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Overview

Bethe/gauge duality: SUSY vacua of 3d ' = 2* theory on S* are given by solutions
to BAEs.

Best way to solve BAEs are through the rational Q-systems.

Lesson for SUSY field theorists: We generalise construction of rational Q-systems to

generic A-type quivers.

Lesson for integrability experts: We give quick criteria for bispectral duality.
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Overview of 3d N = 4 theories



Why 3d N = 4 theories?

o Relatively easy to understand.
» Different constructions
» Moduli spaces
» Hilbert series
» Monopole operators, defects

» Partition functions

-
e Interesting properties: Mirror symmetry, etc.

e Deep connections to quantum integrable systems.



T[SU(n)] theories

e Brane construction in type IIB superstring theory

NS5 | x X X X X X
D3 X X X X
D5 X X X X X X




T[SU(n)] theories
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N; D3 suspended between i-th and (¢ 4+ 1)-th NS5 branes
M; D5 in between i-th and (i 4+ 1)-th NS5 branes

3d N = 4 theory lives on 20123,




Field theory contents

e Round node: dynamic U(N;) vector multiplets
e Square node: background U(M;) vector multiplets

e Black lines: hypermultiplets in bifundamental representation



IR theory

M;—y  M; M

1117 7

e Flow to interacting SCF'T in IR if for each gauge node
€ =Ni—1+ Njjp1+M; —2N; >0

These theories are referred to as “good” in [Caiotto-Witten].



Global symmetries of SCFT

NS5 | x x X X X X
D3 X X X X
D5 X X X X X X

e N =4 R-symmetry: SO(4)p = SU(2)y x SU(2)¢, geometrically realised as
» rotation group SU(2)g = SO(3)7.8,9
» rotation group SU(2)c = SO(3)3,4,5



Global symmetries of SCFT

M Mo Mpo My

M N» Ngo Nea

e Flavor symmetry: Gy = (Hf;i U(Mj)) JU(1)diag



Global symmetries of SCFT

M Mo Mpo My

M N» Ngo Nea

e Flavor symmetry: Gy = (Hﬁ;i U(]Wj)) JU(1)diag

e Coulomb branch symmetry GICR
» G&YV =U(1)" : topological symmetry U(1); from each U(N;)
» May be enhanced in IR by monopole operators as ladder operators. [Gaiotto-Witten],
[Aharony-Hanany-Intriligator-Seiberg-Strassler], [Borokhov-Kapustin-Wu], [Bashkirov]
» The subset of balanced gauge nodes yield Dynkin diagram of non-Abelian part of GX¥.
» Example above: G&* = SU(¢ — 1) x U(1).



Deformation parameters

M D5
—_——

o A triplet of masses m = (

My_o D5
—_—

m!,m? m?)

My D5 Mg,lDf)

X X X X X X X X X XX X
Ny_p D3

AR Ny D3 2 No_y D3

» Corresponding to CSA(Gr), 1® 3 of SU(2)g x SU(2)c

» Pst of D5 in 2>*5 rotated by SO(3)3,4,5

1 2

e A triplet of FI parameters & = (w!,w?,w?)
» Corresponding to CSA(G¢),3® 1 of SU(2)u x SU(2)c
> Relative psts of NS5;, NS5, in "% rotated by SO(3)7,s.9

T

%
ZE6

7,8,9
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Two partitions

e The linear quiver can be described by two partitions p, o; the 3d N' = 4 theory
denoted by T [SU(n)] [Gaiotto-Witten]

Y4
p=(p1,p2,--.), p1=p2>...2p>0, |p|=) pi=n
=1l

Z/
0’:(01,0'2,...), 0120’22...20’[/>0, ‘O’|:ZO'L:TZ
g=il
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Two partitions

M, Mo My Mg
N Na Ngo Nea

e Let o7 = (61,09,...). The two partitions are

1 —Ni + Z;}: M;, 1=1
Gi=3 M, pi={N1—N+CI My, 1<i<t
j - [ 7 3—1 ) =0 7

= NZ*U i=1{

e p is a partition function if the quiver theory is “good”

pi=¢e;+ep1+...eq_1+Npq
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Two partitions

e Physically, we can move all D5 to the left, taking into account brane
creation/annihilation [Hanany-Witten]
> p; are the net numbers D3 ending on NS5
» o; are the net numbers D3 ending on D5
> |p| = |o| = n is the total number of D3 branes

e Example: SQED w/ p=(2,1), 0 = (1,1,1).
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3d N = 2* theories and

Bethe/gauge correspondence



e To make connection with quantum integrable systems, we softly break supersymmetry
N =4 N =2%
e and compactify on S to get 2d N = (2,2)* KK theory

14



SUSY breaking

e We choose and preserve a N = 2 sub-algebra of N' = 4 algebra
e Let j3, j& be Cartan generators of SU(2)y x SU(2)c
e Choose jr = j3 + j2 to be generator of U(1)g of N' =2

15



SUSY breaking

We choose and preserve a N = 2 sub-algebra of /' = 4 algebra
Let j3, j& be Cartan generators of SU(2)y x SU(2)c

Choose jr = j3 + j& to be generator of U(1)g of N' =2
o j, = j¥ — j& generates add’l global non-R-symmetry U(1), from N =2 POV

Breaking N’ = 4 — A = 2* by turning on real mass 17}, by coupling N' = 2 background
U(1), vector multiplet
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After SUSY breaking

o N =4 vector (p1,2,3) = N =2 vector (p3) + N =2 chiral (® = 1 + ips)
e Trplets of m,d split to complex and real

» Real components m = m®,w = w?®: relevant for CB of effective theory
» Complex components m' + im?, w' + iw?: irrelevant for CB of effective theory

16



After SUSY breaking

o N =4 vector (p1,2,3) = N =2 vector (p3) + N =2 chiral (® = 1 + ips)
e Trplets of m,d split to complex and real
3

» Real components m = m®,w = w?®: relevant for CB of effective theory

» Complex components m' + im?, w' + iw?: irrelevant for CB of effective theory
e Summary:

» Global non-R symmetry: Gg x Go x U(1),
> Ass’ted real parameters: m,w, 7]
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Circle compactification with radius R

e Compactify 3d N = 2* on S* to get 2d N = (2,2)* KK theory.
e Combination of (m,w,7/2) w/ flavor Wilson lines a} into complex deformation

parameters
0; =iR(m; +iaf’,), ts=iR(ws+iaf,), n=iR(+iag).

These are twisted masses of 2d effective N' = (2,2)* theory.

17



Circle compactification with radius R

e Compactify 3d N = 2* on S* to get 2d N = (2,2)* KK theory.
e Combination of (m,w,7/2) w/ flavor Wilson lines a} into complex deformation

parameters
0; =iR(m; +iaf’,), ts=iR(ws+iaf,), n=iR(+iag).

These are twisted masses of 2d effective N' = (2,2)* theory.

e Define exponentiated variables as Wilson lines af are periodic

y; = e27r|(9j7 €s = 627r|t37 qg= e7in
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Circle compactification with radius R

e Compactify 3d N = 2* on S* to get 2d N = (2,2)* KK theory.
e Combination of (m,w,7/2) w/ flavor Wilson lines a} into complex deformation
parameters

0; =iR(m; +iaf’,), ts=iR(ws+iaf,), n=iR(+iag).

These are twisted masses of 2d effective N' = (2,2)* theory.

e Define exponentiated variables as Wilson lines af are periodic

y; = e27r|(9j7 €s = 627r|t37 qg= e7in

¢ 3d dynamic N = 2 vector multiplets contain real scalar o3, = 3 (k=1,...,1k(G)),
which can be combined with Wilson line ag  along S 1 and exponentiated

2miug
b

T =€ U = IR((Tk + iaoyk).
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2d effective theory

e The 2d KK theory is described by an effective theory in IR, w/ massive fields
integrated out.

e Turning on generic twisted masses, moduli space breaks down to isolated points.

18



2d effective theory

e The 2d KK theory is described by an effective theory in IR, w/ massive fields
integrated out.

e Turning on generic twisted masses, moduli space breaks down to isolated points.

e To find the supersymmetric vacua:

>

>

Move into Coulomb branch of moduli space

The dynamics of 2d Abelian field strength is controled by effective twisted
superpotential Weﬂ(uk)

Turn on twisted masses z = (6;,ts,7), integrate out massive fields, compute
contributions to WeH(Uk; z)

Find SUSY vacua by minima of Weg(ux; z).
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Effective twisted superpotential

o Weg is 1-loop exact by renormalisation theorem.

19



Effective twisted superpotential

o Weg is 1-loop exact by renormalisation theorem.

e Contribution from a 3d N = 2 chiral multiplet w/ twisted mass u
Wesr = £(u),

where £(u) is defined by a%ﬁ(u) = — 5= log 2 sinh(—miu).
e Contribution from FI term of G = U(N) w/ a single U(1); topological symmetry

N
Weg =1 Z U,
k=1

19



Effective twisted superpotential

Weg is 1-loop exact by renormalisation theorem.

Contribution from a 3d A/ = 2 chiral multiplet w/ twisted mass u
Wesr = £(u),

where £(u) is defined by a%ﬁ(u) = — 5= log 2 sinh(—miu).
Contribution from FI term of G = U(N) w/ a single U(1); topological symmetry

N
Weg =1 Z U,
k=1

o Supersymmetry vacua [Nekrasov-Shatashvili]

iweg =0 = exp271'i5’VVelcf =1, k=12,...,tk(G).
Ouy, Ouy,
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Example: U(N) SQCD w/ M fundamental hypermultiplets

e Effective twisted superpotential

N M
M N Z O(ug—0;+2n) + €(—ug+0;+11) < chirals in hyper

J k=1j=1

N

+ Z L(ug —ug—n) < chirals in vector

N k=1

Uk
f2=t + (ta — t1) Z U, + FI terms
e Color coding: gauge charge, flavor charge, (1), charge
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Example: U(N) SQCD w/ M fundamental hypermultiplets

e Supersymmetric vacua (k= 1,...,N)

N 1 M
1= eQwiauk'W’eff _ (_1)N+M—1€£ H Trq — 19 1 H Tk — Y54

€ g — Tpq— i — T '
Rl T e BT R Y

1#k

to—t1
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Example: U(N) SQCD w/ M fundamental hypermultiplets

e Supersymmetric vacua (k= 1,...,N)

N 1 M
1= eQwiauk'W’eff _ (_1)N+M—1€£ H Tkd — J:ij H Tk — Y54

€ g — T i — T '
Rl T e BT R Y

M £k
9.
E ! e Alternatively formulation by Baxter’s @-functions
Q" (@) B (ax)
N Q~~ (k) BT (xx)’
U
ta—t1 with 7 = es /€1 and

oo =[1({Z-y2): 2o=I (5 - V%)
f(

f5(@) = f(zg™).
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Generic A-type quiver

Moy M, Mg Mgy
Nyg-1 Ng N Ne-a

e For generic A-type quiver (a =1,....0—1;k=1,...,N,)

) Q@ >> Qar () Qi () By (")

=
Qe (@) @1 (@)0%, (=) B (=)
with
N r \1/2 249\ 1/2 fa T \1/2 y(,“) 1/2
Q“(“"):lzl((mgw) (ZT) ) Ba(m)zg((y;w) JT) )
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Bethe Ansatz Equations

e These are Bethe Ansatz Equations (BAEs) for XXZ Heisenberg spin chains

M M

N Ny Ny Ns

SU(2) spin chain with M sites SU(4) spin chain with M sites
and N magnons

23



Difficulty with BAEs

e BAEs are difficult to solve in practise: numerical instability, unphysical solutions
(coinciding Bethe roots, some singular solutions,...)

e The best way to solve BAEs is through rational Q-systems [Marboe-Volin]

» Originally constructed for GL(M|N) invariant XXX spin chain
» Various generalisation to XXZ spin chain: triangular quivers

o We construct rational Q-systems for generic A-type quivers

24



Rational Q-systems




Young diagram

e Rational Q-system is defined by two partitions
p,o

25



Young diagram

e Rational Q-system is defined by two partitions
p,o
e Use p=(p1,...,pe) to define Q-functions

—N1+Z§;}A/jjﬂ i=1
pPi = Ni_l—Ni"'Zﬁ;zl'ijﬁ 1<i<d
No_1, 1=/

25



Young diagram

! Pe
e Rational Q-system is defined by two partitions ‘ (-1
p,o g8 8 i
e Use p=(p1,...,pe) to define Q-functions Pa+1
a+1
_ . Pa
—Ny+ Y M, i=1 .
pi= AN =N+ My, 1<i</ S
Ne_1, i=¢ A
1
e Construct a Young diagram with p; boxes on each m ;

row 0

25



e Place Q, s(z) at each point (a,s): a Laurent
polynomial in z

e QQ-relations: at each box

— 0Ot = - +
Qa+1,s@a,s+1 - @(J,-Q-l,(s‘-ﬁ—l@(l,s - €a@a,+1,s+1Qu,s

with f£(z) = f(zq*?)

a
pPe
{-1

Pa+1
a+1

Pa

Pa-1
a-1

(a,8+41) (a+1,s+1)

(a,s) (a+1,s)

26



Boundary conditions

T = (61,...,60_1) to specify boundary

4—1
Gy =Y M;
1=3

e Use o
conditions

27



Boundary conditions

e Use ol = (

conditions

4—1
Gy =Y M;
1=3

e Top boundary: Qg 4(z) =1
e Left boundary: Qq0(z) = fo(2)Qa(x)

Qu(@) ﬁ <(

(@)

B3

J

)~

T

G1,...,00—1) to specify boundary

")

Pe

Pa

Pa-1

27



Boundary conditions

e Use ol = (

conditions

l—1—a
fa(x) = Ba—!—k(xq
(5=l
M, -
Ba(x) = (( @
=1\ Y

g1,..

{—1
6=y M,
i=j

e Left boundary: Qg 0(z) = fo(2)Qq(x)

.,0¢—1) to specify boundary

Pe

Pa

Pa-1

28



From QQ-relaitons to BAEs

e Consider QQ-relations for nodes (a — 1,0) < /
QU,,OQ(J,—l,l = Q:JQ;_LO - Ea—l(@;l(@(t_l_yo E E E
Pa+1
and take z = a:,(ca) so that Qa,o(xéa)) =0 o
Pa
+ - — - + a
Qa,1@a—1,o = ea—lQa,lQa—l,O ,
a-1
a—1
U N
P1
0
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From QQ-relaitons to BAEs

e Consider QQ-relations for nodes (a — 1,0) . /
QU,,OQ(J,—l,l = Q:JQ;_LO - Ea—l(@;l(@(t_l_yo E E E
and take x = a:,(ca) so that Qa,o(xéa)) =0 p“jl .
Pa
oo — - o+
Qa,1@a—1,o = ea—lQa,lQa—l,O ) “
a-1
e Assuming none vanishes o l: P
U
= (a)y o+ (,.(a)
Qu_1o(@y) Qualz”) 1 1 P
- N 0

Q;ll,o(xia)) @;1@2&)) €a—1 =
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From QQ-relaitons to BAEs

e Consider QQ-relations for nodes (a,0)

!
a
— 0t O - ot p
Qa+1,0@a,1 = Qa+171Qa7o - €aQa+1,1Qa7o ‘ [/71
shift z — z¢™! to get NS
Pa+1
Q:+170Q;1 - @:il,l(@(z,o - eaQa+1,1Q;?§ a et
Qar1,0Q01 = Qat1,1Q, 0 —€. Q511 1Qa0 a
Pa-1
a a—1
and set © = :L'gl) so that red terms vanish Cor
RS
P1
0
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From QQ-relaitons to BAEs

e Consider QQ-relations for nodes (a,0)

/
a
— 0t - - + Pe
Qa+1,0@a,l - Qa-g-l’lQa,o - €aQa+171Qa70 ‘ 0-q
shift z — z¢™! to get NS
Pa+1
+ + _ 0+t ++
Qa+170(@a,1 - @a+171Q(L,O - GaQa—o—l,lQa’o ’ arl
Qo101 = Qat+1,1Q, 0 —€ Q7 1Qas0 a
Pa-1
(a) ) . a-1
and set x = ;" so that red terms vanish S ; ; ; ;
e Take ratio :
P1
0

@) Q) eE?) 0

@y o (@t (a)
Qa,l(xk ) an(xk )Q(H—l,o(mk )
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From QQ-relations to BAEs

e Combining two results

€a aO( Ec )@;_170(33](;))(@;“70(%5:))
€a-1 Qy 5 (21”) QF_y 0(2”) Q41 o)

e Use @a,o( ) fa( )Qa( )

e Qit(a 2“)@* (1§“>)(2a+1(1£“>)fz;**(w;(f))f;l(x;i“))f;l( =)
€a-1 Q" (2\”) QF_,(«)Q¥, 1 (@) fa = (@) fh @) f 1 (@)

=1

= =]|
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From QQ-relations to BAEs

e The construction of f,(z) guarantees that

FHEN @ @) By (@)
fom @OV @ R EY) B )

o We then get back to the desired BAEs

e Q7 (@) Qi1 (=)Q 1 (@) By (2\)
€a-1 Qz (i) QF_, (#\)Q,  («\) BE (V)

a—1 3

32



Solving Q-system

e First solve Q,(x), then find L,ia) as roots of Qg (x).

o We parametrise Q,(x) by N, parameters ci, ), which are symmetric polynomials of xéa)

AR e

j=1
((() ) 1/2 —N, /2( Cg\ﬂ;z_lxNa—l —|—Céa))
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Solving Q-system

First solve Qg (z), then find L,ia) as roots of Qg (x).

o We parametrise Q,(x) by N, parameters ci, ), which are symmetric polynomials of xéa)

(a)

QG (") - Qe el

j=1
((() ) 1/2 —N, /2( Cg\ﬂ;z_lxNa—l —|—Céa))

Qa0(x) = fo(x)Qqu(z) are thus fixed in terms of cgca); the remaining Q functions can be

recursively solved by QQ-relations.

They are not necessarily Laurent polynomials of . Imposing this condition leads to
algebraic equations for {c(a)} called “Zero Remainder Conditions” (ZRC).
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Solving Q-system

o Toprow: a=/,Q;, =1

e Next row: a = £ — 1, QQ-relation ., !
(4
+ -
Qlfl,erl = Qé—l,s - 5871@3_175 E E E
Q¢—1,5 can be solved recursively from Q_1 . (Ao
a+1
e N-Next row: a = ¢ — 2, QQ-relation Pa

— — Pa-1
Qe-1,6Qr—2,641 = szl,ﬁl@efzs_65—2(@@7175“@2—72,5 il

leads to .1

+ — — +
Q£71,3+1QE72,5 - 65_2QZ71,5+1Q£72,3 g

Qe-1,s —s

Q672,s+1 =

Requiring polynomial Qy_2 s11(x) leads to ZRCs.
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Q-system vs BAEs

e Solving x;, (a) from Q-system is much more superior than from BAEs
» Unphysical solutions are automatically eliminated.
» Numerically stable.
» Much faster.

e Symmetry of a:,(ca) is exploited in Q-system.

249

N, .
Qa(x) = H ((l‘(“;))l/? B (;)1/2> = ¢y V2aNe/2(gNe 1 ey, _1aMel L+ o)
J

Jj=1
Permutations of r,(c 9 for fixed a do not change the solution to the Q-system, but lead

to different solutions to BAEs.
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Efficiency test

(M,N) BAEs Q-systems
(4,2) 0238  0.105

M (5,2)  0.512 0.155
(6,3)  199.7 0.385

(7,3) 1803 2.092

N (8,4) — 6.322
(9,4) - 29.85

(10,5) - 1145
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Mirror symmetry and

bispectral duality




Mirror symmetry

e S-duality in type IIB superstring theory: D5 <+ NS5, D3 < D3.

e Mirror symmetry of 3d A/ = 4 theories /\

\0123456789

NS5 | x x X X X X ]
( D3 X X X X
D5 X X X m X X X
e Mapping of parameters
m<< o

SU2)c < SU(2)

Gc<—>GH
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Mirror symmetry

e Mirror symmetry: D5 <+ NS5, 28 «3 —28 [Hanany-Witten]
3 1 1
1 1 1
Ko
RK—— K

e Mirror symmetry by exchange of partitions: p <» o, T7[SU(n)] <> T2[SU(n)].

38



Mirror symmetry for A’ = 2* theory on S!

e Exponentiated complex parameters

_ e27ri9_7 27it s Tin
- ) ? .

Yy €s = € q—==¢e

with
0, =iR(m; +iad;), ts=iR(ws+ial,), n=IiR(7+iaf).

e Mapping of parameters under mirror symmetry between theory 7 =T [SU(n)] and
theory TV = T2[SU(n)]: (Recall j, = j3 — j&)
1

\ Vv
Yi < €5 € Yg, quT

39



A-, B-twisted indices

o A B-twisted index w/ genus g and twisted masses z; = {y;, €5}

[Closset-Kim],[Closset-Kim-Willett], [Benini-Zaffaroni]

Ig,A/B(‘]» z;) = TI'E;A/B ((1)Fqu Hzfgl)

e Partition function of 3d N/ = 2* theory on X, x S w/ topological A-B-twists turned
on to preserve half supersymmetry
> A-twist: Lorentz group (SU(2)r X SU(2)u)diag
» B-twist: Lorentz group (SU(2)r X SU(2)¢)diag

40



A-, B-twisted indices

o A B-twisted index w/ genus g and twisted masses z; = {y;, €5}

[Closset-Kim],[Closset-Kim-Willett], [Benini-Zaffaroni]

Ig,A/B(‘]» z;) = TI'E;A/B ((1)Fqu Hz?1>

e Partition function of 3d N/ = 2* theory on X, x S w/ topological A-B-twists turned
on to preserve half supersymmetry
> A-twist: Lorentz group (SU(2)r X SU(2)u)diag
» B-twist: Lorentz group (SU(2)r X SU(2)¢)diag

e Reduces via localisation to summation over Bethe roots [Closset-Kim], [Closset-Kim-Willett]
1 et
Iy a/B = Wal E Ha/p(2)
*ESBE
with N
O*Weg

_ QﬂiQA/B(fc)d t
Ha/p(x) =e o Ougdup
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Mirror symmetry for A-, B-twisted indices

e For two mirror theories 7 = TJ[SU(n)] and theory T = T2[SU(n)]
17 4la,%) = 1] 5(a", =), Vg

e In particular

41



Example of mirror symmetry

e Both systems have three solutions ;2 3 to
Q-system/BAEs

3 1 1
yj=1 #1 22 ’Hquivcr(ml) _ 3(p2 — 1)4z2/3 ’Hq“iver(mz D=
p 1 4 P*(¥z—p)2pe/z—1)2" 4 ’
2 _1\4.2/3
QED 3(g" —1)% QED

1 1 1 H (wl): - - 5 H (wzﬁg):....
. RO ? (Ve —qP(q¥e— 12" F

2 2=1 2=l e Mirror symmetry

HIVYT (2,) = HEEP(2,)] ey a=1,2,3

1
9—3
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Example of mirror symmetry

e Both systems have three solutions x; 23 to
Q-system/BAEs

3 1 1
yi=1 = = - 3(z—-p)p¥z—1) , qui
iver quiver _
» g ,H%uve (:Bl):_ p\yg s HB ((L’Qﬁ) =
ED 3(Ve—q)(gVe—1) ED
2 1 1 HIP () = — e , HYEP (g5) = .. ..
P HCO R ¢ q
o 2=1 2= e Mirror symmetry

HEN (@a) = HR (@a)|crzr @ =1,2,3
=5
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Implication for QISs

Quantum integrable systems associated to mirror dual 3d N = 2* theories are very
different.

Bispectral duality: the spectra of the two QISs are one-to-one correspondent.

[Gaiotto-Koroteev]

HL (&,), HE' (&) may be identified with certain conserved charges in QISs, which are

then also identified.

e QOur construction leads to quick determination of bispectral dual integrable systems:
Q-systems with partitions exchanged.
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Conclusion and outlook




Conclusion

e Rational Q-systems are more suited than BAEs to describe Bethe/gauge
correspondence.

e For gauge theorists: We constructed rational Q-systems for quickly solving SUSY
vacua of 3d N = 2* A-type quiver on S'.

e For integrability experts: We give easy criteria for bispectral dual integrable systems
based on rational Q-systems.

Outlook

e Efficient calculation of A- B-twisted indices using algebraic methods.

e Generalisation to orthosymplectic quivers and open spin chains.
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Thank you for your attention!
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