Rational Q-systems and Linear Quiver Gauge Theories

Jie Gu Joint HEP-TH Seminar, 12-Oct-2022

Yau Center of Southeast University

2208.10047: J.G., Jiang, Sperling

- Bethe/gauge duality: SUSY vacua of 3d $\mathcal{N} = 2^*$ theory on S^1 are given by solutions to BAEs.
- Best way to solve BAEs are through the rational Q-systems.
- Lesson for SUSY field theorists: We generalise construction of rational Q-systems to generic A-type quivers.
- Lesson for integrability experts: We give quick criteria for bispectral duality.

Outline

Overview of 3d $\mathcal{N} = 4$ theories

3
d $\mathcal{N}=2^*$ theories and Bethe/gauge correspondence

Rational Q-systems

From QQ-relations to BAEs

Solving Q-system

Mirror symmetry and bispectral duality

Conclusion and outlook

Overview of 3d $\mathcal{N} = 4$ theories

- Relatively easy to understand.
 - ▶ Different constructions
 - ► Moduli spaces
 - ▶ Hilbert series
 - ▶ Monopole operators, defects
 - ▶ Partition functions
 - ▶ ...
- Interesting properties: Mirror symmetry, etc.
- Deep connections to quantum integrable systems.

• Brane construction in type IIB superstring theory

	0	1	2	3	4	5	6	7	8	9
$\begin{array}{c} \mathrm{NS5} \\ \mathrm{D3} \\ \mathrm{D5} \end{array}$	×	×	×	×	\times	×				
D3	\times	\times	\times				\times			
D5	×	\times	×					×	\times	\times

- ℓ NS5 separated along x^6
- N_i D3 suspended between *i*-th and (i + 1)-th NS5 branes
- M_i D5 in between *i*-th and (i + 1)-th NS5 branes
- 3d N = 4 theory lives on $x^{0,1,2,3}$.

- Round node: dynamic $U(N_i)$ vector multiplets
- Square node: background $U(M_i)$ vector multiplets
- Black lines: hypermultiplets in bifundamental representation

IR theory

• Flow to interacting SCFT in IR if for each gauge node

$$e_i = N_{i-1} + N_{i+1} + M_i - 2N_i \ge 0$$

These theories are referred to as "good" in [Gaiotto-Witten].

	0	1	2	3	4	5	6	7	8	9
$\begin{array}{c} \mathrm{NS5} \\ \mathrm{D3} \\ \mathrm{D5} \end{array}$	×	×	×	×	\times	×				
D3	×	\times	\times				\times			
D5	×	\times	\times					\times	\times	\times

- $\mathcal{N} = 4$ R-symmetry: $SO(4)_R \cong SU(2)_H \times SU(2)_C$, geometrically realised as
 - rotation group $SU(2)_H \cong SO(3)_{7,8,9}$
 - rotation group $SU(2)_C \cong SO(3)_{3,4,5}$

Global symmetries of SCFT

• Flavor symmetry: $G_H = \left(\prod_{j=1}^{\ell-1} U(M_j)\right) / U(1)_{\text{diag}}$

Global symmetries of SCFT

- Flavor symmetry: $G_H = \left(\prod_{j=1}^{\ell-1} U(M_j)\right) / U(1)_{\text{diag}}$
- Coulomb branch symmetry G_C^{IR}
 - $G_C^{\text{UV}} = U(1)_J^{\ell-1}$: topological symmetry $U(1)_J$ from each $U(N_i)$
 - May be enhanced in IR by monopole operators as ladder operators. [Gaiotto-Witten], [Aharony-Hanany-Intriligator-Seiberg-Strassler], [Borokhov-Kapustin-Wu], [Bashkirov]
 - The subset of balanced gauge nodes yield Dynkin diagram of non-Abelian part of G_C^{IR} .
 - Example above: $G_C^{\text{IR}} = SU(\ell 1) \times U(1)$.

Deformation parameters

- A triplet of masses $\vec{m} = (m^1, m^2, m^3)$
 - Corresponding to $CSA(G_H)$, $\mathbf{1} \otimes \mathbf{3}$ of $SU(2)_H \times SU(2)_C$
 - Pst of D5 in $x^{3,4,5}$ rotated by $SO(3)_{3,4,5}$
- A triplet of FI parameters $\vec{\omega} = (\omega^1, \omega^2, \omega^3)$
 - Corresponding to $CSA(G_C)$, $\mathbf{3} \otimes \mathbf{1}$ of $SU(2)_H \times SU(2)_C$
 - ▶ Relative psts of NS5_i, NS5_{i+1} in $x^{7,8,9}$ rotated by $SO(3)_{7,8,9}$

• The linear quiver can be described by two partitions ρ, σ ; the 3d $\mathcal{N} = 4$ theory denoted by $T^{\sigma}_{\rho}[SU(n)]$ [Gaiotto-Witten]

$$\boldsymbol{\rho} = (\rho_1, \rho_2, \ldots), \quad \rho_1 \ge \rho_2 \ge \ldots \ge \rho_\ell > 0, \quad |\boldsymbol{\rho}| = \sum_{i=1}^\ell \rho_i = n$$
$$\boldsymbol{\sigma} = (\sigma_1, \sigma_2, \ldots), \quad \sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_{\ell'} > 0, \quad |\boldsymbol{\sigma}| = \sum_{i=1}^{\ell'} \sigma_i = n$$

Two partitions

• Let $\boldsymbol{\sigma}^T = (\hat{\sigma}_1, \hat{\sigma}_2, \ldots)$. The two partitions are

$$\hat{\sigma}_j = \sum_{i=j}^{\ell-1} M_i, \quad \rho_i = \begin{cases} -N_1 + \sum_{j=1}^{\ell-1} M_j, & i = 1\\ N_{i-1} - N_i + \sum_{j=i}^{\ell-1} M_j, & 1 < i < \ell\\ N_{\ell-1}, & i = \ell \end{cases}$$

• ρ is a partition function if the quiver theory is "good"

$$\rho_i = e_i + e_{i+1} + \dots + e_{\ell-1} + N_{\ell-1}$$

Two partitions

- Physically, we can move all D5 to the left, taking into account brane creation/annihilation [Hanany-Witten]
 - ρ_i are the net numbers D3 ending on NS5
 - σ_j are the net numbers D3 ending on D5
 - $|\boldsymbol{\rho}| = |\boldsymbol{\sigma}| = n$ is the total number of D3 branes
- Example: SQED w/ $\rho = (2, 1), \sigma = (1, 1, 1).$

3d $\mathcal{N} = 2^*$ theories and Bethe/gauge correspondence

- To make connection with quantum integrable systems, we softly break supersymmetry $\mathcal{N} = 4 \rightarrow \mathcal{N} = 2^*$;
- and compactify on S^1 to get 2d $\mathcal{N} = (2,2)^*$ KK theory

- We choose and preserve a $\mathcal{N} = 2$ sub-algebra of $\mathcal{N} = 4$ algebra
- Let j_H^3, j_C^3 be Cartan generators of $SU(2)_H \times SU(2)_C$
- Choose $j_R = j_H^3 + j_C^3$ to be generator of $U(1)_R$ of $\mathcal{N} = 2$

- We choose and preserve a $\mathcal{N}=2$ sub-algebra of $\mathcal{N}=4$ algebra
- Let j_H^3, j_C^3 be Cartan generators of $SU(2)_H \times SU(2)_C$
- Choose $j_R = j_H^3 + j_C^3$ to be generator of $U(1)_R$ of $\mathcal{N} = 2$
- $j_{\eta} = j_H^3 j_C^3$ generates add'l global non-R-symmetry $U(1)_{\eta}$ from $\mathcal{N} = 2$ POV
- Breaking $\mathcal{N} = 4 \to \mathcal{N} = 2^*$ by turning on real mass $\tilde{\eta}$, by coupling $\mathcal{N} = 2$ background $U(1)_{\eta}$ vector multiplet

- $\mathcal{N} = 4$ vector $(\varphi_{1,2,3}) \to \mathcal{N} = 2$ vector $(\varphi_3) + \mathcal{N} = 2$ chiral $(\Phi = \varphi_1 + i\varphi_2)$
- Tr
plets of $\vec{m}, \vec{\omega}$ split to complex and real
 - ▶ Real components $m \equiv m^3, \omega \equiv \omega^3$: relevant for CB of effective theory
 - ► Complex components $m^1 + im^2$, $\omega^1 + i\omega^2$: irrelevant for CB of effective theory

- $\mathcal{N} = 4$ vector $(\varphi_{1,2,3}) \to \mathcal{N} = 2$ vector $(\varphi_3) + \mathcal{N} = 2$ chiral $(\Phi = \varphi_1 + i\varphi_2)$
- Tr
plets of $\vec{m}, \vec{\omega}$ split to complex and real
 - ▶ Real components $m \equiv m^3, \omega \equiv \omega^3$: relevant for CB of effective theory
 - Complex components $m^1 + im^2$, $\omega^1 + i\omega^2$: irrelevant for CB of effective theory
- Summary:
 - Global non-R symmetry: $G_H \times G_C \times U(1)_\eta$
 - \blacktriangleright Ass'ted real parameters: $m, \omega, \tilde{\eta}$

Circle compactification with radius R

- Compactify 3d $\mathcal{N} = 2^*$ on S^1 to get 2d $\mathcal{N} = (2,2)^*$ KK theory.
- Combination of $(m,\omega,\tilde{\eta}/2)$ w/ flavor Wilson lines a_0^F into complex deformation parameters

$$\theta_j = \mathrm{i} R(m_j + \mathrm{i} a^H_{0,j}), \quad t_s = \mathrm{i} R(\omega_s + \mathrm{i} a^C_{0,s}), \quad \eta = \mathrm{i} R(\tilde{\eta} + \mathrm{i} a^\eta_0).$$

These are twisted masses of 2d effective $\mathcal{N} = (2,2)^*$ theory.

Circle compactification with radius R

- Compactify 3d $\mathcal{N} = 2^*$ on S^1 to get 2d $\mathcal{N} = (2,2)^*$ KK theory.
- Combination of $(m,\omega,\tilde{\eta}/2)$ w/ flavor Wilson lines a_0^F into complex deformation parameters

$$\theta_j = \mathrm{i} R(m_j + \mathrm{i} a^H_{0,j}), \quad t_s = \mathrm{i} R(\omega_s + \mathrm{i} a^C_{0,s}), \quad \eta = \mathrm{i} R(\tilde{\eta} + \mathrm{i} a^\eta_0).$$

These are twisted masses of 2d effective $\mathcal{N} = (2,2)^*$ theory.

• Define exponentiated variables as Wilson lines a_0^F are periodic

$$y_j = e^{2\pi i \theta_j}, \quad \epsilon_s = e^{2\pi i t_s}, \quad q = e^{\pi i \eta}.$$

Circle compactification with radius R

- Compactify 3d $\mathcal{N} = 2^*$ on S^1 to get 2d $\mathcal{N} = (2,2)^*$ KK theory.
- Combination of $(m,\omega,\tilde{\eta}/2)$ w/ flavor Wilson lines a_0^F into complex deformation parameters

$$\theta_j = \mathrm{i} R(m_j + \mathrm{i} a^H_{0,j}), \quad t_s = \mathrm{i} R(\omega_s + \mathrm{i} a^C_{0,s}), \quad \eta = \mathrm{i} R(\tilde{\eta} + \mathrm{i} a^\eta_0).$$

These are twisted masses of 2d effective $\mathcal{N} = (2,2)^*$ theory.

• Define exponentiated variables as Wilson lines a_0^F are periodic

$$y_j = e^{2\pi i\theta_j}, \quad \epsilon_s = e^{2\pi it_s}, \quad q = e^{\pi i\eta}.$$

• 3d dynamic $\mathcal{N} = 2$ vector multiplets contain real scalar $\sigma_k \equiv \varphi_{3,k}$ (k = 1, ..., rk(G)), which can be combined with Wilson line $a_{0,k}$ along S^1 and exponentiated

$$x_k = \mathrm{e}^{2\pi \mathrm{i} u_k}, \quad u_k = \mathrm{i} R(\sigma_k + \mathrm{i} a_{0,k}).$$

- The 2d KK theory is described by an effective theory in IR, w/ massive fields integrated out.
- Turning on generic twisted masses, moduli space breaks down to isolated points.

- The 2d KK theory is described by an effective theory in IR, w/ massive fields integrated out.
- Turning on generic twisted masses, moduli space breaks down to isolated points.
- To find the supersymmetric vacua:
 - ▶ Move into Coulomb branch of moduli space
 - ► The dynamics of 2d Abelian field strength is controled by effective twisted superpotential W_{eff}(u_k)
 - ► Turn on twisted masses $\boldsymbol{z} = (\theta_j, t_s, \eta)$, integrate out massive fields, compute contributions to $\widetilde{W}_{\text{eff}}(u_k; \boldsymbol{z})$
 - Find SUSY vacua by minima of $\widetilde{W}_{\text{eff}}(u_k; \boldsymbol{z})$.

Effective twisted superpotential

• $\widetilde{W}_{\rm eff}$ is 1-loop exact by renormalisation theorem.

Effective twisted superpotential

- W_{eff} is 1-loop exact by renormalisation theorem.
- Contribution from a 3d $\mathcal{N} = 2$ chiral multiplet w/ twisted mass u

$$\widetilde{W}_{\text{eff}} = \ell(u),$$

where $\ell(u)$ is defined by $\frac{\partial}{\partial u}\ell(u) = -\frac{1}{2\pi i}\log 2\sinh(-\pi i u)$.

• Contribution from FI term of G = U(N) w/ a single $U(1)_J$ topological symmetry

$$\widetilde{W}_{\text{eff}} = t \sum_{k=1}^{N} u_k$$

Effective twisted superpotential

- $\widetilde{W}_{\text{eff}}$ is 1-loop exact by renormalisation theorem.
- Contribution from a 3d $\mathcal{N} = 2$ chiral multiplet w/ twisted mass u

$$\widetilde{W}_{\text{eff}} = \ell(u),$$

where $\ell(u)$ is defined by $\frac{\partial}{\partial u}\ell(u) = -\frac{1}{2\pi i}\log 2\sinh(-\pi i u)$.

• Contribution from FI term of G = U(N) w/ a single $U(1)_J$ topological symmetry

$$\widetilde{W}_{\text{eff}} = t \sum_{k=1}^{N} u_k$$

• Supersymmetry vacua [Nekrasov-Shatashvili]

$$\frac{\partial}{\partial u_k}\widetilde{W}_{\text{eff}} = 0 \quad \Rightarrow \quad \exp 2\pi \mathsf{i} \frac{\partial \widetilde{W}_{\text{eff}}}{\partial u_k} = 1, \ k = 1, 2, \dots, \mathrm{rk}(G)$$

Example: U(N) SQCD w/ M fundamental hypermultiplets

• Effective twisted superpotential

• Color coding: gauge charge, flavor charge, $U(1)_{\eta}$ charge

Example: U(N) SQCD w/ M fundamental hypermultiplets

• Supersymmetric vacua (k = 1, ..., N)

$$1 = e^{2\pi i \partial_{u_k} \widetilde{W}_{eff}} = (-1)^{N+M-1} \frac{\epsilon_2}{\epsilon_1} \prod_{\substack{l=1\\l \neq k}}^N \frac{x_k q - x_l q^{-1}}{x_l q - x_k q^{-1}} \prod_{j=1}^M \frac{x_k - y_j q}{y_j - x_k q}$$

Example: U(N) **SQCD** w/ M fundamental hypermultiplets

• Supersymmetric vacua $(k = 1, \dots, N)$

$$1 = e^{2\pi i \partial_{u_k} \widetilde{W}_{eff}} = (-1)^{N+M-1} \frac{\epsilon_2}{\epsilon_1} \prod_{\substack{l=1\\l \neq k}}^N \frac{x_k q - x_l q^{-1}}{x_l q - x_k q^{-1}} \prod_{j=1}^M \frac{x_k - y_j q}{y_j - x_k q}$$

• Alternatively formulation by Baxter's Q-functions

$$-1 = \tau \frac{Q^{++}(x_k)}{Q^{--}(x_k)} \frac{B^{-}(x_k)}{B^{+}(x_k)},$$

 u_k t_2-t_1

 \bigcirc_N

 $\bigcap^{M} \theta_{i}$

with $\tau = \epsilon_2/\epsilon_1$ and

$$Q(x) = \prod_{l=1}^{N} \left(\sqrt{\frac{x}{x_l}} - \sqrt{\frac{x_l}{x}} \right), \ B(x) = \prod_{j=1}^{M} \left(\sqrt{\frac{x}{y_j}} - \sqrt{\frac{y_j}{x}} \right),$$
$$f^{\pm}(x) = f(xq^{\pm 1}).$$

Generic A-type quiver

• For generic A-type quiver $(a = 1, \dots, \ell - 1; k = 1, \dots, N_a)$

$$\tau^{(a)} \frac{Q_a^{++}(x_k^{(a)})}{Q_a^{--}(x_k^{(a)})} \frac{Q_{a-1}^{-}(x_k^{(a)})Q_{a+1}^{-}(x_k^{(a)})}{Q_{a-1}^{+}(x_k^{(a)})Q_{a+1}^{+}(x_k^{(a)})} \frac{B_a^{-}(x_k^{(a)})}{B_a^{+}(x_k^{(a)})} = -1$$

with

$$Q_a(x) = \prod_{l=1}^{N_a} \left(\left(\frac{x}{x_l^{(a)}}\right)^{1/2} - \left(\frac{x_l^{(a)}}{x}\right)^{1/2} \right), \quad B_a(x) = \prod_{j=1}^{M_a} \left(\left(\frac{x}{y_j^{(a)}}\right)^{1/2} - \left(\frac{y_j^{(a)}}{x}\right)^{1/2} \right)$$
$$f^{\pm}(x) = f(xq^{\pm 1})$$

Bethe Ansatz Equations

• These are Bethe Ansatz Equations (BAEs) for XXZ Heisenberg spin chains

SU(2) spin chain with M sites and N magnons

SU(4) spin chain with M sites

- BAEs are difficult to solve in practise: numerical instability, unphysical solutions (coinciding Bethe roots, some singular solutions,...)
- The best way to solve BAEs is through rational Q-systems [Marboe-Volin]
 - ▶ Originally constructed for GL(M|N) invariant XXX spin chain
 - \blacktriangleright Various generalisation to XXZ spin chain: triangular quivers
- We construct rational Q-systems for generic A-type quivers

Rational Q-systems

• Rational Q-system is defined by two partitions ho, σ

- Rational Q-system is defined by two partitions ρ,σ
- Use $\boldsymbol{\rho} = (\rho_1, \dots, \rho_\ell)$ to define Q-functions

$$\rho_i = \begin{cases} -N_1 + \sum_{j=1}^{\ell-1} M_j, & i = 1\\ N_{i-1} - N_i + \sum_{j=i}^{\ell-1} M_j, & 1 < i < \ell\\ N_{\ell-1}, & i = \ell \end{cases}$$

- Rational Q-system is defined by two partitions ρ,σ
- Use $\boldsymbol{\rho} = (\rho_1, \dots, \rho_\ell)$ to define \mathbb{Q} -functions

$$\rho_i = \begin{cases} -N_1 + \sum_{j=1}^{\ell-1} M_j, & i = 1\\ N_{i-1} - N_i + \sum_{j=i}^{\ell-1} M_j, & 1 < i < \ell\\ N_{\ell-1}, & i = \ell \end{cases}$$

• Construct a Young diagram with ρ_i boxes on each row

- Place $\mathbb{Q}_{a,s}(x)$ at each point (a,s): a Laurent polynomial in x
- QQ-relations: at each box

 $\mathbb{Q}_{a+1,s}\mathbb{Q}_{a,s+1} = \mathbb{Q}_{a+1,s+1}^+\mathbb{Q}_{a,s}^- - \epsilon_a\mathbb{Q}_{a+1,s+1}^-\mathbb{Q}_{a,s}^+$

with $f^{\pm}(x) = f(xq^{\pm 1})$

• Use
$$\sigma^T = (\hat{\sigma}_1, \dots, \hat{\sigma}_{\ell-1})$$
 to specify boundary conditions

$$\hat{\sigma}_j = \sum_{i=j}^{\infty} M_i$$

• Use $\boldsymbol{\sigma}^T = (\hat{\sigma}_1, \dots, \hat{\sigma}_{\ell-1})$ to specify boundary conditions

$$\hat{\sigma}_j = \sum_{i=j}^{\ell-1} M_i$$

- Top boundary: $\mathbb{Q}_{\ell,s}(x) = 1$
- Left boundary: $\mathbb{Q}_{a,0}(x) = f_a(x)Q_a(x)$

$$Q_a(x) = \prod_{j=1}^{N_a} \left(\left(\frac{x}{x_j^{(a)}}\right)^{1/2} - \left(\frac{x_j^{(a)}}{x}\right)^{1/2} \right)$$

• Use $\boldsymbol{\sigma}^T = (\hat{\sigma}_1, \dots, \hat{\sigma}_{\ell-1})$ to specify boundary conditions

$$\hat{\sigma}_j = \sum_{i=j}^{\ell-1} M_i$$

• Left boundary: $\mathbb{Q}_{a,0}(x) = f_a(x)Q_a(x)$

$$f_a(x) = \prod_{k=1}^{\ell-1-a} B_{a+k}(xq^{-\frac{k-1}{2}}) \dots B_{a+k}(xq^{\frac{k-1}{2}})$$
$$B_a(x) = \prod_{j=1}^{M_a} \left(\left(\frac{x}{y_j^{(a)}}\right)^{1/2} - \left(\frac{y_j^{(a)}}{x}\right)^{1/2} \right)$$

• Consider QQ-relations for nodes (a - 1, 0)

$$\mathbb{Q}_{a,0}\mathbb{Q}_{a-1,1} = \mathbb{Q}_{a,1}^+\mathbb{Q}_{a-1,0}^- - \epsilon_{a-1}\mathbb{Q}_{a,1}^-\mathbb{Q}_{a-1,0}^+$$

and take $x = x_k^{(a)}$ so that $\mathbb{Q}_{a,0}(x_k^{(a)}) = 0$
 $\mathbb{Q}_{a,1}^+\mathbb{Q}_{a-1,0}^- = \epsilon_{a-1}\mathbb{Q}_{a,1}^-\mathbb{Q}_{a-1,0}^+$

• Consider QQ-relations for nodes (a - 1, 0)

$$\mathbb{Q}_{a,0}\mathbb{Q}_{a-1,1} = \mathbb{Q}_{a,1}^+\mathbb{Q}_{a-1,0}^- - \epsilon_{a-1}\mathbb{Q}_{a,1}^-\mathbb{Q}_{a-1,0}^+$$

and take
$$x = x_k^{(a)}$$
 so that $\mathbb{Q}_{a,0}(x_k^{(a)}) = 0$

$$\mathbb{Q}_{a,1}^{+}\mathbb{Q}_{a-1,0}^{-} = \epsilon_{a-1}\mathbb{Q}_{a,1}^{-}\mathbb{Q}_{a-1,0}^{+}$$

• Assuming none vanishes

$$\frac{\mathbb{Q}_{a-1,0}^{-}(x_k^{(a)})}{\mathbb{Q}_{a-1,0}^{+}(x_k^{(a)})}\frac{\mathbb{Q}_{a,1}^{+}(x_k^{(a)})}{\mathbb{Q}_{a,1}^{-}(x_k^{(a)})}\frac{1}{\epsilon_{a-1}} = 1.$$

• Consider QQ-relations for nodes (a, 0)

$$\mathbb{Q}_{a+1,0}\mathbb{Q}_{a,1} = \mathbb{Q}_{a+1,1}^+\mathbb{Q}_{a,0}^- - \epsilon_a\mathbb{Q}_{a+1,1}^-\mathbb{Q}_{a,0}^+$$

shift $x \to xq^{\pm 1}$ to get

$$\mathbb{Q}_{a+1,0}^{+}\mathbb{Q}_{a,1}^{+} = \mathbb{Q}_{a+1,1}^{++}\mathbb{Q}_{a,0}^{-} - \epsilon_{a}\mathbb{Q}_{a+1,1}\mathbb{Q}_{a,0}^{++}$$
$$\mathbb{Q}_{a+1,0}^{-}\mathbb{Q}_{a,1}^{-} = \mathbb{Q}_{a+1,1}\mathbb{Q}_{a,0}^{--} - \epsilon_{a}\mathbb{Q}_{a+1,1}^{--}\mathbb{Q}_{a,0}^{--}$$

and set $x = x_k^{(a)}$ so that red terms vanish

• Consider QQ-relations for nodes (a, 0)

$$\mathbb{Q}_{a+1,0}\mathbb{Q}_{a,1} = \mathbb{Q}_{a+1,1}^+\mathbb{Q}_{a,0}^- - \epsilon_a\mathbb{Q}_{a+1,1}^-\mathbb{Q}_{a,0}^+$$

shift $x \to xq^{\pm 1}$ to get

$$\mathbb{Q}_{a+1,0}^{+}\mathbb{Q}_{a,1}^{+} = \mathbb{Q}_{a+1,1}^{++}\mathbb{Q}_{a,0}^{-} - \epsilon_{a}\mathbb{Q}_{a+1,1}\mathbb{Q}_{a,0}^{++}$$
$$\mathbb{Q}_{a+1,0}^{-}\mathbb{Q}_{a,1}^{-} = \mathbb{Q}_{a+1,1}\mathbb{Q}_{a,0}^{--} - \epsilon_{a}\mathbb{Q}_{a+1,1}^{--}\mathbb{Q}_{a,0}^{--}$$

and set $x = x_k^{(a)}$ so that red terms vanish

• Take ratio

$$\frac{\mathbb{Q}_{a,1}^+(x_k^{(a)})}{\mathbb{Q}_{a,1}^-(x_k^{(a)})} = -\epsilon_a \frac{\mathbb{Q}_{a,0}^{++}(x_k^{(a)})\mathbb{Q}_{a+1,0}^-(x_k^{(a)})}{\mathbb{Q}_{a,0}^{--}(x_k^{(a)})\mathbb{Q}_{a+1,0}^+(x_k^{(a)})}$$

• Combining two results

$$\frac{\epsilon_a}{\epsilon_{a-1}} \frac{\mathbb{Q}_{a,0}^{++}(x_k^{(a)})}{\mathbb{Q}_{a,0}^{--}(x_k^{(a)})} \frac{\mathbb{Q}_{a-1,0}^{-}(x_k^{(a)})\mathbb{Q}_{a+1,0}^{-}(x_k^{(a)})}{\mathbb{Q}_{a-1,0}^{+}(x_k^{(a)})\mathbb{Q}_{a+1,0}^{+}(x_k^{(a)})} = -1$$

• Use
$$\mathbb{Q}_{a,0}(x) = f_a(x)Q_a(x)$$

$$\frac{\epsilon_a}{\epsilon_{a-1}} \frac{Q_a^{++}(x_k^{(a)})}{Q_a^{--}(x_k^{(a)})} \frac{Q_{a-1}^{-}(x_k^{(a)})Q_{a+1}^{-}(x_k^{(a)})}{Q_{a-1}^{+}(x_k^{(a)})Q_{a+1}^{+}(x_k^{(a)})} \frac{f_a^{++}(x_k^{(a)})f_{a-1}^{-}(x_k^{(a)})f_{a+1}^{-}(x_k^{(a)})}{f_a^{--}(x_k^{(a)})f_{a-1}^{+}(x_k^{(a)})f_{a+1}^{+}(x_k^{(a)})} = -1$$

• The construction of $f_a(x)$ guarantees that

$$\frac{f_a^{++}(x_k^{(a)})f_{a-1}^-(x_k^{(a)})f_{a+1}^-(x_k^{(a)})}{f_a^{--}(x_k^{(a)})f_{a-1}^+(x_k^{(a)})f_{a+1}^+(x_k^{(a)})} = \frac{B_a^-(x_k^{(a)})}{B_a^+(x_k^{(a)})}$$

• We then get back to the desired BAEs

$$\frac{\epsilon_a}{\epsilon_{a-1}} \frac{Q_a^{++}(x_k^{(a)})}{Q_a^{--}(x_k^{(a)})} \frac{Q_{a-1}^{-}(x_k^{(a)})Q_{a+1}^{-}(x_k^{(a)})}{Q_{a-1}^{+}(x_k^{(a)})Q_{a+1}^{+}(x_k^{(a)})} \frac{B_a^{-}(x_k^{(a)})}{B_a^{+}(x_k^{(a)})} = -1$$

Solving Q-system

- First solve $Q_a(x)$, then find $x_k^{(a)}$ as roots of $Q_a(x)$.
- We parametrise $Q_a(x)$ by N_a parameters $c_k^{(a)}$, which are symmetric polynomials of $x_k^{(a)}$

$$Q_{a}(x) = \prod_{j=1}^{N_{a}} \left(\left(\frac{x}{x_{j}^{(a)}}\right)^{1/2} - \left(\frac{x_{j}^{(a)}}{x}\right)^{1/2} \right) = \left(\prod_{j=1}^{N_{a}} x_{j}^{(a)}\right)^{-1/2} x^{-N_{a}/2} \prod_{j=1}^{N_{a}} (x - x_{j}^{(a)})$$
$$\equiv (c_{0}^{(a)})^{-1/2} x^{-N_{a}/2} (x^{N_{a}} + c_{N_{a}-1}^{(a)} x^{N_{a}-1} + \dots + c_{0}^{(a)})$$

Solving Q-system

- First solve $Q_a(x)$, then find $x_k^{(a)}$ as roots of $Q_a(x)$.
- We parametrise $Q_a(x)$ by N_a parameters $c_k^{(a)}$, which are symmetric polynomials of $x_k^{(a)}$

$$Q_a(x) = \prod_{j=1}^{N_a} \left(\left(\frac{x}{x_j^{(a)}} \right)^{1/2} - \left(\frac{x_j^{(a)}}{x} \right)^{1/2} \right) = \left(\prod_{j=1}^{N_a} x_j^{(a)} \right)^{-1/2} x^{-N_a/2} \prod_{j=1}^{N_a} (x - x_j^{(a)})$$
$$\equiv (c_0^{(a)})^{-1/2} x^{-N_a/2} (x^{N_a} + c_{N_a-1}^{(a)} x^{N_a-1} + \dots + c_0^{(a)})$$

- $\mathbb{Q}_{a,0}(x) = f_a(x)Q_a(x)$ are thus fixed in terms of $c_k^{(a)}$; the remaining \mathbb{Q} functions can be recursively solved by QQ-relations.
- They are not necessarily Laurent polynomials of x. Imposing this condition leads to algebraic equations for $\{c_k^{(a)}\}$, called "Zero Remainder Conditions" (ZRC).

Solving Q-system

- Top row: $a = \ell, \mathbb{Q}_{\ell,s} = 1$
- Next row: $a = \ell 1$, QQ-relation

$$\mathbb{Q}_{\ell-1,s+1} = \mathbb{Q}_{\ell-1,s}^- - \epsilon_{\ell-1} \mathbb{Q}_{\ell-1,s}^+$$

 $\mathbb{Q}_{\ell-1,s}$ can be solved recursively from $\mathbb{Q}_{\ell-1,0}$.

• N-Next row: $a = \ell - 2$, QQ-relation

$$\mathbb{Q}_{\ell-1,s}\mathbb{Q}_{\ell-2,s+1} = \mathbb{Q}_{\ell-1,s+1}^+ \mathbb{Q}_{\ell-2,s}^- - \epsilon_{\ell-2}\mathbb{Q}_{\ell-1,s+1}^- \mathbb{Q}_{\ell-2,s}^+$$

leads to

$$\mathbb{Q}_{\ell-2,s+1} = \frac{\mathbb{Q}_{\ell-1,s+1}^+ \mathbb{Q}_{\ell-2,s}^- - \epsilon_{\ell-2} \mathbb{Q}_{\ell-1,s+1}^- \mathbb{Q}_{\ell-2,s}^+}{\mathbb{Q}_{\ell-1,s}^+}$$

- Solving $x_k^{(a)}$ from Q-system is much more superior than from BAEs
 - ▶ Unphysical solutions are automatically eliminated.
 - ▶ Numerically stable.
 - ▶ Much faster.
- Symmetry of $x_k^{(a)}$ is exploited in Q-system.

$$Q_a(x) = \prod_{j=1}^{N_a} \left(\left(\frac{x}{x_j^{(a)}}\right)^{1/2} - \left(\frac{x_j^{(a)}}{x}\right)^{1/2} \right) = c_0^{-1/2} x^{-N_a/2} (x^{N_a} + c_{N_a-1} x^{N_a-1} + \dots + c_0)$$

Permutations of $x_k^{(a)}$ for fixed *a* do not change the solution to the Q-system, but lead to different solutions to BAEs.

 $\square M$

N

(M, N)	BAEs	Q-systems
(4, 2)	0.238	0.105
(5, 2)	0.512	0.155
(6, 3)	199.7	0.385
(7, 3)	1803	2.092
(8, 4)	_	6.322
(9, 4)	_	29.85
(10, 5)	_	1145

Mirror symmetry and bispectral duality

Mirror symmetry

• S-duality in type IIB superstring theory: $D5 \leftrightarrow NS5$, $D3 \leftrightarrow D3$.

unic or y	or ou ,	v —	- 011	0110	3	/				*		
		0	1	2	3	4	5	6	7	8	9	
1	$\begin{array}{c} \rm NS5\\ \rm D3\\ \rm D5 \end{array}$	×	×	×	×	×	×			$ec{\omega}$		
	D3	×	\times	\times				\times				
7	D5	×	\times	×		$ec{m}$			\times	\times	\times	

• Mirror symmetry of 3d $\mathcal{N} = 4$ theories

• Mapping of parameters

 $\vec{m} \leftrightarrow \vec{\omega}$ $SU(2)_C \leftrightarrow SU(2)_H$ $G_C \leftrightarrow G_H$

• Mirror symmetry: D5 \leftrightarrow NS5, $x^6 \leftrightarrow -x^6$ [Hanany-Witten]

• Mirror symmetry by exchange of partitions: $\rho \leftrightarrow \sigma$, $T^{\sigma}_{\rho}[SU(n)] \leftrightarrow T^{\rho}_{\sigma}[SU(n)]$.

• Exponentiated complex parameters

$$y = e^{2\pi i \theta_j}, \quad \epsilon_s = e^{2\pi i t_s}, \quad q = e^{\pi i \eta}.$$

with

$$\theta_j = \mathrm{i}R(m_j + \mathrm{i}a_{0,j}^H), \quad t_s = \mathrm{i}R(\omega_s + \mathrm{i}a_{0,s}^C), \quad \eta = \mathrm{i}R(\tilde{\eta} + \mathrm{i}a_0^\eta).$$

• Mapping of parameters under mirror symmetry between theory $\mathcal{T} = T^{\sigma}_{\rho}[SU(n)]$ and theory $\mathcal{T}^{\vee} = T^{\rho}_{\sigma}[SU(n)]$: (Recall $j_{\eta} = j^3_H - j^3_C$)

$$y_i \leftarrow \epsilon_i^{\lor}, \quad \epsilon_a \leftarrow y_a^{\lor}, \quad q \leftrightarrow \frac{1}{q^{\lor}}$$

A-, B-twisted indices

• A,B-twisted index w/ genus g and twisted masses $z_i = \{y_j, \epsilon_s\}$

[Closset-Kim], [Closset-Kim-Willett], [Benini-Zaffaroni]

$$I_{g,A/B}(q,z_i) = \operatorname{Tr}_{\Sigma_g^{A/B}}\left((-1)^F q^{Q_\eta} \prod_i z_i^{Q_i}\right)$$

- Partition function of 3d $\mathcal{N} = 2^*$ theory on $\Sigma_g \times S^1$ w/ topological A-,B-twists turned on to preserve half supersymmetry
 - ► A-twist: Lorentz group $(SU(2)_L \times SU(2)_H)_{\text{diag}}$
 - ▶ B-twist: Lorentz group $(SU(2)_L \times SU(2)_C)_{\text{diag}}$

A-, B-twisted indices

• A,B-twisted index w/ genus g and twisted masses $z_i = \{y_j, \epsilon_s\}$

[Closset-Kim], [Closset-Kim-Willett], [Benini-Zaffaroni]

$$I_{g,A/B}(q,z_i) = \operatorname{Tr}_{\Sigma_g^{A/B}}\left((-1)^F q^{Q_\eta} \prod_i z_i^{Q_i}\right)$$

- Partition function of 3d $\mathcal{N} = 2^*$ theory on $\Sigma_g \times S^1$ w/ topological A-,B-twists turned on to preserve half supersymmetry
 - ► A-twist: Lorentz group $(SU(2)_L \times SU(2)_H)_{\text{diag}}$
 - B-twist: Lorentz group $(SU(2)_L \times SU(2)_C)_{\text{diag}}$
- Reduces via localisation to summation over Bethe roots [Closset-Kim], [Closset-Kim-Willett]

$$I_{g,A/B} = \frac{1}{|W_G|} \sum_{\hat{\boldsymbol{x}} \in \mathcal{S}_{BE}} \mathcal{H}_{A/B}(\hat{\boldsymbol{x}})^{g-1}$$

with

$$\mathcal{H}_{A/B}(\boldsymbol{x}) = e^{2\pi i \Omega_{A/B}(\boldsymbol{x})} \det_{a,b} \frac{\partial^2 W_{\text{eff}}}{\partial u_a \partial u_b}$$

• For two mirror theories $\mathcal{T} = T^{\sigma}_{\rho}[SU(n)]$ and theory $\mathcal{T}^{\vee} = T^{\rho}_{\sigma}[SU(n)]$

$$I_{g,A}^{\mathcal{T}}(q,z_i) = I_{g,B}^{\mathcal{T}^{\vee}}(q^{\vee},z_i^{\vee}), \quad \forall g$$

• In particular

$$\mathcal{H}_{A}^{\mathcal{T}}(\hat{\boldsymbol{x}};q,z_{i})\Big|_{\hat{\boldsymbol{x}}\in\mathcal{S}_{BE}}=\mathcal{H}_{B}^{\mathcal{T}^{\vee}}(\hat{\boldsymbol{x}}^{\vee};q^{\vee},z_{i}^{\vee})\Big|_{\hat{\boldsymbol{x}}^{\vee}\in\mathcal{S}_{BE}^{\vee}}$$

Example of mirror symmetry

• Both systems have three solutions $x_{1,2,3}$ to Q-system/BAEs

$$\mathcal{H}_{A}^{\text{quiver}}(\boldsymbol{x}_{1}) = \frac{3(p^{2}-1)^{4}z^{2/3}}{p^{2}(\sqrt[3]{z}-p)^{2}(p\sqrt[3]{z}-1)^{2}}, \ \mathcal{H}_{A}^{\text{quiver}}(\boldsymbol{x}_{2,3}) = \dots$$
$$\mathcal{H}_{B}^{\text{QED}}(\boldsymbol{x}_{1}) = \frac{3(q^{2}-1)^{4}\epsilon^{2/3}}{q^{2}(\sqrt[3]{\epsilon}-q)^{2}(q\sqrt[3]{\epsilon}-1)^{2}}, \ \mathcal{H}_{B}^{\text{QED}}(\boldsymbol{x}_{2,3}) = \dots$$

• Mirror symmetry

$$\mathcal{H}_{A}^{\text{quiver}}(\boldsymbol{x}_{a}) = \mathcal{H}_{B}^{\text{QED}}(\boldsymbol{x}_{a})\Big|_{\substack{\epsilon \to z \\ q \to \frac{1}{p}}}, \quad a = 1, 2, 3$$

Example of mirror symmetry

• Both systems have three solutions $x_{1,2,3}$ to Q-system/BAEs

$$\begin{aligned} \mathcal{H}_B^{\text{quiver}}(\boldsymbol{x}_1) &= -\frac{3(\sqrt[3]{z}-p)(p\sqrt[3]{z}-1)}{p\sqrt[3]{z}}, \ \mathcal{H}_B^{\text{quiver}}(\boldsymbol{x}_{2,3}) = \dots \\ \mathcal{H}_A^{\text{QED}}(\boldsymbol{x}_1) &= -\frac{3(\sqrt[3]{\epsilon}-q)(q\sqrt[3]{\epsilon}-1)}{q\sqrt[3]{\epsilon}}, \ \mathcal{H}_A^{\text{QED}}(\boldsymbol{x}_{2,3}) = \dots \end{aligned}$$

• Mirror symmetry

$$\mathcal{H}_B^{\text{quiver}}(\boldsymbol{x}_a) = \mathcal{H}_A^{\text{QED}}(\boldsymbol{x}_a) \Big|_{\substack{\epsilon \to z \\ q \to \frac{1}{p}}}, \quad a = 1, 2, 3$$

- Quantum integrable systems associated to mirror dual 3d $N=2^{\ast}$ theories are very different.
- Bispectral duality: the spectra of the two QISs are one-to-one correspondent. [Gaiotto-Koroteev]
- $\mathcal{H}_A^T(\hat{x}_a), \mathcal{H}_B^{T^{\vee}}(\hat{x}_a^{\vee})$ may be identified with certain conserved charges in QISs, which are then also identified.
- Our construction leads to quick determination of bispectral dual integrable systems: Q-systems with partitions exchanged.

Conclusion and outlook

Conclusion

- Rational Q-systems are more suited than BAEs to describe Bethe/gauge correspondence.
- For gauge theorists: We constructed rational Q-systems for quickly solving SUSY vacua of 3d $\mathcal{N} = 2^*$ A-type quiver on S^1 .
- For integrability experts: We give easy criteria for bispectral dual integrable systems based on rational Q-systems.

Outlook

- Efficient calculation of A-,B-twisted indices using algebraic methods.
- Generalisation to orthosymplectic quivers and open spin chains.

Thank you for your attention!