — Zg
- Z1 + Zg -t -2+ 2Zg S-2Z1+Zg 0] 0] 0) ~Z1 - Z5 + Zg + Zg - Z1 + Zg 0]
Ml — 0 0 0 ~S - Zs + Zg ~Zc + Zg —Zc+Zg —Z1-2Zs5+Zg+ Zg 0 t - Zs + Zg
2274 Z1+Z>y -S+2Z1+ Z3 0] © 0) Z1 - Zg + Z7 Z1 + Zg 0]
0] 0] © S-23-2g+27 -Zg+27-28 -Z1-2¢+ Z7 Z1-Zg + Z7 0] ~Zy —Zg + Z7
~Z1-2g+27 —-Z1+2Z7-29 S—-2Z71—-2Z4+ Z7 0] © 0] ~Z1+Zg+ Z7 ~Z1—-Z5 + Z7 0]
0] 0] © ~S + Z4 + Zg Zs + Zg 2 Zg ~Z1+ Zg + Z7 0) Zg + Z9

M 1 ) M 7 1s computed within seconds, with Singular 4.1.2°s intersect




Now module intersection 1s really fast

> Mandelstam variables, with a triple cut
seconds to get the module intersection (and truncated 1BPs)



After module intersection

Input integrals

Determine master integrals and spanning cuts
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module intersection i, i e
| . Other spanning cuts ...
truncated IBP system
row reduced echelon form
;” »,*” 5
"

Merge all spanning cuts
to get complete |BP




Example, massless double box with spanning cut




Example, massless double box with spanning cut

R —— lowest M1

lowest M1 lowest M1 lowest MI



Example, massless double box with spanning cut

Cdbox1

Cslashed
S e lowest M1

/ Csunsetl
Cdbox?2 | Chubbox

]
o]
[’
v
B

lowest MI

NV
NN\

lowest M1 lowest MI



Example, massless double box with spanning cut

C
dboxl Cslashed
S e lowest M1
/ Csunsetl
Cdbox?2 | Chubbox
Cdbox2 |
Chubbox

]
o]
[’
v
B

lowest MI

m Chubtri

lowest M1 lowest MI



Example, massless double box with spanning cut

C
dbox1 Cslashed
e — 2 ——— — lowest MI
Csunsetl
Chubbox
Cdbox1
Cdbox2 |~

Chubbox

-1

Csunset?2

w Chubtri

lowest M1 lowest MI

lowest MI



Example, massless double box with spanning cut

Cdboxl Cslashed
/

Cdbox? Chubbox
Cdbox| \\\\\ N\\\xwm\\\\\\
Cdbox1

/ Cdbox1 .
™.
Cdbox2 | N\ Cdbox2
Cdbox2 |

Cslashed
Cdbub

lowest MI

Csunset?2

NG

Chubbox

NV
NN\

L

lowest M1

o

Csunsetl

Chubtri

lowest MI

lowest MI



Example, massless double box with spanning cut

....... » Cdboxl Cslashed
= /
L Cdbox2 | Chubbox
Cdbox1 | .
Cdbox1
/ Cdbox1 .
™.
Cdbox2 | N\ Cdbox2 |
Cdbox2 |

Cslashed
Cdbub

lowest MI

Csunset?2

NG

Chubbox

NV
NN\

L

lowest M1

o

Csunsetl

Chubtri

lowest MI

lowest MI



ResearCh examp]e Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, Y7,

module mtersection JHEP 02 (2020) 079
Cut # relations | # itegrals s1ze ,
11,5,7} 2723 2749 1.4 MB !
1,5.8) 2753 2777 | 1.6 MB
[1,6,8 2817 2822 2.1 MB 3
[2,4,8 2918 2921 2.1 MB
[2,5,7 2796 2805 1.5 MB - -
2.6,7) 2769 2814 | 1.2 MB | 5
26,8 2801 0821 | 1.6mp 1 degree-o numerator
(3,4,7) 2742 2771 | 1.4 MB reduction
3.4,8 2824 2849 1.9 MB .
%,6,% 9662 9674 15 MR Only 17.2 MB in total
11,3,4,5} 1600 1650 0.72MB

100 times smaller system than the system from the standard program FIRE6



Application of algebraic geometry
for integrable spin chain
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Based on

Boehm, Jacobsen, Jiang and YZ
“Geometric algebra and algebraic geometry of loop and Potts models™, JHEP 05 (2022) 068

Jiang, Wen and YZ
“fixact Quench Dynamics from Algebraic Geometry”, 2109.10568

Bajnok, Jacobsen, Jiang, Nepomechie and YZ
“Cylinder partition function of the 6-vertex model from algebraic geometry”, JHEP 06 (2020) 169

Jacobson, Jiang and YZ
“Torus partition function of the six-vertex model from algebraic geometry”, JHEP 1903 (2019) 152

Jiang and YZ
“Algebraic geometry and Bethe ansatz. Part |. The quotient ring for BAE”, JHEP 03 (2018) 087
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Bethe Ansatz Kquation

Heisenberg spin chains are solved by BAE

oNL M .
(uj—l—z/2> :Huj—uk—z Pi—1...M

wj — /2 k#juj—uknti’

\ Hans Bethe

Bethe roots

Physical quantities are usually symmetric functions of Bethe roots .
Symmetric

function
E
;::1 uz +1/4

Solving BAE usually provides numerie roots with errors

for example:

Can we get analytic physical quantities from BAE?

38



Symmetric function of roots

For one unmivariate equation
n

0=a" —exz" ' +ex" P+ ...+ (=1, = Z(az — ;)
1=1
Any symmetric function of roots are clearly polynomials of ¢;’s, the coetfi-
cients of the equation.

no need to solve the equation

multivariate (multiple) equations

Any symmetric polynomial (rational function) of roots
would also be rational function of the equation coefficients

with the help of computational algebraic geometry

39



Companion Matrix method

polynomial ring equations algebraic

field
\ / / extension

dimp(R/I) = number of solutions of I in F

quotient ring
The quotient ring 1s a finite dimensional linear space with multiplication

R/I=span{by,...b;}

We consider the linear representation of R/,

[ bi] = aylb], |f] €R/I

|

Companion Matrix, with the size of the solution
40



Companion Matrix method
A root

f-bil = ai5b5) = f(p)bi(p) = a;;b;(p

FEach eigenvalue of the companion matrix is the value of f on a solution

Symmetric polynomial (rational) function of roots 1s the trace of the companion matrix

This key property plays the central role |
of evaluating physical quantities from BAE Jiang, YZ 2018

41



Companion Matrix example

2 —y—1=vy’+22—x=x2—9y°4+2=0

MultiplicationMatrix[y*2,Gr,kbasis, {x,y,z},MonomialOrder-DegreeReverselLexicographic]//MatrixForm

Tr[Normal[%]]

4 0 0 -10 -1 0 0,
2 2 -2 @ 0 1 0O 0
1 0 2 11 0 -1 0
3 0 -1 30 0 0 -1
® -2 3 -22 0 -2 1
5 1 0 0 06 06 1 0
® 1 -1 11 06 1 0
31 -1 40 0 1 0|
14

ZpEZ([) V=14

consistent with the numeric result

NSolve[Ideal, {x,y,z}]

{{x—>-1.48768 - 0.314318 1§ y »>1.11439 + 0.9352091, Z

{x->-1.48768 + 0.3143181
{Xx>-0.0219091 - 0.450523
{Xx—>-0.0219091 + 0.450523

y >1.11439 - 0.9352091, 2
i, y->-1.20249 + 0.019741
i, y->-1.20249 - 0.019741 |

{x > 0.0618829 +1.00477 1'1? y > -2.00574 + 0.124357 1,

{x > 0.0618829 - 1.00477 i
{x > 1.4477 - 0.0448355 1,
(X > 1.4477 + 0.0448355 1,

P

y > -2.00574 - 0.124357 i,
y >1.09384 - 0.1298171, z
y >1.09384 +0.1298171i, z

50.76724 -1.56321},
50.76724 +1.56321},

, Z->0.164836 - 1.22257 i},
, Z->0.164836 + 1.22257 i},
z-5-0.372019-2.02091},
z-5-0.372019+2.02091},

5 -0.560057 - 0.2135161},

5, ~0.560057 + 0.2135161} )

42

Implement:

calling Singular from Mathematica

https://www.singular.uni-kl.de



Research level example: 6-vertex model

Jacobson, Jiang, YZ, 2019
Bajnok, Jacobson, Jiang, Nepomechie, YZ, 2020
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It

zZ1 —>

a lattice model to describe ice or potassium dihydrogen phosphate

It 1s mapped to Heisenberg XXX spin chain

Use our algebraic geometry method,

we get the exact partition function for the lattice size 100 x 14

(Brute Force) to compute 100th power ot a 16334 x 16334 matrix, impossible
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Summary

® Novel methods for analytic computations in theoretical physies
® Computational algebraic geometry applications:

Analytic Feynman integral reduction
Analytic computations with Bethe Ansatz Equation

Vielen Dank!



