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Overview

• Bethe/gauge duality: SUSY vacua of 3d N = 2∗ theory on S1 are given by solutions

to BAEs.

• Best way to solve BAEs are through the rational Q-systems.

• Lesson for SUSY field theorists: We generalise construction of rational Q-systems to

generic A-type quivers.

• Lesson for integrability experts: We give quick criteria for bispectral duality.
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Overview of 3d N = 4 theories



Why 3d N = 4 theories?

• Relatively easy to understand.

I Different constructions
I Moduli spaces
I Hilbert series
I Monopole operators, defects
I Partition functions
I . . .

• Interesting properties: Mirror symmetry, etc.

• Deep connections to quantum integrable systems.
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T [SU(n)] theories

• Brane construction in type IIB superstring theory

0 1 2 3 4 5 6 7 8 9

NS5 × × × × × ×
D3 × × × ×
D5 × × × × × ×
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T [SU(n)] theories

⋯
M1 D5

M2 D5
M`−2 D5

M`−1 D5

N1 D3
N2 D3

N`−2 D3
N`−1 D3

x6

x3,4,5

x7,8,9

• ` NS5 separated along x6

• Ni D3 suspended between i-th and (i+ 1)-th NS5 branes

• Mi D5 in between i-th and (i+ 1)-th NS5 branes

• 3d N = 4 theory lives on x0,1,2,3.
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Field theory contents

N1 N2

. . .

N`−2 N`−1

M1 M2 M`−2 M`−1

• Round node: dynamic U(Ni) vector multiplets

• Square node: background U(Mi) vector multiplets

• Black lines: hypermultiplets in bifundamental representation
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IR theory

N1

. . .

Ni−1 Ni Ni+1
. . .

N`−1

M1 Mi−1 Mi Mi+1 M`−1

• Flow to interacting SCFT in IR if for each gauge node

ei = Ni−1 +Ni+1 +Mi − 2Ni ≥ 0

These theories are referred to as “good” in [Gaiotto-Witten].
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Global symmetries of SCFT

0 1 2 3 4 5 6 7 8 9

NS5 × × × × × ×
D3 × × × ×
D5 × × × × × ×

• N = 4 R-symmetry: SO(4)R ∼= SU(2)H × SU(2)C , geometrically realised as

I rotation group SU(2)H ∼= SO(3)7,8,9

I rotation group SU(2)C ∼= SO(3)3,4,5
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Global symmetries of SCFT

N1 N2

. . .

N`−2 N`−1

M1 M2 M`−2 M`−1

• Flavor symmetry: GH =
(∏`−1

j=1 U(Mj)
)
/U(1)diag

• Coulomb branch symmetry GIR
C

I GUV
C = U(1)`−1

J : topological symmetry U(1)J from each U(Ni)
I May be enhanced in IR by monopole operators as ladder operators. [Gaiotto-Witten],

[Aharony-Hanany-Intriligator-Seiberg-Strassler], [Borokhov-Kapustin-Wu], [Bashkirov]

I The subset of balanced gauge nodes yield Dynkin diagram of non-Abelian part of GIR
C .

I Example above: GIR
C = SU(`− 1)× U(1).
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Deformation parameters

⋯
M1 D5

M2 D5
M`−2 D5

M`−1 D5

N1 D3
N2 D3

N`−2 D3
N`−1 D3

x6

x3,4,5

x7,8,9

• A triplet of masses ~m = (m1,m2,m3)

I Corresponding to CSA(GH), 1⊗ 3 of SU(2)H × SU(2)C
I Pst of D5 in x3,4,5 rotated by SO(3)3,4,5

• A triplet of FI parameters ~ω = (ω1, ω2, ω3)

I Corresponding to CSA(GC), 3⊗ 1 of SU(2)H × SU(2)C
I Relative psts of NS5i, NS5i+1 in x7,8,9 rotated by SO(3)7,8,9

10



Two partitions

• The linear quiver can be described by two partitions ρ,σ; the 3d N = 4 theory

denoted by Tσρ [SU(n)] [Gaiotto-Witten]

ρ = (ρ1, ρ2, . . .), ρ1 ≥ ρ2 ≥ . . . ≥ ρ` > 0, |ρ| =
∑̀
i=1

ρi = n

σ = (σ1, σ2, . . .), σ1 ≥ σ2 ≥ . . . ≥ σ`′ > 0, |σ| =
`′∑
i=1

σi = n
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Two partitions

N1 N2

. . .

N`−2 N`−1

M1 M2 M`−2 M`−1

• Let σT = (σ̂1, σ̂2, . . .). The two partitions are

σ̂j =

`−1∑
i=j

Mi, ρi =


−N1 +

∑`−1
j=1Mj , i = 1

Ni−1 −Ni +
∑`−1
j=i Mj , 1 < i < `

N`−1, i = `

• ρ is a partition function if the quiver theory is “good”

ρi = ei + ei+1 + . . . e`−1 +N`−1
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Two partitions

• Physically, we can move all D5 to the left, taking into account brane

creation/annihilation [Hanany-Witten]

I ρj are the net numbers D3 ending on NS5
I σj are the net numbers D3 ending on D5
I |ρ| = |σ| = n is the total number of D3 branes

• Example: SQED w/ ρ = (2, 1), σ = (1, 1, 1).

1

3
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3d N = 2∗ theories and

Bethe/gauge correspondence



• To make connection with quantum integrable systems, we softly break supersymmetry

N = 4→ N = 2∗;

• and compactify on S1 to get 2d N = (2, 2)∗ KK theory
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SUSY breaking

• We choose and preserve a N = 2 sub-algebra of N = 4 algebra

• Let j3
H , j

3
C be Cartan generators of SU(2)H × SU(2)C

• Choose jR = j3
H + j3

C to be generator of U(1)R of N = 2

• jη = j3
H − j3

C generates add’l global non-R-symmetry U(1)η from N = 2 POV

• Breaking N = 4→ N = 2∗ by turning on real mass η̃, by coupling N = 2 background

U(1)η vector multiplet
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After SUSY breaking

• N = 4 vector (ϕ1,2,3) → N = 2 vector (ϕ3) + N = 2 chiral (Φ = ϕ1 + iϕ2)

• Trplets of ~m, ~ω split to complex and real

I Real components m ≡ m3, ω ≡ ω3: relevant for CB of effective theory
I Complex components m1 + im2, ω1 + iω2: irrelevant for CB of effective theory

• Summary:

I Global non-R symmetry: GH ×GC × U(1)η
I Ass’ted real parameters: m,ω, η̃
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Circle compactification with radius R

• Compactify 3d N = 2∗ on S1 to get 2d N = (2, 2)∗ KK theory.

• Combination of (m,ω, η̃/2) w/ flavor Wilson lines aF0 into complex deformation

parameters

θj = iR(mj + iaH0,j), ts = iR(ωs + iaC0,s), η = iR(η̃ + iaη0).

These are twisted masses of 2d effective N = (2, 2)∗ theory.

• Define exponentiated variables as Wilson lines aF0 are periodic

yj = e2πiθj , εs = e2πits , q = eπiη.

• 3d dynamic N = 2 vector multiplets contain real scalar σk ≡ ϕ3,k (k = 1, . . . , rk(G)),

which can be combined with Wilson line a0,k along S1 and exponentiated

xk = e2πiuk , uk = iR(σk + ia0,k).
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2d effective theory

• The 2d KK theory is described by an effective theory in IR, w/ massive fields

integrated out.

• Turning on generic twisted masses, moduli space breaks down to isolated points.

• To find the supersymmetric vacua:

I Move into Coulomb branch of moduli space
I The dynamics of 2d Abelian field strength is controled by effective twisted

superpotential W̃eff(uk)
I Turn on twisted masses z = (θj , ts, η), integrate out massive fields, compute

contributions to W̃eff(uk;z)
I Find SUSY vacua by minima of W̃eff(uk;z).
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Effective twisted superpotential

• W̃eff is 1-loop exact by renormalisation theorem.

• Contribution from a 3d N = 2 chiral multiplet w/ twisted mass u

W̃eff = `(u),

where `(u) is defined by ∂
∂u`(u) = − 1

2πi log 2 sinh(−πiu).

• Contribution from FI term of G = U(N) w/ a single U(1)J topological symmetry

W̃eff = t

N∑
k=1

uk

• Supersymmetry vacua [Nekrasov-Shatashvili]

∂

∂uk
W̃eff = 0 ⇒ exp 2πi

∂W̃eff

∂uk
= 1, k = 1, 2, . . . , rk(G).
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Example: U(N) SQCD w/ M fundamental hypermultiplets

N

uk

t2−t1

M
θj

• Effective twisted superpotential

W̃eff =

N∑
k=1

M∑
j=1

`(uk−θj+ 1
2η) + `(−uk+θj+

1
2η) ← chirals in hyper

+

N∑
k,l=1

`(uk − ul−η) ← chirals in vector

+ (t2 − t1)

N∑
k=1

uk ← FI terms

• Color coding: gauge charge, flavor charge, U(1)η charge
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Example: U(N) SQCD w/ M fundamental hypermultiplets

N

uk

t2−t1

M
θj

• Supersymmetric vacua (k = 1, . . . , N)

1 = e2πi∂ukW̃eff = (−1)N+M−1 ε2
ε1

N∏
l=1
l 6=k

xkq − xlq−1

xlq − xkq−1

M∏
j=1

xk − yjq
yj − xkq

.

• Alternatively formulation by Baxter’s Q-functions

−1 = τ
Q++(xk)

Q−−(xk)

B−(xk)

B+(xk)
,

with τ = ε2/ε1 and

Q(x) =

N∏
l=1

(√
x

xl
−
√
xl
x

)
, B(x) =

M∏
j=1

(√
x

yj
−
√
yj
x

)
,

f±(x) = f(xq±1).
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Generic A-type quiver

. . .

Na−1 Na Na+1
. . .

N`−1N1

Ma−1 Ma Ma+1 M`−1M1

• For generic A-type quiver (a = 1, . . . , `− 1; k = 1, . . . , Na)

τ (a)Q
++
a (x

(a)
k )

Q−−a (x
(a)
k )

Q−a−1(x
(a)
k )Q−a+1(x

(a)
k )

Q+
a−1(x

(a)
k )Q+

a+1(x
(a)
k )

B−a (x
(a)
k )

B+
a (x

(a)
k )

= −1

with

Qa(x) =

Na∏
l=1

(( x

x
(a)
l

)1/2

−
(x(a)

l

x

)1/2
)
, Ba(x) =

Ma∏
j=1

(( x

y
(a)
j

)1/2

−
(y(a)

j

x

)1/2
)

f±(x) = f(xq±1)
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Bethe Ansatz Equations

• These are Bethe Ansatz Equations (BAEs) for XXZ Heisenberg spin chains

N

M

SU(2) spin chain with M sites

and N magnons

N1 N2 N3

M

SU(4) spin chain with M sites
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Difficulty with BAEs

• BAEs are difficult to solve in practise: numerical instability, unphysical solutions

(coinciding Bethe roots, some singular solutions,...)

• The best way to solve BAEs is through rational Q-systems [Marboe-Volin]

I Originally constructed for GL(M |N) invariant XXX spin chain
I Various generalisation to XXZ spin chain: triangular quivers

• We construct rational Q-systems for generic A-type quivers
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Rational Q-systems



Young diagram

• Rational Q-system is defined by two partitions

ρ,σ

• Use ρ = (ρ1, . . . , ρ`) to define Q-functions

ρi =


−N1 +

∑`−1
j=1Mj , i = 1

Ni−1 −Ni +
∑`−1
j=i Mj , 1 < i < `

N`−1, i = `

• Construct a Young diagram with ρi boxes on each

row
s

ρ1

⋮
ρa−1

ρa

ρa+1

⋮
ρ`

0

1

a − 1
a

a + 1

` − 1
`

0 1

a
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Q functions

• Place Qa,s(x) at each point (a, s): a Laurent

polynomial in x

• QQ-relations: at each box

Qa+1,sQa,s+1 = Q+
a+1,s+1Q

−
a,s − εaQ−a+1,s+1Q

+
a,s

with f±(x) = f(xq±1)

s

ρ1

⋮
ρa−1

ρa

ρa+1

⋮
ρ`

0

1

a − 1
a

a + 1

` − 1
`

0 1

a

(a,s) (a + 1, s)

(a,s + 1) (a + 1, s + 1)
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Boundary conditions

• Use σT = (σ̂1, . . . , σ̂`−1) to specify boundary

conditions

σ̂j =

`−1∑
i=j

Mi

• Top boundary: Q`,s(x) = 1

• Left boundary: Qa,0(x) = fa(x)Qa(x)

Qa(x) =

Na∏
j=1

(( x

x
(a)
j

)1/2

−
(x(a)

j

x

)1/2
)
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• Use σT = (σ̂1, . . . , σ̂`−1) to specify boundary

conditions

σ̂j =

`−1∑
i=j

Mi

• Left boundary: Qa,0(x) = fa(x)Qa(x)

fa(x) =

`−1−a∏
k=1

Ba+k(xq−
k−1
2 ) . . . Ba+k(xq

k−1
2 )

Ba(x) =

Ma∏
j=1

(( x

y
(a)
j

)1/2

−
(y(a)

j

x

)1/2
)

ρ1

⋮
ρa−1

ρa

ρa+1

⋮
ρ`

σ̂1

σ̂a−1

σ̂a

σ̂`−1
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From QQ-relaitons to BAEs

• Consider QQ-relations for nodes (a− 1, 0)

Qa,0Qa−1,1 = Q+
a,1Q

−
a−1,0 − εa−1Q−a,1Q

+
a−1,0

and take x = x
(a)
k so that Qa,0(x

(a)
k ) = 0

Q+
a,1Q

−
a−1,0 = εa−1Q−a,1Q

+
a−1,0

• Assuming none vanishes

Q−a−1,0(x
(a)
k )

Q+
a−1,0(x

(a)
k )

Q+
a,1(x

(a)
k )

Q−a,1(x
(a)
k )

1

εa−1
= 1.

s

ρ1

⋮
ρa−1

ρa

ρa+1

⋮
ρ`

0

1

a − 1
a

a + 1

` − 1
`

0 1

a
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From QQ-relaitons to BAEs

• Consider QQ-relations for nodes (a, 0)

Qa+1,0Qa,1 = Q+
a+1,1Q

−
a,0 − εaQ

−
a+1,1Q

+
a,0

shift x→ xq±1 to get

Q+
a+1,0Q

+
a,1 = Q++

a+1,1Qa,0 − εaQa+1,1Q++
a,0

Q−a+1,0Q
−
a,1 = Qa+1,1Q−−a,0−εaQ

−−
a+1,1Qa,0

and set x = x
(a)
k so that red terms vanish

• Take ratio

Q+
a,1(x

(a)
k )

Q−a,1(x
(a)
k )

= −εa
Q++
a,0 (x

(a)
k )Q−a+1,0(x

(a)
k )

Q−−a,0 (x
(a)
k )Q+

a+1,0(x
(a)
k )

s

ρ1

⋮
ρa−1

ρa

ρa+1

⋮
ρ`

0

1

a − 1
a

a + 1

` − 1
`

0 1

a
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From QQ-relaitons to BAEs

• Consider QQ-relations for nodes (a, 0)
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From QQ-relations to BAEs

• Combining two results

εa
εa−1

Q++
a,0 (x

(a)
k )

Q−−a,0 (x
(a)
k )

Q−a−1,0(x
(a)
k )Q−a+1,0(x

(a)
k )

Q+
a−1,0(x

(a)
k )Q+

a+1,0(x
(a)
k )

= −1

• Use Qa,0(x) = fa(x)Qa(x)

εa
εa−1

Q++
a (x

(a)
k )

Q−−a (x
(a)
k )

Q−a−1(x
(a)
k )Q−a+1(x

(a)
k )

Q+
a−1(x

(a)
k )Q+

a+1(x
(a)
k )

f++
a (x

(a)
k )f−a−1(x

(a)
k )f−a+1(x

(a)
k )

f−−a (x
(a)
k )f+

a−1(x
(a)
k )f+

a+1(x
(a)
k )

= −1
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From QQ-relations to BAEs

• The construction of fa(x) guarantees that

f++
a (x

(a)
k )f−a−1(x

(a)
k )f−a+1(x

(a)
k )

f−−a (x
(a)
k )f+

a−1(x
(a)
k )f+

a+1(x
(a)
k )

=
B−a (x

(a)
k )

B+
a (x

(a)
k )

• We then get back to the desired BAEs

εa
εa−1

Q++
a (x

(a)
k )

Q−−a (x
(a)
k )

Q−a−1(x
(a)
k )Q−a+1(x

(a)
k )

Q+
a−1(x

(a)
k )Q+

a+1(x
(a)
k )

B−a (x
(a)
k )

B+
a (x

(a)
k )

= −1
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Solving Q-system

• First solve Qa(x), then find x
(a)
k as roots of Qa(x).

• We parametrise Qa(x) by Na parameters c
(a)
k , which are symmetric polynomials of x

(a)
k

Qa(x) =

Na∏
j=1

(( x

x
(a)
j

)1/2

−
(x(a)

j

x

)1/2
)

=
( Na∏
j=1

x
(a)
j

)−1/2
x−Na/2

Na∏
j=1

(x− x(a)
j )

≡(c
(a)
0 )−1/2x−Na/2(xNa + c

(a)
Na−1x

Na−1 + . . .+ c
(a)
0 )

• Qa,0(x) = fa(x)Qa(x) are thus fixed in terms of c
(a)
k ; the remaining Q functions can be

recursively solved by QQ-relations.

• They are not necessarily Laurent polynomials of x. Imposing this condition leads to

algebraic equations for {c(a)
k }, called “Zero Remainder Conditions” (ZRC).
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Solving Q-system

• Top row: a = `,Q`,s = 1

• Next row: a = `− 1, QQ-relation

Q`−1,s+1 = Q−`−1,s − ε`−1Q+
`−1,s

Q`−1,s can be solved recursively from Q`−1,0.

• N-Next row: a = `− 2, QQ-relation

Q`−1,sQ`−2,s+1 = Q+
`−1,s+1Q

−
`−2,s−ε`−2Q−`−1,s+1Q

+
`−2,s

leads to

Q`−2,s+1 =
Q+
`−1,s+1Q

−
`−2,s − ε`−2Q−`−1,s+1Q

+
`−2,s

Q`−1,s

Requiring polynomial Q`−2,s+1(x) leads to ZRCs.

s

ρ1

⋮
ρa−1

ρa

ρa+1

⋮
ρ`

0

1

a − 1
a

a + 1

` − 1
`

0 1

a
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Q-system vs BAEs

• Solving x
(a)
k from Q-system is much more superior than from BAEs

I Unphysical solutions are automatically eliminated.
I Numerically stable.
I Much faster.

• Symmetry of x
(a)
k is exploited in Q-system.

Qa(x) =

Na∏
j=1

(( x

x
(a)
j

)1/2

−
(x(a)

j

x

)1/2
)

= c
−1/2
0 x−Na/2(xNa + cNa−1x

Na−1 + . . .+ c0)

Permutations of x
(a)
k for fixed a do not change the solution to the Q-system, but lead

to different solutions to BAEs.
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Efficiency test

N

M

(M,N) BAEs Q-systems

(4, 2) 0.238 0.105

(5, 2) 0.512 0.155

(6, 3) 199.7 0.385

(7, 3) 1803 2.092

(8, 4) − 6.322

(9, 4) − 29.85

(10, 5) − 1145
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Mirror symmetry and

bispectral duality



Mirror symmetry

• S-duality in type IIB superstring theory: D5 ↔ NS5, D3 ↔ D3.

• Mirror symmetry of 3d N = 4 theories

0 1 2 3 4 5 6 7 8 9

NS5 × × × × × × ~ω

D3 × × × ×
D5 × × × ~m × × ×

• Mapping of parameters

~m↔ ~ω

SU(2)C ↔ SU(2)H

GC ↔ GH
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Mirror symmetry

• Mirror symmetry: D5 ↔ NS5, x6 ↔ −x6
[Hanany-Witten]

1

3

1 1

1 1

• Mirror symmetry by exchange of partitions: ρ↔ σ, Tσρ [SU(n)]↔ Tρσ [SU(n)].
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Mirror symmetry for N = 2∗ theory on S1

• Exponentiated complex parameters

y = e2πiθj , εs = e2πits , q = eπiη.

with

θj = iR(mj + iaH0,j), ts = iR(ωs + iaC0,s), η = iR(η̃ + iaη0).

• Mapping of parameters under mirror symmetry between theory T = Tσρ [SU(n)] and

theory T ∨ = Tρσ [SU(n)]: (Recall jη = j3
H − j3

C)

yi ← ε∨i , εa ← y∨a , q ↔ 1

q∨
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A-, B-twisted indices

• A,B-twisted index w/ genus g and twisted masses zi = {yj , εs}
[Closset-Kim],[Closset-Kim-Willett], [Benini-Zaffaroni]

Ig,A/B(q, zi) = Tr
Σ
A/B
g

(
(−1)F qQη

∏
i

zQii

)
• Partition function of 3d N = 2∗ theory on Σg × S1 w/ topological A-,B-twists turned

on to preserve half supersymmetry
I A-twist: Lorentz group (SU(2)L × SU(2)H)diag

I B-twist: Lorentz group (SU(2)L × SU(2)C)diag

• Reduces via localisation to summation over Bethe roots [Closset-Kim], [Closset-Kim-Willett]

Ig,A/B =
1

|WG|
∑

x̂∈SBE

HA/B(x̂)g−1

with

HA/B(x) = e2πiΩA/B(x) det
a,b

∂2W̃eff

∂ua∂ub
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Mirror symmetry for A-, B-twisted indices

• For two mirror theories T = Tσρ [SU(n)] and theory T ∨ = Tρσ [SU(n)]

ITg,A(q, zi) = IT
∨

g,B(q∨, z∨i ), ∀g

• In particular

HTA(x̂; q, zi)
∣∣∣
x̂∈SBE

= HT
∨

B (x̂∨; q∨, z∨i )
∣∣∣
x̂∨∈S∨BE

41



Example of mirror symmetry

1

x

η2
η1

3
yj = 1

p

1

x(1)
ε2
ε1
=1

1

x(2)
ε3
ε2
=1

1
z1

1
z2

q

• Both systems have three solutions x1,2,3 to

Q-system/BAEs

Hquiver
A (x1) =

3(p2 − 1)4z2/3

p2( 3
√
z − p)2(p 3

√
z − 1)2

, Hquiver
A (x2,3) = . . .

HQED
B (x1) =

3(q2 − 1)4ε2/3

q2( 3
√
ε− q)2(q 3

√
ε− 1)2

, HQED
B (x2,3) = . . . .

• Mirror symmetry

Hquiver
A (xa) = HQED

B (xa)
∣∣∣ ε→z
q→ 1

p

, a = 1, 2, 3
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Example of mirror symmetry

1

x

η2
η1

3
yj = 1

p

1

x(1)
ε2
ε1
=1

1

x(2)
ε3
ε2
=1

1
z1

1
z2

q

• Both systems have three solutions x1,2,3 to

Q-system/BAEs

Hquiver
B (x1) =−

3( 3
√
z − p)(p 3

√
z − 1)

p 3
√
z

, Hquiver
B (x2,3) = . . .

HQED
A (x1) =− 3( 3

√
ε− q)(q 3

√
ε− 1)

q 3
√
ε

, HQED
A (x2,3) = . . . .

• Mirror symmetry

Hquiver
B (xa) = HQED

A (xa)
∣∣∣ ε→z
q→ 1

p

, a = 1, 2, 3
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Implication for QISs

• Quantum integrable systems associated to mirror dual 3d N = 2∗ theories are very

different.

• Bispectral duality: the spectra of the two QISs are one-to-one correspondent.

[Gaiotto-Koroteev]

• HTA(x̂a),HT∨B (x̂∨a ) may be identified with certain conserved charges in QISs, which are

then also identified.

• Our construction leads to quick determination of bispectral dual integrable systems:

Q-systems with partitions exchanged.
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Conclusion and outlook



Conclusion

• Rational Q-systems are more suited than BAEs to describe Bethe/gauge

correspondence.

• For gauge theorists: We constructed rational Q-systems for quickly solving SUSY

vacua of 3d N = 2∗ A-type quiver on S1.

• For integrability experts: We give easy criteria for bispectral dual integrable systems

based on rational Q-systems.

Outlook

• Efficient calculation of A-,B-twisted indices using algebraic methods.

• Generalisation to orthosymplectic quivers and open spin chains.
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Thank you for your attention!
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